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Abstract: Reconstruction of a 3-dimension(3D) firework show from a given videos is a key technology in light source 

simulation in computer graphics, which can be more effective and real than traditional method. Although the firework model is 

already very mature, however, to our best knowledge, there is not any existing method that can reconstruct a firework show from 

a given video. And due to the lack of camera arguments and depth message, reconstruction is very challenging. In this paper, a 

method is proposed to solve the problem. A rendering model which requires some parameters which describe the color and 

position information of firework as input and generates a 3D firework show as output is constructed, and then the problem 

becomes getting the parameters needed for the rendering model from the given video. The parameters are divided into two 

groups according to the relevance, and then different neural networks including 3D Convolution Neural Network (3D-CNN) and 

Recurrent Neural Network(RNN) are designed respectively to extract these parameters needed by our rendering model from a 

given video. It is found to be practicable and effective to reconstruct a 3D firework from a given video by testing this work with 

some firework videos in various perspective. 
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1. Introduction 

Scenes in many computer graphics applications contains a 

large amount of light sources. In the modeling of virtual 

scenes, setting of light sources plays a crucial role in results 

of 3D scenes rendering. In addition to these high-precision 

models, to achieve a high-quality effect, there should be 

lights which are close to the real. In rendering complex 

objects and large-scale scenes, the setting of light sources or 

the determining the light sources properties has become one 

of the most important aspects in 3D scene modeling. 

Currently, in order to set multiple light sources which provide 

a more real sensation in complex scenes, professional artists 

will invest a lot of time in designing the light sources in the 

scene, which is not only cumbersome but time-consuming. 

To improve the modeling efficiency and simulate the position 

of the light sources more quickly, it is indispensable to 

automatically set the light source. In this article, it is focused 

on the fireworks that can be used as light sources. Current 

fireworks models are based on estimating the explosion 

equation of the fireworks based on prior knowledge, and then 

artificially set these parameters needed for the model to make 

the effect looks like a natural fireworks. It also cost a lot of 

time to pursue a more real effect, or be close to a real 

fireworks model. Therefore, it is worth to find a method that 

can automatically extract parameters from given videos and 

to reconstruct a three-dimensional fireworks model. 

In this paper, it is focused on learning the explosion 

patterns, trajectory of the particles, and the color changing 

rules from given firework videos, and then construct a 3D 

fireworks which is similar to the given video. The firework 

model built on the basis of video accords with the real 

motion law of the fireworks and it can provide a more 

realistic lighting source for the scene. It not only saves a lot 

of time but enhances the user's immersion by analysis the 

audio automatically. To accomplish this task, this paper first 

build a model that generates fireworks from a series of 

parameters, referring to present models and slightly improved 

them. Then parameters are divided into two groups according 

to the relevance of them as well as the difficulty of extracting 

them. Different methods are designed for each group, 

including traditional image processing methods and neural 

networks, to analysis and extract these parameters from the 
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given video. Finally, the parameters are passed into the 

rendering model to build a three-dimensional fireworks effect, 

which is used to compare with the original video. Figure 1 

shows the effect of our method. The three rows are different 

videos, the first column is the given video, and the other 

three columns is the prediction under three different view 

space at the same time. 

 

Figure 1. Effects of our method. 

To the best of our knowledge, we for the first time, 

proposed a method that automatically extract parameters 

from the fireworks video, and then reconstruct a 

three-dimensional fireworks, which can be used as light 

scenes in big scene, from these parameters. This paper 

improved the existing fireworks model to make it more 

suitable for our problem, and designed a neural network 

structure to analyze the video efficiently, and finally a simple 

but effective method was proposed for obtaining these 

parameters from the video. After verification, it is found that 

the 3D firework effect generated by this method is roughly 

similar to the fireworks of the original video. 

2. Prior Work 

2.1. Prior Model of Fireworks 

Currently, almost every firework rendering algorithms are 

based on independent particle system [1, 2], which means that 

the forces acting on the particles are mutually independent and 

have no influence on each other. 

The render of the three-dimension fireworks with particle 

system on computer graphics was first proposed by Loke [3]. 

They proposed some characteristics of some fireworks, 

including the properties such as color, shape, size, speed, 

position, and special effects such as groin, star, rotation and so 

on. Combined with the research of some other scholars [4], 

they are concluded the following conclusions: 

Color: color is produced by the burning of metal. The colors 

will not be fixed during the process of fireworks display, and 

they gradually dim from the initially bright colors to 

disappear. 

Transparency: In the actual fireworks display, as the 

particles themselves continue to burn, they slowly fade and 

disappear at the final of the display, which can be obtained by 

processing the transparency characteristics of the particles. 

Size: As the particle is burned, its size gradually becomes 

smaller. This can be achieved by changing the particle size or 

set an attribute to describe the changing rate of particle size. 

Trail: When watching a fireworks display, you can see an 

obvious trailing trail behind the bright spot of movement. 

Therefore, when simulating a firework, how to display the 

trail of fireworks is very important. 

Movement: When a particle is born, it is given an initial 

position and an initial speed. After that, the particles continue 

to move to a new position and get a new speed. The particle 

motion can be described by the following equation: ds=u(t)dt, 

where dt is the time increment, u(t) is the particle's velocity 

function, and ds is the displacement increment. 

Fireworks generated according to these rules above is 

already very real. This paper have constructed a model for 

rendering three-dimensional fireworks based on these rules 

and assumptions, which will be discussed in detail in the 

section 

2.2. Convolution Neural Network and Recurrent Neural 

Network 

Convolution neural network (CNN, or ConvNet) is first 

used to solve document recognition problem [5]. Recently it is 

widely used in image classification on large dataset such as 

ImageNet [6]. A ConvNet contains a feature extractor 
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composed of convolution layers and sub sampling layers, 

which is the difference between a ConvNet and an ordinary 

neural network. There are usually several feature maps in a 

convolution layer of CNN, and each feature plane consists of a 

number of neurons that arranged as matrix. The neurons in the 

same feature plane will share the same weights, which in fact 

are called convolution kernel. 

The convolution kernel is usually initialized in the form of a 

random decimal matrix [7] whose value are usually very small 

and the bias should set to zero. The convolution kernel will 

gradually learn reasonable weights during the network 

training process. One of the benefit of sharing weights is to 

reduce the connections between layers of the network and at 

the same time reducing the risk of over-fitting. Sub-sampling 

layer, also known as pooling, usually perform in two forms: 

mean pooling and max pooling [8]. Sub-sampling can be 

viewed as a special kind of convolution process. Convolution 

and sub-sampling greatly simplify model complexity and 

reduce model parameters. 

Recurrent neural network(RNN) is widely used in 

information processing with timing characteristics such as 

voice and video. RNN is a neural network that models 

sequence data, which means that the current output of a 

sequence is also related to the previous output [9]. The 

specific manifestation is that the network will memorize the 

previous information and apply it to the calculation of the 

current output. In other words, the nodes between the hidden 

layers are connected, different from traditional networks, and 

the input of the hidden layer not only includes the output of the 

input layer but includes the output of hidden layers. 

The Long Short-Term Memory Neural Network (LSTM), 

which is also a time-recursive neural network, is a special type 

of RNN. LSTM was proposed by Hochreiter & Schmidhuber 

in 1997 [10] and was improved and promoted by Alex Graves 

in recent years [11]. The main difference between LSTM and 

RNN is that it adds a processor used to judge whether 

information is useful or not, which is usually called cell. A cell 

consists of three gates, called the input gate, the forgot gate, 

and the output gate. A forgot gate is used to determine whether 

a message entered in the LSTM network is useful or not [12]. 

Only the information that meets the algorithm's certification 

will remain, and the inconsistent information will be forgotten 

through the forget gate. So long-term dependence information 

can be learnt with LSTM network, and it is suitable for 

processing and predicting important events with relatively 

long intervals and delays in time series. 

3. Methodology 

3.1. Problem Setup 

Our goal is to learn the variation rule of particle attributes, 

such as color, position and size, from a given fireworks video, 

and then render a 3D fireworks with this rule which should be 

as close as possible to the original video. To achieve this goal, 

this work first built a computer graphic model with openGL 

for rendering 3D fireworks, which accepts 25 parameters and 

will be discussed later in section 3.2.2. So the question can be 

translated into how to learn these 25 parameters from a given 

fireworks video, and the difference between the learned 

parameter and its real value should be as small as possible, in 

other words, it should be guaranteed that the firework show 

rendered looks like the given video. 

Suppose we have the labelled source training dataset Ds = 

{V, a} with N training instances and M attributes. V denotes the 

training videos, while a is the arguments, and we have the 

knowledge that M is equal to 25 in this problem. The i-th 

vector whose size is M in a is the arguments of the i-th video 

which is also expressed as V
i
 in V. Given a new video V

*
, the 

goal is then to learn a function a
*
 = V

*
 with all available 

training information and predict the argument vector a
*
. 

3.2. 3D Firework Rendering Model 

3.2.1. Overview 

This paper design a new model called differential firework 

model(DFM) based on the principle of differential to render 

the target firework with some arguments. As is seen, after the 

explosion of fireworks, several particles were scattered from 

the center of the explosion. The system can be can analyzed 

with the ensemble-isolation method. On the whole, the 

system has an initial position, and it is also affected by 

gravity and other external forces such as wind. In isolation, 

the particles spreads from the explosion center with a certain 

centrifugal speed at a unique angle. The size and color of 

particles are attenuated in a certain proportion due to constant 

combustion during the movement of particles. The particles 

will leave ashes, which will continue to burn with their color 

changing during burning, in the movement process. They are 

the leaving ashes that look like trails. All particles in a frame 

shares the same color and size, and all ashes generated at the 

same frame shares the same color and size as well. 

In the model, given the number of particles in the 

fireworks section, the number of particles and the direction of 

each particle will be easily calculated with algorithm 1, 

which is calculated under spherical coordinate system. After 

that, for each frame indexed by i, this work will calculate the 

color, size and distance form explosion centers of the ashes 

generated by all other frames before the i-th frame. It is too 

sparse because each particle can generate only one ash in one 

frame, so I have to insert several extra ashes uniformly 

between original ashes and calculated the color and size of 

each ash on the particle motion trajectory with the 

interpolation method. As shown in figure 2, if the ashes is 

dense enough, it can be used to simulate various shapes after 

smoothing the edges. 
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Figure 2. Insert ashes to get trail. 

Algorithm 1: Initialize directions 

Require:N>0 and N is integer 

Output:dirs. 

1:n←(N/2)+1 

2:α←2∗π/N 

3:for i=0 to n do 

4: θ←i∗α 

5: m←max(N∗sin(θ), 1) 

6: β←2∗π/m 

7: for j=0 to m do 

8: γ←j∗β 

9: dir←(sin(θ)∗sin(γ), cos(θ), sin(θ)∗cos(γ)) 

10: dirs. push(dir) 

11: end for 

12:end for 

3.2.2. Parameters 

This work have constructed a model that requires several 

parameters. The first parameter is the number of particles in 

the cross section of fireworks, through which this work can 

generate particles in all directions. Then it is needed to 

describe the distance between the particle and the explosion 

center without considering the external force, and the 

distance between the fireworks and the origin in the 

horizontal and vertical direction under the external force. In 

order to achieve a better accuracy, a cubic formula is used to 

fit each distance. For each distance, which can be described 

as: 

d � �� ∗ �� � �	 ∗ �
 � �
 ∗ � � ��       (1) 

Where d is the distance, ��  to ��  are the parameters 

describing this distance, �� is correction term to make the 

model more real and it is usually relatively small. This paper 

tried more correction term with higher power, and find that 

cubic is the best choice to fit the model. �	 is regard as the 

acceleration, �
 is called the initial speed, and �� is the 

initial position. For these three distances, each description is 

represented by four parameters, so there are 12 parameters to 

describe the state of the particles. For each particle in 

direction dir, the position can be calculated as Eq2: 

��


�� �� � �� ∗ �� � �	 ∗ �
 � �
 ∗ � � ���� � �� ∗ �� � �� ∗ �
 � �� ∗ � � ���� � �� ∗ �� � �� ∗ �
 � �	� ∗ � � �		p � �� ∗ ��� � ��� , 	�� , 0 

     (2) 

where ��  denotes the centrifugal distance, ��  and �� 

denotes the distance between the fireworks and the origin in 

the horizontal and vertical direction respective. t denotes the 

time of present frame, p denotes the final position arranged 

as a 3-dimension vector and dir denotes the direction which 

is a 3-dimension orthogonal vector. 

In addition to the motion, some additional parameters are 

also needed to describe the status of particles, including the 

initial color of the particle, the initial size of the particle, the 

changing rate of color and size of particles over time, and the 

changing rate of color and size of ashes over time. Because 

the color has three channels of RGB, a total of 12 parameters 

are needed to describe the state change of the particles. All 

parameters and its division will be described in section 3.3.2. 

3.2.3. Randomization 

To get a more real visual effect, some random element are 

added to our DFM. This paper set random coefficients for the 

centrifugal direction and centrifugal speed of particles, and 

they are implemented in the initialization of the centrifugal 

direction in order to pursue higher computational efficiency. 

The coefficients of speed is added to the unit direction vector. 

The calculation of the direction is changed from line 9 in 

algorithm 1 to algorithm 2: 

Algorithm 2: Get Randomized Direction 

Require:0<c<1 denotes the randomization range 

θ, γ is the same in algorithm 1 

Output:dir 

1:	�! ← rand�&1,1 ∗ c � 1 

2:	�� ← rand�&1,1 ∗ c � 1 

3:	�� ← rand�&1,1 ∗ c � 1 

4:	�) ← rand�&1,1 ∗ c � 1 

5:dir ← �sin�θ ∗ sin�γ ∗ �� , cos�θ ∗ �� , sin�θ ∗ 

cos�γ ∗ 	�)  

6: dir ← �! ∗ norm�dir  

In addition, the parameter of camera are also randomized, 

such as initial position and perspective. It is ensured that the 

camera's position was below the fireworks but not directly 

below it to simulate the actual photographic process, and the 

focus of the camera was near the center of the explosion and 

remained stationary. 

3.3. Dataset and Labels 

3.3.1. Dataset 

Because of the novelty of this work, there is not any 

existing dataset, so a script was written to generate the 

dataset with our DFM described in section 3.2. 

This work first set up a parameter generator, which ensures 

that the generated parameters obey the following two rules: 1. 

In the initial case, the fireworks will not be too dark, that is, 
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the highest value of RGB is no less than 0.5, otherwise the 

brightness will be adjusted at the same random rate to ensure 

the highest value is more than 0.5; 2. The fireworks will not 

completely disappear in at least 40 cycles, that is, the 

brightness and size of the fireworks will not be too small. In 

addition, the initial position of the explosion and the viewing 

angle of the camera are randomly selected. The viewing 

angle is fixed during the fireworks explosion. 

12,000 videos was generated as our dataset with this script. 

All the arguments the model need is also what this paper 

want to extract from the input videos, so the labels of this 

regression problem is the arguments which are these videos 

generated with. For each video 25 parameters needed to 

regress as labels was saved. 

3.3.2. Label Group 

According to the relevance of the parameters, all the 25 

parameters are divided into two groups. 

As table 1 shows, The first group has 13 parameters which 

describe the particle's motion characteristics, including the 

number of particles, the initial velocity and exchange of 

velocity, the initial position of the whole particle system, and 

its velocity in the horizontal and vertical directions. Each 

descriptions of velocity consists of three parameters. The 

second group has 12 parameters, which describes the particle 

status, including the initial size and color of the particles, the 

decay rate of size and color of particles, as well as the decay 

rate of size and color of the ash. 

3.3.3. Auxiliary Labels 

The particles are dispersed from all directions at the same 

initial velocity from the explosion center, and the air 

resistance is basically the same when the particles are 

dispersed. The exchange of velocity is basically the same 

regardless of the wind force and gravity. Since the wind and 

gravity of the entire particle system are basically the same as 

well, consider the particle system as a whole. Under the 

action of external forces, this whole system will move in the 

same way. Therefore, at any time, all particles will be 

approximately on the same sphere, which reflected in the 

video is that the outer particles are approximately on the 

same circle. So a circle can be fit to represent the motion of 

the particles for each frame of the video. The change in the 

radius of the circle is just the change of the position of the 

particle from the center of the explosion regardless of the 

external force, and the change of the center reflects the 

change of the position of the entire particle system under the 

influence of the external force. And further it can obtained 

the exchange of speed of the whole system. 

For each video in our data set, this work obtained a circle 

for each frame by calculating the frame rate of the tag and the 

video, which will be used as an auxiliary tag for the video. 

Fireworks in some videos will completely disappear after a 

certain frame, so all the auxiliary labels of the following 

frames is needed to set to 0, otherwise it is very difficult for 

the models to learn the auxiliary parameters, for the dark 

frame can reflect to various different values. 

Table 1. Parameters and division. 

Group Function Number Description 

1 

number 1 the number of particles in the cross section of firework 

centrifugal distance 4 the distance between particle and explosion center 

horizontal deviation 4 horizontal deviation under external forces 

vertical deviation 4 vertical deviation under external forces 

2 

start color 3 the start color of the particles 

particle color decay 3 decay rate of the colors of particles 

ash color decay 3 decay rate of the colors of ashes 

start size 1 the start size of the particles 

particle size decay 1 decay rate of the size of particles 

ash size decay 1 decay rate of the size of ashes 

 

3.4. Criteria 

If training an independent regression model for each 

individual argument or label [13], then this can be modeled 

as minimizing the expected loss over all the training 

instances for the j-th attribute 01 ; and it leads to the 

following formulation as: 

Θ1 � argminΘ4 ∑ Φ(Ψ4 89�;Θ1;−04
�)<

=>	      (3) 

where Θ1 in Eq(3) indicates the optimized parameter set of 

the j-th argument prediction network;01
=
 is the j-th argument 

of the i-th video; and Φ() is the loss function penalized the 

value differences of predicted attributes and ground-truth 

arguments. The Φ() can be mean square error (MSE) loss or 

any other loss functions [14]. In our experiments, there is no 

significant difference of these loss functions; and MSE will 

be used to evaluate our result. 

As the previous section described, this work divide the 

arguments into two groups, so it will jointly optimize all the 

prediction tasks in a group at once, and the model of Eq (3) 

will be extended as: 

Θ = argmin? ∑ ∑ Φ(Ψ4@9�;Θ4A − 04
�B

4=1
C
�=1      (4) 

where Θ denotes the parameter shared across all the tasks in 

one group. 

3.5. Algorithm Flow 

To get the parameters needed by our rendering model from 

the video, one of the simplest algorithms is to use a 3D 

ConvNet, as is shown in section 4.1, to extract parameters 

from the video. The results are analyzed to found that some 
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of the parameters, including all parameters in group2, were 

better learned with the deviation within 5%. While there are 

many parameters that are not so well satisfying. Therefore, it 

is needed to design other algorithms to solve these 

parameters. 

As is shown in figure 3, this work extract the given video 

into frames as well as get the differences frames between two 

adjacent frames in the video except for the first frame. For the 

parameters in group 1, the last softmax layer is replaced in a 

conv2d model called inceptionV3[15] with a fully connected 

layer, whose size is the same as the size our auxiliary labels. 

This work retrain its parameters to fit our secondary tags got in 

section 3.3.3. Then the last layer from our trained model is 

removed to get features [16]. This paper predict each frame of 

every video in the data set and save the output as the feature 

sequences of its frames, and these frame feature sequences will 

then be regard as the input to the LSTM model, which will be 

discussed in detail in section 4.2. 

 

Figure 3. Overview of our algorithm. 

For some of the parameters in group 2, it can use 3D-CNN, 

or it can extract features with any 2D ConvNet architecture 

and then use LSTM to learn the temporal features, which is 

good enough as well. 

4. Network Structure 

This section explain in detail how our network is designed, 

and elaborate how to train them on our dataset to extract 

parameters from given video. 

4.1. Modeling with 3D ConvNets 

Compared to 2D ConvNet, 3D ConvNet has the ability to 

model temporal information better due to 3D convolution and 

3D pooling layers [17], this paper establish a 3D convolution 

neural network with frames of each video as input and 

arguments in group 2 as output. 

Suppose the size of our videos is clipped to l*h*w*c, 

where l is the length in number of frames, h and w are the 

height and width respectively, c is the number of channels in 

each frame. The size of 3D convolution kernel and pooling 

kernel are also referred by d*k*k or (d, k, k), where d is the 

depth while k is the spatial the same as it of 2D convolution 

kernel. 

4.1.1. Network Architectures 

This section describe the network architecture in detail. 

The network is consisted of 10 convolution layers, 5 pooling 

layers, 1 flatten layers, and 3 fully connect layers after the 

flatten layers. The structure of convolution and pooling layers 

are shown in table 2, which is consisted of six layer groups. 

The number of filter for each group are 3, 6, 12, 24, 48, 96, 

which is limited to the memory of our gpu. The first Conv3D 

layer has a kernel size of (1, 3, 3) and a stride of (1, 2, 2), and 

it is designed to down-sample each frame of videos 

adaptively. All the other Conv3D layers have a kernel size of 

(3, 3, 3), for it is learned [18] that a kernel size of (3, 3, 3) is 

the best choice for C3D model to extract features. All pooling 

layers are max pooling with the kernel size and stride equals 

to (2, 2, 2) except for the first and third pooling layers, 

because I do not want temporal information merge too early. 

Table 2. ConvNet Architecture. 

 Layer filters Kernel stride padding 

1 Conv3D 3 (1, 3, 3) (1,2,2) valid 

2 
Conv3D 6 (3, 3, 3)  same 

MaxPooling3D  (1, 2, 2) (1,2,2) valid 

3 

Conv3D 12 (3, 3, 3)  same 

Conv3D 12 (3, 3, 3)  same 

MaxPooling3D  (2, 2, 2) (2,2,2) valid 

4 

Conv3D 24 (3, 3, 3)  same 

Conv3D 24 (3, 3, 3)  same 

MaxPooling3D  (1, 2, 2) (1,2,2) valid 

5 

Conv3D 48 (3, 3, 3)  same 

Conv3D 48 (3, 3, 3)  same 

MaxPooling3D  (2, 2, 2) (2,2,2) valid 

6 

Conv3D 96 (3, 3, 3)  same 

Conv3D 96 (3, 3, 3)  same 

MaxPooling3D  (2, 2, 2) (2,2,2) valid 

This work add the flatten layers after the last pooling layer 

in order to reshape the output from a 4D matrix to a tensor. 

The first two fully connect layer has 2048 outputs with a 

dropout rate at 0.5, while the final layer has 12 outputs, 

which is equal to the number of parameters in group 2. 

4.1.2. Network Setting 

The size of videos in dataset is (96, 600, 800, 3), and 

reshape all the videos into (48, 300, 400, 3). It can not clip 

them into smaller size because of the lost of details, which is 

important for calculating parameters. For each convolution 

layer and fully connect layer, this work add a l2 

regularization with the weight of 0.00001 in order to avoid 

over-fitting. The loss function is set to be mean square error 

which is the same as equation (4). The batch size is set to 16 
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and train 70% samples per epoch. It will train the model for 

1000 epochs and stop training if the loss has not decreased in 

recent 20 epochs. This work choose Adam [19], which can 

adaptively change the learning rate and avoid vanishing 

learning rate, to optimize our loss function. Because of the 

mean square error loss function, the initial learning rate 

should be very small, and set it to be 1e-5. What is more, the 

decay is set to 1e-6, β	 is set to 0.9 and β
 is set to 0.999. 

4.1.3. Training and Result 

To make all parameters have the similar weight while 

training, first normalize the labels with a min-max-scaler to 

rearrange the labels between -1 and 1. `tanh' is picked up as 

the activation functions for fully connect layers because 

`tanh' can generate negative numbers as result which is 

different from `relu'. This work randomly pick 10000 videos 

as our train set and 2000 videos as validation set to train our 

models. 

After training, the mean square error of all parameters in 

group 2 is decreased to 0.0731. 

This work add different coefficient to our loss function in 

order to focus more on the parameters that are learned not so 

well as others, and then the model of Eq (4) can be extended 

as: 

Θ � argmin? ∑ ∑ 	E4 ∗ Φ�Ψ4@9
�;Θ4A& 04

�B
4�1

C
��1   (5) 

Where E1 denotes the coefficient of the j-th parameter in 

loss function. Now it can pay more attention to the 

parameters that are not so good as others, and at the same 

time, it should be ensured that the average of all the 

coefficients is 1. The other settings is kept fixed and train the 

model again, the loss is decreased to 0.0832 and the mean 

square error of all parameters is decreased to 0.0456. 

4.2. Modeling with Inception V3 and LSTM 

This paper use a model with Inception V3 and LSTM to 

solve the parameters in group 1, which is shown in Figure 4, 

which will be discussed in detail in the next several 

sub-sections. 

 

Figure 4. Architectures of model with Inception V3 and LSTM. 

4.2.1. Feature Extraction 

The LSTM layer requires a sequence of features arranged 

in tensor instead of frames arranged in 3-dimension matrix, I 

have to extract the features, which the LSTM layers can 

make use of, for each frame in videos with a 2D-ConvNet 

model as which inception V3 is chosen in this work. The 

model is used to exchange pictures into features, whose input 

is a picture in 3 dimensions and output is a tensor. The final 

softmax layers was replaced with a fully connect layer at a 

size of number of auxiliary labels described by section 3.3.3, 

because I want to regress the labels instead of classify them. 

Information in difference frames describe the color and 

location of particles except for ashes in the frame, which is 

closely related to the circle fitting. Mean square error is used 

as the loss function and pick Adam with default setting to 

optimize the loss function. The model is trained to fit the 

auxiliary labels with the original frames and difference 

frames and save the weights separately. 

Directly extract videos into auxiliary labels may lose 

precision due to the deviation of our trained 2D-ConvNet 

model. So the final fully connect layers will be removed and 

features are extracted at the final pool layer with the size of 

2048, which can remain more information than getting 

auxiliary labels. This work pre-process each video, exchange 

the original frames and difference frames into sequences 

separately with the two trained models correspondingly. 

4.2.2. Network Architectures 

As figure 4 shown, after exchanging spatial frames into 
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two different types of features for each video respectively, 

the features are sent into two sets of LSTM networks for 

temporal modeling as shown in left and right. The outputs of 

two LSTM model are combined to generate the final 

prediction, and each side has its own prediction as the 

auxiliary of the main prediction. All the predictions are used 

to fit the same parameters in group 1, and this will make the 

network on each side of the figure pay more attention to 

predict the parameters, while the combined fully connect 

layers will pay more attention to find the intersection 

between original frames and difference frames and combines 

the results together. The LSTM layer and all fully connect 

layers except for prediction layers have a dropout rate at 0.5. 

4.2.3. Network Setting 

The size of videos in dataset is (96, 600, 800, 3), and all 

the spatial frames in each video are reshaped into (300, 400, 

3) to extract features from modified inception V3 models. 

The length of features for each frame is 2048, which is the 

size of the `avg_pool' layers in inception V3. The weight of 

l2 regularization of LSTM layer and fully connect layer is 

also set to 0.00001. Mean square error shown in Eq 5 is 

continue to be used as the loss function. As the whole model 

has three outputs, I combine the three loss functions by 

adding them with different coefficients as the final loss 

function. The loss function of main prediction has the 

coefficient of 0.6 while other two predictions have the 

coefficient of 0.2. The batch size is set to 32 and train 70% 

samples per epoch. This work will train the model for 1000 

epochs and stop training if the loss has not decreased in 

recent 25 epochs. Adam is chosen to optimize our loss 

function and the initial learning is set to be 1e-5. The decay is 

set to 1e-6, β	 is set to 0.9 and β
 is set to 0.999, just like 

what we set for 3D-ConvNet before. 

4.2.4. Training and Result 

Just like what I do when training 3D-ConvNet model, I 

normalize the labels with a min-max-scaler to rearrange the 

labels between -1 and 1 and pick up `tanh' as the activation 

functions for fully connect layers. 10000 videos are randomly 

picked as our train set and 2000 videos as validation set to 

train our models. 

After training, the combined loss is decreased to 0.0422, 

and the mean square error of parameters in group 1, which 

are want to solve with this model, is decreased to 0.0396. 

This paper also want to focus more on the parameters 

which are not solved as well as others. So I pick up weighted 

mean square error shown in Eq (6) as the loss function of 

each predictions respectively. For each parameter, the better 

the prediction is, the lower the coefficient will be, and vice 

versa. All the three sub loss functions share the same 

coefficients. After training, the loss end with 0.0391, and the 

mean squared error end with 0.0373. 

5. Result and Discussion 

This paper have tested the approach with several videos. 

All the performance figures and tables reported in this paper 

were measured on a workstation with one NVIDIA GTX 

1060 GPU. 

5.1. Prediction 

This work tried two different types of videos to measure 

the performance of our method, and then test a video 

generated by our rendering model called DFM without 

randomization and a video with randomization respectively. 

5.1.1. Effect of Generated Video Without Randomization 

This work first test our model with a video without 

randomization. I randomly set the arguments needed, 

generate the original video, extract features, and learn the 

parameters with our learning model. The effect is shown in 

the first row of Figure 1. The original video and the 

reconstructed effect in three different view spaces is shown, 

and the first view space is the same as the original video. 

Compared with section 5.1.2, it is proved that because of the 

randomized videos in dataset, the effect will not rise if using 

a video without randomization, and even decrease. 

5.1.2. Effect of Generated Video with Randomization 

This paper then test our model with a video with 

randomization. The result is shown in figure 1, and also show 

the original video and the reconstructed effect in three 

different view spaces, and the first view space is also the 

same as the original video. As is seen, the shape is similar to 

the original video, while the color has a little difference. The 

reason is the use of decay rate to decrease the number of 

parameters to be learn, and the decay rate of color is very 

sensitive to small changes. 

5.2. Limitations 

Our method can only handle simple firework whose 

particles explosion from its center in a sphere and the particle 

of the firework must be approximately symmetrical. What is 

more, because of the lack of information such as parameter 

of camera and depth message, it is impossible to tell where 

the positive side of the firework is. The similarity between 

our results and real video can only be told by observing 

without any mathematical formula. 

6. Conclusion 

This work have presented a method for reconstruction a 3d 

firework from a video. It is showed that auxiliary labels and 

auxiliary predictions work well when reducing the mean 

square error of extracting parameters from given video, and 

demonstrated that different weight in loss function for 

different task is necessary to improve the generalization 

performance. By testing our method with different types of 

video, it is found to be effective to extract features from given 

video and reconstruct a 3D firework which is similar to simple 

firework videos. 
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