

International Journal of Information and Communication Sciences

2018; 3(2): 33-41

http://www.sciencepublishinggroup.com/j/ijics

doi: 10.11648/j.ijics.20180302.13

ISSN: 2575-1700 (Print); ISSN: 2575-1719 (Online)

3D Firework Reconstruction from a Given Videos

Zhihong Wang, Linyi Hu

State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing,

China

Email address:

To cite this article:
Zhihong Wang, Linyi Hu. 3D Firework Reconstruction from Videos. International Journal of Information and Communication Sciences.

Vol. 3, No. 2, 2018, pp. 33-41. doi: 10.11648/j.ijics.20180302.13

Received: August 14, 2018; Accepted: September 12, 2018; Published: September 18, 2018

Abstract: Reconstruction of a 3-dimension(3D) firework show from a given videos is a key technology in light source

simulation in computer graphics, which can be more effective and real than traditional method. Although the firework model is

already very mature, however, to our best knowledge, there is not any existing method that can reconstruct a firework show from

a given video. And due to the lack of camera arguments and depth message, reconstruction is very challenging. In this paper, a

method is proposed to solve the problem. A rendering model which requires some parameters which describe the color and

position information of firework as input and generates a 3D firework show as output is constructed, and then the problem

becomes getting the parameters needed for the rendering model from the given video. The parameters are divided into two

groups according to the relevance, and then different neural networks including 3D Convolution Neural Network (3D-CNN) and

Recurrent Neural Network(RNN) are designed respectively to extract these parameters needed by our rendering model from a

given video. It is found to be practicable and effective to reconstruct a 3D firework from a given video by testing this work with

some firework videos in various perspective.

Keywords: 3D-Reconstruction, Neural Networks, Firework

1. Introduction

Scenes in many computer graphics applications contains a

large amount of light sources. In the modeling of virtual

scenes, setting of light sources plays a crucial role in results

of 3D scenes rendering. In addition to these high-precision

models, to achieve a high-quality effect, there should be

lights which are close to the real. In rendering complex

objects and large-scale scenes, the setting of light sources or

the determining the light sources properties has become one

of the most important aspects in 3D scene modeling.

Currently, in order to set multiple light sources which provide

a more real sensation in complex scenes, professional artists

will invest a lot of time in designing the light sources in the

scene, which is not only cumbersome but time-consuming.

To improve the modeling efficiency and simulate the position

of the light sources more quickly, it is indispensable to

automatically set the light source. In this article, it is focused

on the fireworks that can be used as light sources. Current

fireworks models are based on estimating the explosion

equation of the fireworks based on prior knowledge, and then

artificially set these parameters needed for the model to make

the effect looks like a natural fireworks. It also cost a lot of

time to pursue a more real effect, or be close to a real

fireworks model. Therefore, it is worth to find a method that

can automatically extract parameters from given videos and

to reconstruct a three-dimensional fireworks model.

In this paper, it is focused on learning the explosion

patterns, trajectory of the particles, and the color changing

rules from given firework videos, and then construct a 3D

fireworks which is similar to the given video. The firework

model built on the basis of video accords with the real

motion law of the fireworks and it can provide a more

realistic lighting source for the scene. It not only saves a lot

of time but enhances the user's immersion by analysis the

audio automatically. To accomplish this task, this paper first

build a model that generates fireworks from a series of

parameters, referring to present models and slightly improved

them. Then parameters are divided into two groups according

to the relevance of them as well as the difficulty of extracting

them. Different methods are designed for each group,

including traditional image processing methods and neural

networks, to analysis and extract these parameters from the

34 Zhihong Wang and Linyi Hu: 3D Firework Reconstruction from Videos

given video. Finally, the parameters are passed into the

rendering model to build a three-dimensional fireworks effect,

which is used to compare with the original video. Figure 1

shows the effect of our method. The three rows are different

videos, the first column is the given video, and the other

three columns is the prediction under three different view

space at the same time.

Figure 1. Effects of our method.

To the best of our knowledge, we for the first time,

proposed a method that automatically extract parameters

from the fireworks video, and then reconstruct a

three-dimensional fireworks, which can be used as light

scenes in big scene, from these parameters. This paper

improved the existing fireworks model to make it more

suitable for our problem, and designed a neural network

structure to analyze the video efficiently, and finally a simple

but effective method was proposed for obtaining these

parameters from the video. After verification, it is found that

the 3D firework effect generated by this method is roughly

similar to the fireworks of the original video.

2. Prior Work

2.1. Prior Model of Fireworks

Currently, almost every firework rendering algorithms are

based on independent particle system [1, 2], which means that

the forces acting on the particles are mutually independent and

have no influence on each other.

The render of the three-dimension fireworks with particle

system on computer graphics was first proposed by Loke [3].

They proposed some characteristics of some fireworks,

including the properties such as color, shape, size, speed,

position, and special effects such as groin, star, rotation and so

on. Combined with the research of some other scholars [4],

they are concluded the following conclusions:

Color: color is produced by the burning of metal. The colors

will not be fixed during the process of fireworks display, and

they gradually dim from the initially bright colors to

disappear.

Transparency: In the actual fireworks display, as the

particles themselves continue to burn, they slowly fade and

disappear at the final of the display, which can be obtained by

processing the transparency characteristics of the particles.

Size: As the particle is burned, its size gradually becomes

smaller. This can be achieved by changing the particle size or

set an attribute to describe the changing rate of particle size.

Trail: When watching a fireworks display, you can see an

obvious trailing trail behind the bright spot of movement.

Therefore, when simulating a firework, how to display the

trail of fireworks is very important.

Movement: When a particle is born, it is given an initial

position and an initial speed. After that, the particles continue

to move to a new position and get a new speed. The particle

motion can be described by the following equation: ds=u(t)dt,

where dt is the time increment, u(t) is the particle's velocity

function, and ds is the displacement increment.

Fireworks generated according to these rules above is

already very real. This paper have constructed a model for

rendering three-dimensional fireworks based on these rules

and assumptions, which will be discussed in detail in the

section

2.2. Convolution Neural Network and Recurrent Neural

Network

Convolution neural network (CNN, or ConvNet) is first

used to solve document recognition problem [5]. Recently it is

widely used in image classification on large dataset such as

ImageNet [6]. A ConvNet contains a feature extractor

 International Journal of Information and Communication Sciences 2018; 3(2): 33-41 35

composed of convolution layers and sub sampling layers,

which is the difference between a ConvNet and an ordinary

neural network. There are usually several feature maps in a

convolution layer of CNN, and each feature plane consists of a

number of neurons that arranged as matrix. The neurons in the

same feature plane will share the same weights, which in fact

are called convolution kernel.

The convolution kernel is usually initialized in the form of a

random decimal matrix [7] whose value are usually very small

and the bias should set to zero. The convolution kernel will

gradually learn reasonable weights during the network

training process. One of the benefit of sharing weights is to

reduce the connections between layers of the network and at

the same time reducing the risk of over-fitting. Sub-sampling

layer, also known as pooling, usually perform in two forms:

mean pooling and max pooling [8]. Sub-sampling can be

viewed as a special kind of convolution process. Convolution

and sub-sampling greatly simplify model complexity and

reduce model parameters.

Recurrent neural network(RNN) is widely used in

information processing with timing characteristics such as

voice and video. RNN is a neural network that models

sequence data, which means that the current output of a

sequence is also related to the previous output [9]. The

specific manifestation is that the network will memorize the

previous information and apply it to the calculation of the

current output. In other words, the nodes between the hidden

layers are connected, different from traditional networks, and

the input of the hidden layer not only includes the output of the

input layer but includes the output of hidden layers.

The Long Short-Term Memory Neural Network (LSTM),

which is also a time-recursive neural network, is a special type

of RNN. LSTM was proposed by Hochreiter & Schmidhuber

in 1997 [10] and was improved and promoted by Alex Graves

in recent years [11]. The main difference between LSTM and

RNN is that it adds a processor used to judge whether

information is useful or not, which is usually called cell. A cell

consists of three gates, called the input gate, the forgot gate,

and the output gate. A forgot gate is used to determine whether

a message entered in the LSTM network is useful or not [12].

Only the information that meets the algorithm's certification

will remain, and the inconsistent information will be forgotten

through the forget gate. So long-term dependence information

can be learnt with LSTM network, and it is suitable for

processing and predicting important events with relatively

long intervals and delays in time series.

3. Methodology

3.1. Problem Setup

Our goal is to learn the variation rule of particle attributes,

such as color, position and size, from a given fireworks video,

and then render a 3D fireworks with this rule which should be

as close as possible to the original video. To achieve this goal,

this work first built a computer graphic model with openGL

for rendering 3D fireworks, which accepts 25 parameters and

will be discussed later in section 3.2.2. So the question can be

translated into how to learn these 25 parameters from a given

fireworks video, and the difference between the learned

parameter and its real value should be as small as possible, in

other words, it should be guaranteed that the firework show

rendered looks like the given video.

Suppose we have the labelled source training dataset Ds =

{V, a} with N training instances and M attributes. V denotes the

training videos, while a is the arguments, and we have the

knowledge that M is equal to 25 in this problem. The i-th

vector whose size is M in a is the arguments of the i-th video

which is also expressed as V
i
 in V. Given a new video V

*
, the

goal is then to learn a function a
*
 = V

*
 with all available

training information and predict the argument vector a
*
.

3.2. 3D Firework Rendering Model

3.2.1. Overview

This paper design a new model called differential firework

model(DFM) based on the principle of differential to render

the target firework with some arguments. As is seen, after the

explosion of fireworks, several particles were scattered from

the center of the explosion. The system can be can analyzed

with the ensemble-isolation method. On the whole, the

system has an initial position, and it is also affected by

gravity and other external forces such as wind. In isolation,

the particles spreads from the explosion center with a certain

centrifugal speed at a unique angle. The size and color of

particles are attenuated in a certain proportion due to constant

combustion during the movement of particles. The particles

will leave ashes, which will continue to burn with their color

changing during burning, in the movement process. They are

the leaving ashes that look like trails. All particles in a frame

shares the same color and size, and all ashes generated at the

same frame shares the same color and size as well.

In the model, given the number of particles in the

fireworks section, the number of particles and the direction of

each particle will be easily calculated with algorithm 1,

which is calculated under spherical coordinate system. After

that, for each frame indexed by i, this work will calculate the

color, size and distance form explosion centers of the ashes

generated by all other frames before the i-th frame. It is too

sparse because each particle can generate only one ash in one

frame, so I have to insert several extra ashes uniformly

between original ashes and calculated the color and size of

each ash on the particle motion trajectory with the

interpolation method. As shown in figure 2, if the ashes is

dense enough, it can be used to simulate various shapes after

smoothing the edges.

36 Zhihong Wang and Linyi Hu: 3D Firework Reconstruction from Videos

Figure 2. Insert ashes to get trail.

Algorithm 1: Initialize directions

Require:N>0 and N is integer

Output:dirs.

1:n←(N/2)+1

2:α←2∗π/N

3:for i=0 to n do

4: θ←i∗α

5: m←max(N∗sin(θ), 1)

6: β←2∗π/m

7: for j=0 to m do

8: γ←j∗β

9: dir←(sin(θ)∗sin(γ), cos(θ), sin(θ)∗cos(γ))

10: dirs. push(dir)

11: end for

12:end for

3.2.2. Parameters

This work have constructed a model that requires several

parameters. The first parameter is the number of particles in

the cross section of fireworks, through which this work can

generate particles in all directions. Then it is needed to

describe the distance between the particle and the explosion

center without considering the external force, and the

distance between the fireworks and the origin in the

horizontal and vertical direction under the external force. In

order to achieve a better accuracy, a cubic formula is used to

fit each distance. For each distance, which can be described

as:

d � �� ∗ �� � �	 ∗ �
 � �
 ∗ � � �� (1)

Where d is the distance, �� to �� are the parameters

describing this distance, �� is correction term to make the

model more real and it is usually relatively small. This paper

tried more correction term with higher power, and find that

cubic is the best choice to fit the model. �	 is regard as the

acceleration, �
 is called the initial speed, and �� is the

initial position. For these three distances, each description is

represented by four parameters, so there are 12 parameters to

describe the state of the particles. For each particle in

direction dir, the position can be calculated as Eq2:

��

�� �� � �� ∗ �� � �	 ∗ �
 � �
 ∗ � � ���� � �� ∗ �� � �� ∗ �
 � �� ∗ � � ���� � �� ∗ �� � �� ∗ �
 � �	� ∗ � � �		p � �� ∗ ��� � ��� , 	�� , 0

 (2)

where �� denotes the centrifugal distance, �� and ��

denotes the distance between the fireworks and the origin in

the horizontal and vertical direction respective. t denotes the

time of present frame, p denotes the final position arranged

as a 3-dimension vector and dir denotes the direction which

is a 3-dimension orthogonal vector.

In addition to the motion, some additional parameters are

also needed to describe the status of particles, including the

initial color of the particle, the initial size of the particle, the

changing rate of color and size of particles over time, and the

changing rate of color and size of ashes over time. Because

the color has three channels of RGB, a total of 12 parameters

are needed to describe the state change of the particles. All

parameters and its division will be described in section 3.3.2.

3.2.3. Randomization

To get a more real visual effect, some random element are

added to our DFM. This paper set random coefficients for the

centrifugal direction and centrifugal speed of particles, and

they are implemented in the initialization of the centrifugal

direction in order to pursue higher computational efficiency.

The coefficients of speed is added to the unit direction vector.

The calculation of the direction is changed from line 9 in

algorithm 1 to algorithm 2:

Algorithm 2: Get Randomized Direction

Require:0<c<1 denotes the randomization range

θ, γ is the same in algorithm 1

Output:dir

1:	�! ← rand�&1,1 ∗ c � 1

2:	�� ← rand�&1,1 ∗ c � 1

3:	�� ← rand�&1,1 ∗ c � 1

4:	�) ← rand�&1,1 ∗ c � 1

5:dir ← �sin�θ ∗ sin�γ ∗ �� , cos�θ ∗ �� , sin�θ ∗

cos�γ ∗ 	�)

6: dir ← �! ∗ norm�dir

In addition, the parameter of camera are also randomized,

such as initial position and perspective. It is ensured that the

camera's position was below the fireworks but not directly

below it to simulate the actual photographic process, and the

focus of the camera was near the center of the explosion and

remained stationary.

3.3. Dataset and Labels

3.3.1. Dataset

Because of the novelty of this work, there is not any

existing dataset, so a script was written to generate the

dataset with our DFM described in section 3.2.

This work first set up a parameter generator, which ensures

that the generated parameters obey the following two rules: 1.

In the initial case, the fireworks will not be too dark, that is,

 International Journal of Information and Communication Sciences 2018; 3(2): 33-41 37

the highest value of RGB is no less than 0.5, otherwise the

brightness will be adjusted at the same random rate to ensure

the highest value is more than 0.5; 2. The fireworks will not

completely disappear in at least 40 cycles, that is, the

brightness and size of the fireworks will not be too small. In

addition, the initial position of the explosion and the viewing

angle of the camera are randomly selected. The viewing

angle is fixed during the fireworks explosion.

12,000 videos was generated as our dataset with this script.

All the arguments the model need is also what this paper

want to extract from the input videos, so the labels of this

regression problem is the arguments which are these videos

generated with. For each video 25 parameters needed to

regress as labels was saved.

3.3.2. Label Group

According to the relevance of the parameters, all the 25

parameters are divided into two groups.

As table 1 shows, The first group has 13 parameters which

describe the particle's motion characteristics, including the

number of particles, the initial velocity and exchange of

velocity, the initial position of the whole particle system, and

its velocity in the horizontal and vertical directions. Each

descriptions of velocity consists of three parameters. The

second group has 12 parameters, which describes the particle

status, including the initial size and color of the particles, the

decay rate of size and color of particles, as well as the decay

rate of size and color of the ash.

3.3.3. Auxiliary Labels

The particles are dispersed from all directions at the same

initial velocity from the explosion center, and the air

resistance is basically the same when the particles are

dispersed. The exchange of velocity is basically the same

regardless of the wind force and gravity. Since the wind and

gravity of the entire particle system are basically the same as

well, consider the particle system as a whole. Under the

action of external forces, this whole system will move in the

same way. Therefore, at any time, all particles will be

approximately on the same sphere, which reflected in the

video is that the outer particles are approximately on the

same circle. So a circle can be fit to represent the motion of

the particles for each frame of the video. The change in the

radius of the circle is just the change of the position of the

particle from the center of the explosion regardless of the

external force, and the change of the center reflects the

change of the position of the entire particle system under the

influence of the external force. And further it can obtained

the exchange of speed of the whole system.

For each video in our data set, this work obtained a circle

for each frame by calculating the frame rate of the tag and the

video, which will be used as an auxiliary tag for the video.

Fireworks in some videos will completely disappear after a

certain frame, so all the auxiliary labels of the following

frames is needed to set to 0, otherwise it is very difficult for

the models to learn the auxiliary parameters, for the dark

frame can reflect to various different values.

Table 1. Parameters and division.

Group Function Number Description

1

number 1 the number of particles in the cross section of firework

centrifugal distance 4 the distance between particle and explosion center

horizontal deviation 4 horizontal deviation under external forces

vertical deviation 4 vertical deviation under external forces

2

start color 3 the start color of the particles

particle color decay 3 decay rate of the colors of particles

ash color decay 3 decay rate of the colors of ashes

start size 1 the start size of the particles

particle size decay 1 decay rate of the size of particles

ash size decay 1 decay rate of the size of ashes

3.4. Criteria

If training an independent regression model for each

individual argument or label [13], then this can be modeled

as minimizing the expected loss over all the training

instances for the j-th attribute 01 ; and it leads to the

following formulation as:

Θ1 � argminΘ4 ∑ Φ(Ψ4 89�;Θ1;−04
�)<

=>	 (3)

where Θ1 in Eq(3) indicates the optimized parameter set of

the j-th argument prediction network;01
=
 is the j-th argument

of the i-th video; and Φ() is the loss function penalized the

value differences of predicted attributes and ground-truth

arguments. The Φ() can be mean square error (MSE) loss or

any other loss functions [14]. In our experiments, there is no

significant difference of these loss functions; and MSE will

be used to evaluate our result.

As the previous section described, this work divide the

arguments into two groups, so it will jointly optimize all the

prediction tasks in a group at once, and the model of Eq (3)

will be extended as:

Θ = argmin? ∑ ∑ Φ(Ψ4@9�;Θ4A − 04
�B

4=1
C
�=1 (4)

where Θ denotes the parameter shared across all the tasks in

one group.

3.5. Algorithm Flow

To get the parameters needed by our rendering model from

the video, one of the simplest algorithms is to use a 3D

ConvNet, as is shown in section 4.1, to extract parameters

from the video. The results are analyzed to found that some

38 Zhihong Wang and Linyi Hu: 3D Firework Reconstruction from Videos

of the parameters, including all parameters in group2, were

better learned with the deviation within 5%. While there are

many parameters that are not so well satisfying. Therefore, it

is needed to design other algorithms to solve these

parameters.

As is shown in figure 3, this work extract the given video

into frames as well as get the differences frames between two

adjacent frames in the video except for the first frame. For the

parameters in group 1, the last softmax layer is replaced in a

conv2d model called inceptionV3[15] with a fully connected

layer, whose size is the same as the size our auxiliary labels.

This work retrain its parameters to fit our secondary tags got in

section 3.3.3. Then the last layer from our trained model is

removed to get features [16]. This paper predict each frame of

every video in the data set and save the output as the feature

sequences of its frames, and these frame feature sequences will

then be regard as the input to the LSTM model, which will be

discussed in detail in section 4.2.

Figure 3. Overview of our algorithm.

For some of the parameters in group 2, it can use 3D-CNN,

or it can extract features with any 2D ConvNet architecture

and then use LSTM to learn the temporal features, which is

good enough as well.

4. Network Structure

This section explain in detail how our network is designed,

and elaborate how to train them on our dataset to extract

parameters from given video.

4.1. Modeling with 3D ConvNets

Compared to 2D ConvNet, 3D ConvNet has the ability to

model temporal information better due to 3D convolution and

3D pooling layers [17], this paper establish a 3D convolution

neural network with frames of each video as input and

arguments in group 2 as output.

Suppose the size of our videos is clipped to l*h*w*c,

where l is the length in number of frames, h and w are the

height and width respectively, c is the number of channels in

each frame. The size of 3D convolution kernel and pooling

kernel are also referred by d*k*k or (d, k, k), where d is the

depth while k is the spatial the same as it of 2D convolution

kernel.

4.1.1. Network Architectures

This section describe the network architecture in detail.

The network is consisted of 10 convolution layers, 5 pooling

layers, 1 flatten layers, and 3 fully connect layers after the

flatten layers. The structure of convolution and pooling layers

are shown in table 2, which is consisted of six layer groups.

The number of filter for each group are 3, 6, 12, 24, 48, 96,

which is limited to the memory of our gpu. The first Conv3D

layer has a kernel size of (1, 3, 3) and a stride of (1, 2, 2), and

it is designed to down-sample each frame of videos

adaptively. All the other Conv3D layers have a kernel size of

(3, 3, 3), for it is learned [18] that a kernel size of (3, 3, 3) is

the best choice for C3D model to extract features. All pooling

layers are max pooling with the kernel size and stride equals

to (2, 2, 2) except for the first and third pooling layers,

because I do not want temporal information merge too early.

Table 2. ConvNet Architecture.

 Layer filters Kernel stride padding

1 Conv3D 3 (1, 3, 3) (1,2,2) valid

2
Conv3D 6 (3, 3, 3) same

MaxPooling3D (1, 2, 2) (1,2,2) valid

3

Conv3D 12 (3, 3, 3) same

Conv3D 12 (3, 3, 3) same

MaxPooling3D (2, 2, 2) (2,2,2) valid

4

Conv3D 24 (3, 3, 3) same

Conv3D 24 (3, 3, 3) same

MaxPooling3D (1, 2, 2) (1,2,2) valid

5

Conv3D 48 (3, 3, 3) same

Conv3D 48 (3, 3, 3) same

MaxPooling3D (2, 2, 2) (2,2,2) valid

6

Conv3D 96 (3, 3, 3) same

Conv3D 96 (3, 3, 3) same

MaxPooling3D (2, 2, 2) (2,2,2) valid

This work add the flatten layers after the last pooling layer

in order to reshape the output from a 4D matrix to a tensor.

The first two fully connect layer has 2048 outputs with a

dropout rate at 0.5, while the final layer has 12 outputs,

which is equal to the number of parameters in group 2.

4.1.2. Network Setting

The size of videos in dataset is (96, 600, 800, 3), and

reshape all the videos into (48, 300, 400, 3). It can not clip

them into smaller size because of the lost of details, which is

important for calculating parameters. For each convolution

layer and fully connect layer, this work add a l2

regularization with the weight of 0.00001 in order to avoid

over-fitting. The loss function is set to be mean square error

which is the same as equation (4). The batch size is set to 16

 International Journal of Information and Communication Sciences 2018; 3(2): 33-41 39

and train 70% samples per epoch. It will train the model for

1000 epochs and stop training if the loss has not decreased in

recent 20 epochs. This work choose Adam [19], which can

adaptively change the learning rate and avoid vanishing

learning rate, to optimize our loss function. Because of the

mean square error loss function, the initial learning rate

should be very small, and set it to be 1e-5. What is more, the

decay is set to 1e-6, β	 is set to 0.9 and β
 is set to 0.999.

4.1.3. Training and Result

To make all parameters have the similar weight while

training, first normalize the labels with a min-max-scaler to

rearrange the labels between -1 and 1. `tanh' is picked up as

the activation functions for fully connect layers because

`tanh' can generate negative numbers as result which is

different from `relu'. This work randomly pick 10000 videos

as our train set and 2000 videos as validation set to train our

models.

After training, the mean square error of all parameters in

group 2 is decreased to 0.0731.

This work add different coefficient to our loss function in

order to focus more on the parameters that are learned not so

well as others, and then the model of Eq (4) can be extended

as:

Θ � argmin? ∑ ∑ 	E4 ∗ Φ�Ψ4@9
�;Θ4A& 04

�B
4�1

C
��1 (5)

Where E1 denotes the coefficient of the j-th parameter in

loss function. Now it can pay more attention to the

parameters that are not so good as others, and at the same

time, it should be ensured that the average of all the

coefficients is 1. The other settings is kept fixed and train the

model again, the loss is decreased to 0.0832 and the mean

square error of all parameters is decreased to 0.0456.

4.2. Modeling with Inception V3 and LSTM

This paper use a model with Inception V3 and LSTM to

solve the parameters in group 1, which is shown in Figure 4,

which will be discussed in detail in the next several

sub-sections.

Figure 4. Architectures of model with Inception V3 and LSTM.

4.2.1. Feature Extraction

The LSTM layer requires a sequence of features arranged

in tensor instead of frames arranged in 3-dimension matrix, I

have to extract the features, which the LSTM layers can

make use of, for each frame in videos with a 2D-ConvNet

model as which inception V3 is chosen in this work. The

model is used to exchange pictures into features, whose input

is a picture in 3 dimensions and output is a tensor. The final

softmax layers was replaced with a fully connect layer at a

size of number of auxiliary labels described by section 3.3.3,

because I want to regress the labels instead of classify them.

Information in difference frames describe the color and

location of particles except for ashes in the frame, which is

closely related to the circle fitting. Mean square error is used

as the loss function and pick Adam with default setting to

optimize the loss function. The model is trained to fit the

auxiliary labels with the original frames and difference

frames and save the weights separately.

Directly extract videos into auxiliary labels may lose

precision due to the deviation of our trained 2D-ConvNet

model. So the final fully connect layers will be removed and

features are extracted at the final pool layer with the size of

2048, which can remain more information than getting

auxiliary labels. This work pre-process each video, exchange

the original frames and difference frames into sequences

separately with the two trained models correspondingly.

4.2.2. Network Architectures

As figure 4 shown, after exchanging spatial frames into

40 Zhihong Wang and Linyi Hu: 3D Firework Reconstruction from Videos

two different types of features for each video respectively,

the features are sent into two sets of LSTM networks for

temporal modeling as shown in left and right. The outputs of

two LSTM model are combined to generate the final

prediction, and each side has its own prediction as the

auxiliary of the main prediction. All the predictions are used

to fit the same parameters in group 1, and this will make the

network on each side of the figure pay more attention to

predict the parameters, while the combined fully connect

layers will pay more attention to find the intersection

between original frames and difference frames and combines

the results together. The LSTM layer and all fully connect

layers except for prediction layers have a dropout rate at 0.5.

4.2.3. Network Setting

The size of videos in dataset is (96, 600, 800, 3), and all

the spatial frames in each video are reshaped into (300, 400,

3) to extract features from modified inception V3 models.

The length of features for each frame is 2048, which is the

size of the `avg_pool' layers in inception V3. The weight of

l2 regularization of LSTM layer and fully connect layer is

also set to 0.00001. Mean square error shown in Eq 5 is

continue to be used as the loss function. As the whole model

has three outputs, I combine the three loss functions by

adding them with different coefficients as the final loss

function. The loss function of main prediction has the

coefficient of 0.6 while other two predictions have the

coefficient of 0.2. The batch size is set to 32 and train 70%

samples per epoch. This work will train the model for 1000

epochs and stop training if the loss has not decreased in

recent 25 epochs. Adam is chosen to optimize our loss

function and the initial learning is set to be 1e-5. The decay is

set to 1e-6, β	 is set to 0.9 and β
 is set to 0.999, just like

what we set for 3D-ConvNet before.

4.2.4. Training and Result

Just like what I do when training 3D-ConvNet model, I

normalize the labels with a min-max-scaler to rearrange the

labels between -1 and 1 and pick up `tanh' as the activation

functions for fully connect layers. 10000 videos are randomly

picked as our train set and 2000 videos as validation set to

train our models.

After training, the combined loss is decreased to 0.0422,

and the mean square error of parameters in group 1, which

are want to solve with this model, is decreased to 0.0396.

This paper also want to focus more on the parameters

which are not solved as well as others. So I pick up weighted

mean square error shown in Eq (6) as the loss function of

each predictions respectively. For each parameter, the better

the prediction is, the lower the coefficient will be, and vice

versa. All the three sub loss functions share the same

coefficients. After training, the loss end with 0.0391, and the

mean squared error end with 0.0373.

5. Result and Discussion

This paper have tested the approach with several videos.

All the performance figures and tables reported in this paper

were measured on a workstation with one NVIDIA GTX

1060 GPU.

5.1. Prediction

This work tried two different types of videos to measure

the performance of our method, and then test a video

generated by our rendering model called DFM without

randomization and a video with randomization respectively.

5.1.1. Effect of Generated Video Without Randomization

This work first test our model with a video without

randomization. I randomly set the arguments needed,

generate the original video, extract features, and learn the

parameters with our learning model. The effect is shown in

the first row of Figure 1. The original video and the

reconstructed effect in three different view spaces is shown,

and the first view space is the same as the original video.

Compared with section 5.1.2, it is proved that because of the

randomized videos in dataset, the effect will not rise if using

a video without randomization, and even decrease.

5.1.2. Effect of Generated Video with Randomization

This paper then test our model with a video with

randomization. The result is shown in figure 1, and also show

the original video and the reconstructed effect in three

different view spaces, and the first view space is also the

same as the original video. As is seen, the shape is similar to

the original video, while the color has a little difference. The

reason is the use of decay rate to decrease the number of

parameters to be learn, and the decay rate of color is very

sensitive to small changes.

5.2. Limitations

Our method can only handle simple firework whose

particles explosion from its center in a sphere and the particle

of the firework must be approximately symmetrical. What is

more, because of the lack of information such as parameter

of camera and depth message, it is impossible to tell where

the positive side of the firework is. The similarity between

our results and real video can only be told by observing

without any mathematical formula.

6. Conclusion

This work have presented a method for reconstruction a 3d

firework from a video. It is showed that auxiliary labels and

auxiliary predictions work well when reducing the mean

square error of extracting parameters from given video, and

demonstrated that different weight in loss function for

different task is necessary to improve the generalization

performance. By testing our method with different types of

video, it is found to be effective to extract features from given

video and reconstruct a 3D firework which is similar to simple

firework videos.

 International Journal of Information and Communication Sciences 2018; 3(2): 33-41 41

References

[1] Reeves W T, Blau R. Approximate and probabilistic algorithms
for shading and rendering stuctured particle systems [J]. Acm
Siggraph Computer Graphics, 1985, 19(3):313-322.

[2] Reeves W T. Particle systems—a technique for modeling a
class of fuzzy objects [M]// Seminal graphics. ACM,
1998:91-108.

[3] Loke T S, Tan D, Seah H S, et al. Rendering Fireworks
Displays [J]. IEEE Computer Graphics & Applications, 1992,
12(3):33-43.

[4] Zhang S. Fireworks Simulation Based on Particle System [C]//
International Conference on Information and Computing
Science. IEEE, 2009:187-190.

[5] Lecun Y L, Bottou L, Bengio Y, et al. Gradient-based learning
applied to document recognition. Proc IEEE [J]. Proceedings
of the IEEE, 1998, 86(11):2278-2324.

[6] Deng J, Dong W, Socher R, et al. ImageNet: A large-scale
hierarchical image database [C]// Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009:248-255.

[7] He K, Zhang X, Ren S, et al. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet
Classification [J]. 2015:1026-1034.

[8] Boureau Y, Bach F, Lecun Y, et al. Learning mid-level features
for recognition [J]. 2010, 26(2):2559-2566.

[9] Lipton Z C, Berkowitz J, Elkan C. A Critical Review of
Recurrent Neural Networks for Sequence Learning [J].
Computer Science, 2015.

[10] Graves A. Long Short-Term Memory [M]// Supervised
Sequence Labelling with Recurrent Neural Networks. Springer
Berlin Heidelberg, 2012:1735-1780.

[11] Graves A, Mohamed A R, Hinton G. Speech recognition with
deep recurrent neural networks [C]// IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE,
2013:6645-6649.

[12] Gers F A, Schmidhuber J A, Cummins F A. Learning to Forget:
Continual Prediction with LSTM [J]. Neural Computation,
2014, 12(10):2451-2471.

[13] Liu Z, Luo P, Wang X, et al. Deep Learning Face Attributes in
the Wild [C]// IEEE International Conference on Computer
Vision. IEEE Computer Society, 2015:3730-3738.

[14] He K, Wang Z, Fu Y, et al. Adaptively Weighted Multi-task
Deep Network for Person Attribute Classification [C]// ACM
on Multimedia Conference. ACM, 2017:1636-1644.

[15] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the
Inception Architecture for Computer Vision [J].
2015:2818-2826.

[16] Krizhevsky A, Sutskever I, Hinton G E. ImageNet
classification with deep convolutional neural networks [C]//
International Conference on Neural Information Processing
Systems. Curran Associates Inc. 2012:1097-1105.

[17] Du T, Bourdev L, Fergus R, et al. Learning Spatiotemporal
Features with 3D Convolutional Networks [C]// IEEE
International Conference on Computer Vision. IEEE Computer
Society, 2015:4489-4497.

[18] Du T, Bourdev L, Fergus R, et al. Learning Spatiotemporal
Features with 3D Convolutional Networks [C]// IEEE
International Conference on Computer Vision. IEEE,
2016:4489-4497.

[19] Kingma D, Ba J. Adam: A Method for Stochastic Optimization
[J]. Computer Science, 2014.

