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Abstract: Decision wave equation, structural-parametric model and block diagram of electromagnetoelastic actuators are 

obtained, its transfer functions are bult. Effects of geometric and physical parameters of electromagnetoelastic actuators and 

external load on its dynamic characteristics are determined. For calculation of communications systems with piezoactuators the 

block diagram and the transfer functions of piezoactuators are obtained. 
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1. Introduction 

The application of precise electromechanical actuators 

based on electromagnetoelasticity (piezoelectric, 

piezomagnetic, electrostriction, and magnetostriction effects) 

is promising in nanotechnology, nanobiology, power 

engineering, microelectronics, astronomy for large compound 

telescopes, antennas satellite telescopes and adaptive optics 

equipment for precision matching, compensation of 

temperature and gravitation deformations, and atmospheric 

turbulence via wave front correction. Precise 

electromechanical actuators for communications systems 

operate within working loads providing elastic deformations 

of actuators. Piezoelectric actuator (piezoactuator) - 

piezomechanical device intended for actuation of 

mechanisms, systems or management based on the 

piezoelectric effect, converts electrical signals into 

mechanical movement or force [1 − 25]. 

The piezoactuator of nanometric movements operates based 

on the inverse piezoeffect, in which the motion is achieved due 

to deformation of the piezoelement when an external electric 

voltage is applied to it. Piezoactuators for drives of nano- and 

micrometric movements provide a movement range from 

several nanometers to tens of microns, a sensitivity of up to 10 

nm/V, a loading capacity of up to 1000 N, the power at the 

output shaft of up to 100 W, and a ransmission band of up to 

1000 Hz. The investigation of static and dynamic 

characteristics of a piezoactuator of nano- and micrometric 

movements as the control object is necessary for calculation 

the piezodrive for control systems of nano- and micrometric 

movements. At the nano- and microlevels, piezoactuators are 

used in linear nano- and microdrives and micropumps. 

Piezoactuators provide high stress and speed of operation and 

return to the initial state when switched off; they have very low 

displacements - less than 1%. Piezoactuators are used in the 

majority of nanomanipulators for scanning tunneling 

microscopes (STMs), scanning force microscopes (SFMs), and 

atomic force microscopes (AFMs). Nanorobotic manipulators 

with nano- and microdisplacements with piezoactuators based 

are a key component in nano- and microdisplacement 

nanorobotic systems. The main requirement for 

nanomanipulators is to guarantee the positioning accurate to 

nanometers, control systems are intended not only for 

nanomanipulations but also for nanoassembly, 

nanomeasurements, and nanomanufacturing [1 − 6]. 

By solving the wave equation with allowance for the 

corresponding equations of the piezoeffect, the boundary 

conditions on loaded working surfaces of a piezoactuator, and 

the strains along the coordinate axes, it is possible to construct 

a structural parametric model of the piezoactuator. The transfer 

functions and the parametric structure scheme of the 

piezoactuator are obtained from a set of equations describing 
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the corresponding structural parametric model of the 

piezoelectric actuator for communications systems. 

2. Decision Wave Equation and 

Structural-Parametric Model of 

Electromagnetoelastic Ectuator 

Deformation of the piezoactuator corresponds to its 

stressed state. If the mechanical stress T is created in the 

piezoelectric element, the deformation S  is formed in it. 

There are six stress components 1T , 2T , 3T , 4T , 5T , 6T , the 

components 1T  - 3T  are related to extension-compression 

stresses, 4T  - 6T  to shear stresses. 

The matrix state equations [7] connecting the electric and 

elastic variables for polarized ceramics have the form 

EεdTD T+= ,                                     (1) 

EdTsS tE += .                                       (2) 

Here, the first equation describes the direct piezoelectric 

effect, and the second - the inverse piezoelectric effect; S  is 

the column matrix of relative deformations; T  is the column 

matrix of mechanical stresses; E  is the column matrix of 

electric field strength along the coordinate axes; D  is the 

column matrix of electric induction along the coordinate 

axes; E
s  is the elastic compliance matrix for const=E ; Tε  

is the matrix of dielectric constants for const=T ; 
t

d  is the 

transposed matrix of the piezoelectric modules. 

Polarized ceramics PZT represents the piezoelectric 

texture, there are five independent components Es11 , Es12 , Es13 , 
Es33 , Es55  in the elastic compliance matrix for polarized 

piezoelectric ceramics 
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In this case, we can write the transposed matrix of the 

piezoelectric modules t
d  as 
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The matrix of dielectric constants Tε  has the form 
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The direction of the polarization axis Р, i.e., the direction 

along which polarization was performed, is usually taken as 

the direction of axis 3. 

The equation of electromagnetoelasticity of the actuator 

[7] has the form 

∆Θα+++= ΘΘΘ HE

im

E

mim

H

mij

HE

iji HdEdTsS ,,,,,
,        (3) 

where iS  is the relative deformation along the axis i, E is the 

electric field strength, H is the magnetic field strength, Θ  is 

the temperature, 
Θ,,HE

ijs  is the elastic compliance for 

const=E , const=H , const=Θ , jT  is the mechanical 

stress along the axis j, Θ,H

mid  is the piezomodule, i.e., the 

partial derivative of the relative deformation with respect to 

the electric field strength for constant magnetic field strength 

and temperature, i.e., for const=H , const=Θ , mE  is the 

electric field strength along the axis m, Θ,E

mid  is the 

magnetostriction coefficient, mH  is the magnetic field 

strength along the axis m, HE

i

,α  is the coefficient of thermal 

expansion, ∆Θ  is deviation of the temperature Θ  from the 

value const=Θ , i = 1, 2, … , 6, j = 1, 2, … , 6, m = 1, 2, 3. 

When the electric and magnetic fields act on the 

electromagnetoelastic actuator separately, we have the 

respective electromagnetoelasticity equations [7] as the 

equation of inverse piezoelectric effect: 

3333333 TsEdS E+=  for the longitudinal deformation when 

the electric field along axis 3 causes deformation along axis 

3, 

1113311 TsEdS E+=  for the transverse deformation when the 

electric field along axis 3 causes deformation along axis 1, 

5551155 TsEdS E+=  for the shift deformation when the 

electric field along axis 1 causes deformation in the plane 

perpendicular to this axis, as the equation of 

magnetostriction: 

3333333 TsHdS H+=  for the longitudinal deformation when 

the magnetic field along axis 3 causes deformation along axis 

3, 

1113311 TsHdS H+=  for the transverse deformation when the 

magnetic field along axis 3 causes deformation along axis 1, 

5551155 TsHdS H+=  for the shift deformation when the 

magnetic field along axis 1 causes deformation in the plane 

perpendicular to this axis. 

To illustrate this, we consider piezoelasticity problems. Let 

us consider the longitudinal piezoelectric effect in a 

piezoelectric actuator shown in Fig. 1, which represents a 

piezoelectric plate of thickness δ  with the electrodes 

deposited on its faces perpendicular to axis 3, the area of 

which is equal to 0S . 

The equation of the inverse piezoelectric effect [6, 7] for 
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the longitudinal strain in a voltage-controlled piezoactuator 

has the following form: 

),()( 3333333 txTstEdS E+= ,                       (4) 

Here, xtxS ∂ξ∂= ),(3  is the relative displacement of the 

cross section of the piezoactuator, 33d  is the piezoelectric 

modulus for the longitudinal piezoelectric effect, 

( ) ( ) δ= tUtE3  is the electric field strength, ( )tU  is the 

voltage between the electrodes of actuator, δ  is the 

thickness, Es33  is the elastic compliance along axis 3, and 3T  

is the mechanical stress along axis 3. 

The equation of equilibrium for the forces acting on the 

piezoactuator (piezoelectric plate) can be written as 

( )
2

2

03

,

t

tx
MFST

∂
ξ∂+=

 

where F is the external force applied to the piezoactuator, 0S  

is the cross section area and M is the displaced mass. 

 

Fig. 1. Piezoactuator. 

For constructing a structural parametric model of the 

voltage-controlled piezoactuator, let us solve simultaneously 

the wave equation, the equation of the inverse longitudinal 

piezoelectric effect, and the equation of forces acting on the 

faces of the piezoactuator. 

Calculations of the piezoactuators are performed using a 

wave equation [5−7] describing the wave propagation in a 

long line with damping but without distortions, which can be 

written as 

2
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where ),( txξ  is the displacement of the section of the 

piezoelectric plate, x is the coordinate, t is time, 
E

c  is the 

sound speed for const=E , α  is the damping coefficient 

that takes into account the attenuation of oscillations caused 

by the energy dissipation due to thermal losses during the 

wave propagation. 

Using the Laplace transform, we can reduce the original 

problem for the partial differential hyperbolic equation of 

type (5) to a simpler problem for the linear ordinary 

differential equation [8, 9] with the parameter of the Laplace 

operator p. 

Applying the Laplace transform to the wave equation (5) 

{ } ∫
∞

−ξ=ξ=Ξ
0

),(,(),( dtetxtxLpx pt ,                       (6) 

and setting the zero initial conditions, 

0
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0
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As a result, we obtain the linear ordinary second-order 

differential equation with the parameter p written as 

0),(
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EE ,          (8) 

with its solution being the function 

γγ− +=Ξ xx BeCepx ),( ,                               (9) 

where ( )px,Ξ  is the Laplace transform of the displacement of 

the section of the piezoelectric actuator, α+=γ Ecp  is the 

propagation coefficient. 

C and B are constant coefficients. Determining these 

coefficients from the boundary conditions as 

)(),0( 1 pp Ξ=Ξ  for 0=x  

)(),( 2 pp Ξ=δΞ  for δ=x  

Then, the constant coefficients 

( ) ( )[ ]δγΞ−Ξ= δγ sh221eC ,   ( ) ( )[ ]δγΞ−Ξ−= δγ− sh221eB . 

Then, the solution (9) of the linear ordinary second-order 

differential equation can be written as 

( ) ( )[ ] ( ) ( ){ } ( )δγγΞ+γ−δΞ=Ξ shshsh),( 21 xpxppx .      (10) 

The equations for the forces operating on the faces of the 

piezoelectric actuator plate are as follows:  

)()(),0( 1

2

1103 ppMpFSpT Ξ+=        for   0=x ,     (11) 

)()(),( 1

2

2203 ppMpFSpT Ξ−−=δ     for   δ=x ,  

where ( )pT ,03  and ( )pT ,3 δ  are determined from the 

equation of the inverse piezoelectric effect. 

For 0=x  and δ=x , we obtain the following set of 

equations for determining stresses in the piezoactuator: 

)(
),(1

),0( 3

33

33

033

3 pE
s

d

dx

pxd

s
pT

E

x

E
−Ξ=

=
,            (12) 

)(
),(1

),( 3

33

33

33

3 pE
s

d

dx

pxd

s
pT

E

x

E
−Ξ=δ

δ=
. 



25 S. M. Afonin:  Decision Wave Equation and Block Diagram of Electromagnetoelastic Actuator Nano- and   

Microdisplacement for Communications Systems 

Equations (11) yield the following set of equations for the 

structural parametric model of the piezoactuator: 

( )[ ]
( ) ( )[ ] ( )[ ][ ]{ })()(chsh)(1)(

1)(

21333331

2
11

pppEdpF

pMp

E Ξ−Ξδγδγγ−χ+−

⋅=Ξ
,  (13) 

( )[ ]
( ) ( )[ ] ( )[ ][ ]{ })()(chsh)(1)(

1)(

12333332

2
22

pppEdpF

pMp

E Ξ−Ξδγδγγ−χ+−

⋅=Ξ
, 

where ( )[ ]2

03333

EEE
cmSs δ==χ , m is the mass of the 

piezoactuator. 

Figure 2 shows the parametric block diagram of a voltage-

controlled piezoactuator corresponding to the set of equations 

(13) supplemented with an external circuit equation 

)1()()( 00 += pRCpUpU , where )(0 pU  is the supply 

voltage, R is the resistance of the external circuit, and 0C  is the 

static capacitance of the piezoactuator. 

The equation of the inverse piezoelectric effect [6, 7] for the 

transverse strain in the voltage-controlled piezoactuator 

,),()( 1113311 txTstEdS E+=                              (14) 

where xtxS ∂ξ∂= ),(1  is the relative displacement of the 

cross section of the piezoactuator along axis 1, 31d  is the 

piezoelectric modulus for the transverse piezoelectric effect, 
Es11  is the elastic compliance along axis 1, and 1T  is the stress 

along axis 1. 

The wave equation of the piezoactuator can be written as 

equation (5). Then, the solution of the linear ordinary 

differential equation (8) can be written as (9), where the 

constants C and B for this solution are determined from the 

boundary conditions as  

)(),0( 1 pp Ξ=Ξ  for 0=x , 

)(),( 2 ppl Ξ=Ξ  for hx = , 

( ) ( )[ ] ,sh221 γΞ−Ξ= γ heC h
   ( ) ( )[ ] .sh221 γΞ−Ξ−= γ− heB h

 

Then, the solution (9) can be written as 

( ) ( )[ ] ( ) ( ){ } ( ) .shshsh),( 21 γγΞ+γ−Ξ=Ξ hxpxhppx    (15) 

The equations of forces acting on the faces of the 

piezoelectric actuator are as follows: 
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1101 ppMpFSpT Ξ+=      for   x = 0,     (16) 

)()(),( 2

2

2201 ppMpFSphT Ξ−−=  for   x = h, 

where ( )pT ,01  and ( )phT ,1  are determined from the equation 

of the inverse piezoelectric effect. Thus, we obtain the 

following set of equations for mechanical stresses in the 

piezoactuator at 0=x  and hx =  
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The set of equations (16) for mechanical stresses in 

piezoactuator yields the following set of equations describing 

the structural parametric model of piezoactuator for the 

transverse piezoelectric effect 

( )[ ]
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, 

where ( )[ ]2

01111

EEE
cmhSs ==χ . Taking into account 

generalized electromagnetoelasticity equation (3), we obtain 

the following system of equations describing the generalized 

structural-parametric model of the electromagnetoelastic 

actuator for the communications systems: 
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then parameters Ψ  of the control for the 

electromagnetoelastic actuator: E for voltage control, D for 

current control, H for magnetic field strength control. Figure 

3 shows the generalized parametric block diagram of the 

electromagnetoelastic actuator corresponding to the set of 

equations (19). 

Generalized structural-parametric model (19) of the 

electromagnetoelastic actuator after algebraic transformations 

provides the transfer functions of the electromagnetoelastic 

actuator for communications systems in the form of the ratio of 

the Laplace transform of the displacement of the transducer 

face and the Laplace transform of the corresponding force at 

zero initial conditions. The joint solution of equations (19) for 

the Laplace transforms of displacements of two faces of the 

electromagnetoelastic actuator yields 
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( ) )()()()()()( 213112111 pFpWpFpWppWp m ++Ψ=Ξ , (20) 

( ) )()()()()()( 223122212 pFpWpFpWppWp m ++Ψ=Ξ
, 

where the generalized transfer functions of the 

electromagnetoelastic actuator are  
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Therefore, we obtain from equations (20) the generalized 

matrix equaion for the electromagnetoelastic actuator in the 

matrix form for communications systems 
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Let us find the displacement of the faces the 

electromagnetoelastic actuator in a stationary regime for 

( ) )(10 tt mm ⋅Ψ=Ψ , ( ) 0)(21 == tFtF  and inertial load. The 

static displacement of the faces the electromagnetoelastic 

actuator ( )∞ξ1  and ( )∞ξ2  can be written in the following 

form: 
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( ) ( ) ( ) 02121 )(lim)( mmi
t

ltt Ψν=ξ+ξ=∞ξ+∞ξ
∞→ ,         (24) 

where m  is the mass of the electromagnetoelastic actuator, 

21, MM  are the load masses. 

Let us consider a numerical example of the calculation of 

static characteristics of the piezoactuator from piezoceramics 

PZT under the longitudinal piezoelectric effect at 1Mm <<  

and 2Mm << . For 10

33 104 −⋅=d m/V, 500=U V, 101 =M

kg and 402 =M kg we obtain the static displacement of the 

faces of the piezoactuator ( ) 1601 =∞ξ nm, ( ) 402 =∞ξ nm, 

( ) 200)( 21 =∞ξ+∞ξ nm. 

The static displacement the faces of the piezoactuator for the 

transverse piezoelectric effect and inertial load at 

( ) )(10 tUtU ⋅= , ( ) ( ) ( )tUtEtE 1)(1 0303 ⋅δ=⋅=  and 

( ) 0)(21 == tFtF  can be written in the following form: 
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∞→ .         (27) 

The static displacement of the faces of the piezoactuator for 

the transverse piezoelectric effect and inertial load at 1Mm <<  

and 2Mm <<  
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.        (29) 

Let us consider a numerical example of the calculation of 

static characteristics of the piezoactuator from piezoceramics 

PZT under the transverse piezoelectric effect at 1Mm <<  and 

2Mm << . For 10

31 105.2 −⋅=d m/V, 2104 −⋅=h m, 
3102 −⋅=δ m, 200=U V, 101 =M kg and 402 =M kg we 

obtain the static displacement of the faces of the piezoelectric 

actuator ( ) 8001 =∞ξ nm, ( ) 2002 =∞ξ nm, ( ) 1)( 21 =∞ξ+∞ξ
µm. 

Let us consider the description of the piezoactuator for the 

longitudinal piezoelectric effect for one rigidly fixed face of 

the transducer at ∞→1M , therefore, we obtain from equation 

(21) the transfer functions of the piezoactuator for the 

longitudinal piezoelectric effect in the following form: 

( ) ( )
( )[ ]δγδγ+δχδ

=Ξ=

cth

)(

2

33233

3221

pMd

pEppW

E
,                        (30) 

If ∞→1M  and 02 =M , equation (30) yields an expression 

for the transfer function of unloaded piezoactuator under the 

longitudinal piezoelectric effect 

( ) ( ) ( )]cth[)( 333221 δγγ=Ξ= dpEppW .        (31) 

Now, using equation (31), we write the expression for the 

transfer function of unloaded piezoactuator under the 
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transverse piezoelectric effect at ∞→1M  and 02 =M  

( ) ( ) ( )]cth[)( 313221 γγ=Ξ= hdpEppW .         (32) 

We write the resonance condition ( ) 0ctg =ω Ech .  

This means that the piezoactuator is a quarter-wave 

vibrator with the resonance frequency  ( ) .4  hcf E

r =   

The transfer function of an unloaded piezoactuator under the 

transversal piezoeffect with voltage control, when ∞→1M  

and 02 =M , has the form 

( ) ( ) ( ) ( )
( ) ( )[ ]γγδ

=δΞ=Ξ=
hhhd

pEppUppW

cth

][)(

31

3222
.     (33) 

Accordingly, its frequency transfer function is described 

by the relation 

( ) ( )
( ) ( )[ ] ( )[ ]α+ωα+ωδ

=ωωΞ=ω
EE cjhcjhhd

jUjjW

th

)(

31

22
.       (34) 

From equation (34) using the expression 

( ) ( )EE chjchj ω=ω tgth , where j is the imaginary unit, and 

the relations ( ) hh α→αth , where 
22hh α>>α  when 

0→αh , we calculate the peak movement amplitude mr2ξ
the piezoactuator end at the resonance frequency under the 

voltage amplitude mU  in the form 

rmrmmr khkUd 2312 ξ=δ=ξ , where δ=ξ hUd mm 312  is the 

amplitude of the movement in the piezoactuator in the static 

mode and ( )E

rmmкr cfk πα=ξξ= 822  is the coefficient of 

the piezoactuator normalized relative to the movement in the 

static state at the resonance frequency under a single voltage 

amplitude in the dynamical and static modes. 

The calculations conducted for a piezoelectric actuator of 

industrial piezoceramics  PZT  under the  transversal  

piezoeffect and voltage control, where 31d  = 2.5⋅10
-10

 m/V, h = 

4⋅10
-2

 m, δ = 2⋅10
-3

 m, mU  = 20 V, rk  = 30, Ec  = 3⋅10
3
 m/s, 

yielded at the resonance frequency rf  = 18.75 kHz a 

maximum movement amplitude of mr2ξ = 3 µm,  under a value 

in the static mode m2ξ  = 100 nm.  The experimental and 

calculated values for the piezoactuator are in agreement up to 

an accuracy of 5%. 

Let us consider the static responses of the piezoactuator 

under the longitudinal piezoeffects. Let us determine the value 

of the The static displacement of the face of the piezoactuator 

( )∞ξ2  in the static regime for ( ) )(10 tUtU ⋅=  and 0)(2 =tF  

or ( ) )(102 tFtF ⋅=  and ( ) 0=tU . 

Accordingly, the static displacement ( )∞ξ2  of the 

piezoactuator under the longitudinal piezoeffect in the form 

( ) ( ) ( )
( ) ( ) 033033

0

0

02
0

22

thlim

limlim

UdUd

pUppWt

p

pt

=αδαδ

==ξ=∞ξ

→α
→

→∞→

,               (35) 

( ) ( )

( )[ ] ( )[ ] 0033

2

0

2

0

0

023
0

2

thlim

lim

SFscmF

pFppW

EE

p

p

δ−=αδαδδ−

==∞ξ

→α
→

→

.         (36) 

Let us consider a numerical example of the calculation of 

static characteristics of the piezoactuator under the longitudinal 

piezoeffects. For 10

33 104 −⋅=d m/V, 500=U V, we obtain 

( ) 2002 =∞ξ nm. For 4106 −⋅=δ m, 11

33 105.3 −⋅=Es m
2
/N, 

10000 =F N, 4

0 1075.1 −⋅=S m
2
, we obtain ( ) 1202 −=∞ξ nm. 

The experimental and calculated values for the piezoactuator 

are in agreement to an accuracy of 5%. 

Let us consider the operation at low frequencies for the 

piezoactuator with one face rigidly fixed so that ∞→1M  and 

2Mm << . Representing )(21 pW  and )(23 pW  as 

( ) ( )
( )[ ]δγδγ+δχδ

=Ξ=

cth

)(

2

33233

3221

pMd

pEppW

E
,                     (37) 

( ) ( )
( )[ ]δγδγ+δχδχ−

=Ξ=

cth

)(

2

33233

2223

pM

pFppW

EE
.                  (38) 

Using the approximation of the hyperbolic cotangent by two 

terms of the power series in transfer functions (37) and (38), at 

2Mm <<  we obtain the following expressions the transfer 

functions in the frequency range of δ<ω< Ec01,00  

( ) ( ) ( )12)( 22

333221 +ξ+δ=Ξ= pTpTdpEppW ttt ,         (39) 

( ) ( ) ( ) ( )12)( 22

0332223 +ξ+δ−=Ξ= pTpTSspFppW ttt

E , (40) 

( ) EE

t CMmMcT 3322 =δ= ,   ( ) 23 Mmt αδ=ξ , 

( ) ( )δχ=δ= EEE sSC 3333033 1 . 

where tT  is the time constant and tξ  is the damping 

coefficient, EC33  - is the is rigidity of the piezoactuator under 

the longitudinal piezoeffect. 

3. Results and Discussions 

Taking into account equation of generalized 

electromagnetoelasticity (piezoelectric, piezomagnetic, 

electrostriction, and magnetostriction effects) and decision 

wave equation we obtain a generalized block diagram of 

electromagnetoelastic actuator Figure 3 for the 

communications systems. The results of constructing a 

generalized structural-parametric model and a generalized 

block diagram of electromagnetoelastic actuator [2-6] for the 

longitudinal, transverse and shift deformations are shown in 

Figure 3. Block diagram piezoactuator for longitudinal 

piezoeffect Figure 2 converts to generalized parametric block 

diagram of the electromagnetoelastic actuator  Figure 3 with 

the replacement of the parameters 

3Em =Ψ , 33dmi =ν , 
E

ij ss 33=Ψ
, δ=l . 

Generalized structural-parametric model and generalized 

parametric block diagram of the electromagnetoelastic actuator 

after algebraic transformations provides the transfer functions 

of the electromagnetoelastic actuator for communications 

systems [9-25]. The piezoactuator with the transverse 
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piezoelectric effect compared to the piezoactuator for the 

longitudinal piezoelectric effect provides a greater range of 

static displacement and less working force. The 

magnetostriction actuators provides a greater range of static 

working forces [12-14]. 

Using the solutions of the wave equation of the 

electromagnetoelastic actuator and taking into account the 

features of the deformations along the coordinate axes, it is 

possible to construct the generalized structural-parametric 

model, generalized parametric block diagram and the transfer 

functions of the electromagnetoelastic actuator for 

communications systems.  

 

Fig. 2. Parametric block diagram of the voltage-controlled piezoactuator for longitudinal piezoelectric effect. 

 

Fig. 3. Generalized parametric block diagram of the electromagnetoelastic actuator. 
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4. Conclusions 

Thus, using the obtained solutions of the wave equation 

and taking into account the features of the deformations 

along the coordinate axes, it is possible to construct the 

generalized structural-parametric model and parametric block 

diagram of the electromagnetoelastic actuator and to describe 

its dynamic and static properties with allowance for the 

physical properties, the external load during its operation as a 

part of the communications systems. 

The transfer functions and the parametric block diagrams 

of the piezoactuators for the transverse and longitudinal 

piezoelectric effects are obtained from structural parametric 

models of the piezoactuators for communications systems. 
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