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Abstract: I point out that the U(N) Chern-Simons 3d theory coupled to fermions at finite temperature and at a specific mean
field approximation and the 3d Gross-Neveu model at finite temperature and imaginary chemical potential can give us the same
results for the thermodynamic values of the free-energy and the saddle point equation for the thermal mass. I use specific results
from the thermodynamics of fermionic models that coupled to Chern-Simons gauge field and imaginary chemical potential. In
the latter case I introduce a representation for the canonical partition function for imaginary chemical potential and I see that
the CS level κ plays the role of the U(1) charge. I further argue that the periodic structure of the imaginary chemical potential
brings also Bloch’s theorem into the game. Namely, the vacuum structure of the fermionic system with imaginary baryon density
is a Bloch wave. I further emphasise that Bloch waves correspond to fermionic (antisymmetric) or bosonic (symmetric) quasi-
particles depending on the point in the band one sits in. This situation is similar with particles in a periodic potential of a crystal
that behave like Bloch-wavefunctions. The overlap between them is a lattice momentum that can be restricted to the first Brillouin
zone of the band structure.
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1. Introduction
In recent years, the study of topological field theories

has gained significant attention due to their intriguing
mathematical structures and potential applications in high-
energy physics and condensed matter physics like the particle-
vortex duality [1, 2], the fermion-boson duality [3] and
bosonization phenomena [4, 5]. Among these theories, Chern-
Simons gauge theory coupled to fermions has emerged as a
fascinating framework for investigating exotic phenomena and
novel phases of matter (for thermal Chern-Simons coupled
to matter theories see for example [6, 7] and references
therein and the more recent work for large charge at large
N [8]). In this paper, I explore the interplay between Chern-
Simons gauge theory and fermions at finite temperature, with
a particular focus on the relationship with a fermionic theory
at imaginary chemical potential.

I begin by providing a brief overview of Chern-Simons
gauge theory and its relevance in various physical systems. I
discuss the fundamental aspects of fermions coupled to Chern-

Simons gauge fields, emphasizing their role in generating
topological terms and inducing fractional statistics. Next, I
introduce the concept of a finite-temperature formalism for
the coupled system and present the necessary tools to describe
the thermodynamics and transport properties of the theory and
at the end I give new view into the partition function of a
fermionic theory at imaginary chemical potential as a Bloch
wave.

Overall, this paper provides a comprehensive investigation
into the interplay between Chern-Simons gauge theory,
fermions and imaginary chemical potential at finite
temperature. My results shed light on the rich physics
underlying this coupled system and offer insights into potential
applications in various areas of physics, including topological
insulators, fractional quantum Hall systems and high-energy
physics.
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2. General Notation

2.1. Maxwell

In order to compare a 4d Maxwell theory with a 3d
Chern-Simons theory, coupled to matter, I begin with

electromagnatism. Let’s start with Maxwell’s equations

~∇× ~E = −∂
~B

∂t
, ~∇ ~E =

ρ

ε0
(1)

~∇× ~B = µ0
~j + ε0µ0

∂ ~E

∂t
, ~∇ ~B = 0 (2)

and from now on I set ε0µ0 = 1/c2, c = 1. If one wants to present a relativistic theory then sets

ηµν = diag(−1, 1, 1, 1) , i, j, k, .. = 1, 2, 3 , µ, ν, ρ, .. = 0, 1, 2, 3 (3)

Then the field strength tensor is

Fµν = ∂µAν − ∂νAµ (4)

If one wants to write the Maxwell theory coupled to a source of matter (fermion or boson) then sets

I = IM + Iint =

∫
d4xLM +

∫
d4xAµJ

µ = −1

4

∫
d4xFµνF

µν +

∫
d4xAµJ

µ (5)

which leads to the equation of motion

∂µF
µν = −Jµ (6)

If one defines

~E 7→ Ei = F 0i , ~B 7→ Bi =
1

2
εijkFjk ⇒ Fij = εijkB

k (7)

Notice that ε123 = ε123 = 1. With the above notations I find

IM =
1

2

∫
d4x( ~E2 − ~B2) (8)

and comparing with Maxwell’s equations

Jµ =

(
ρ

ε0
, µ0

~j

)
(9)

2.2. Abelian Chern-Simons

The Abelian CS action coupled to sources is

I = ICS + Iint =

∫
d3xLCS + Iint =

κ

2

∫
d3xεµνρAµ∂νAρ +

∫
d3xAµJ

µ (10)

Notice that now we are in three dimensions hence

ηµν = diag(−1, 1, 1) , i, j, k, .. = 1, 2 , µ, ν, ρ, .. = 0, 1, 2 (11)

where now ε012 = −ε012 = 1. Obviously the Chern-Simons action does not seem to depend on the metric so we can write it in
a way that ∫

N
A ∧ dA =

∫
N

(Aµ∂νAρ)dx
µ ∧ dxν ∧ dxρ (12)

where N is a 3d Lorentzian manifold which does not have a boundary. Recall now that if one calculates the invariant measure
on N is

dV3 = ε0 ∧ e1 ∧ e2 =
√
−gdx0 ∧ dx1 ∧ dx2 =

√
−gd3x (13)
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Notice now that

dxµ ∧ dxν ∧ dxρ = εµνρdx0 ∧ dx1 ∧ dx2 = EµνρdV3 (14)

It bears significance to highlight that εµνρ takes values ±1 and since

εµνρ =
1

(
√
−g)2

εµνρ (15)

it is not a tensor. The proper tensor density is Eµνρ defined as

Eµνρ =
1√
−g

εµνρ (16)

Since the Chern-Simons action is topological, we see from the above that the metric does not appear in it.
Let’s go back to the Chern-Simons action where the equations of motion are

κ

2
εµνρ∂νAρ = −Jµ , κ

2
εµνρFνρ = −Jµ (17)

With the preview definitions these read

B =
ρ

κ
, εijEj =

1

κ
J i , Jµ = (ρ, J i) (18)

The new condition now is that the magnetic field B is a pseudoscalar.

2.3. Non-Abelian Chern-Simons

The gauge potential now has a transformation in the adjoint representation of the complex SU(N) Lie algebra

Aµ = AaT a , [T a, T b] = fabcT c , T r(T aT b) =
1

2
δab , a, b, c, ... = 1, 2, ...N2 − 1 (19)

The prime example is SU(2) where T a = 1
2σ

a and the structure constants fabc are complex. The non-abelian action is

ICS =
κ

4π

∫
N
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
=

κ

4π

∫
N
d3xεµνρTr

(
Aµ∂νAρ +

2

3
AµAνAρ

)

Since under the gauge transformation (g is a group element
of SU(N))

A 7→ g−1Ag + g−1dg (20)

the CS action is not invariant but changes as

ICS 7→ ICS − 2πκ

∫
N
w(g) (21)

where w(g) is the winding number

w(g) =
1

24π2
εµνρTr

(
g−1∂µgg

−1∂νgg
−1∂ρg

)
(22)

then, invariance of the partition function

Z =

∫
(DAµ)eiICS (23)

requires that κ is an integer κ = N , N ∈ Z.

3. The Fractional Quantum Hall Effect
in Connection with Chern-Simons
Gauge Field Coupled to Matter

The Lagrangian of a Chern-Simons theory when fermionic
or bosonic matter is coupled with the gauge field is

LCS =
κ

2
εµνρAµ∂νAρ +AµJ

µ (24)

The Euler-Lagrange equations are (17) where Jµ is the
current of bosonic or fermionic matter

(
ρ, J i

)
and i = 1, 2 in

3d. There are 3 components of the Euler-Lagrange equations
with the first component

ρ = κB (25)

This equation indicates that the local charge density is
directly proportional to the magnetic field, implying that a
Chern-Simons field intertwines magnetic flux with electric
charge, giving rise to anyons. So imagine a scenario with a
group of N particles linked with magnetic flux Φ. The crucial
idea here is that each particle perceives all the other N − 1
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particles as individual point vortices carrying a flux of Φ. This
model proves suitable for describing the fractional quantum
Hall effect, a physical phenomenon characterized by quantized
plateaus in the Hall conductance of 2D electrons, exhibiting
fractional values of e2/h. The clarity of this assertion
emerges through calculating the overall phase resulting from
the interaction between the charge e of an anyon and the total
flux of the other anyons revolving around it in an adiabatic
way. Assuming N particles encircling this anyon, the phase
of the anyon changes by 2πN . Introducing the Berry phase of
this exchange as Γ, we obtain the following

Γ = 2πN (26)

However, when dealing with these N particles we assume
that each particle carries a flux of Φ and since the value of the
flux quantum is Φ0 = h

e then

Γ = 2πN
Φ

Φ0
(27)

It is interesting to remember past works where the
calculations were conducted while considering that the
eigenvalues of the Chern-Simons gauge field existed within
the thermal circle and exhibited periodic characteristics, akin
to electrons encircling an anyon [7]. This anyon-eigenvalue
emerged as a consequence of the earlier mentioned flux
attachment. Remarkably, the eigenvalues of the Chern-Simons
field mimicked electron behavior, and the model’s effective
action described these eigenvalues as particles moving in a
magnetic field. Consequently, their quantization occurred in
discrete units of e

κ , κ represents the Chern-Simons level and
fill ν hypothetic Landau levels. The total Γ phase is now

Γ = 2πN
e
κ

Φ0
(28)

where again Φ0 = h
e . Having in mind that ~ = h

2π then the
overall phase turns to

Γ = N
e2

~κ
(29)

For ~ = 1 the Γ phase is now [9]

Γ = N
e2

κ
(30)

So when an electron moves adiabatically around another
electron its wavefunction acquires a phase like

ψ′ = eiN
e2

κ ψ (31)

or by using the ’t Hooft coupling λ = N
κ we have

ψ′ = eiN
λe2

N ψ (32)

and for simplicity if we set e2 = 1 we have finally

ψ′ = eiλψ (33)

In this scenario, we can visualize electrons encircling a
thin solenoidal magnetic flux, leading us to anticipate the
occurrence of phenomena reminiscent of the Bohm-Aharonov
effect [10, 11]. A similar picture is to have fermions at
imaginary chemical potential as we will examine later.

4. Imaginary Chemical Potential vs
Chern-Simons Gauge Field

Returning to equation (25) one may think the possibility
to use an electric field instead of a magnetic one to achieve
an electric flux attachment this time. We have in mind
that in 2 + 1 dimensions physics coming from the coupling
of a Chern-Simons gauge theory with fermionic matter, the
two components of the electric field lie on the same plane
in contrast with the one component of the magnetic field
which is perpendicular to the plane. So we may suppose
that we form a fermionic model at a real chemical potential
that lies on the same plane as the Chern-Simons electric
components. Then one may rotates it until it comes on the
imaginary axis and the model turns to a fermionic model with
imaginary chemical potential where we can study statistical
transmutation but also some amazing similarities with the
above models. Since physics with an electromagnetic field like
the Chern-Simons field is much more complicated than physics
with an imaginary electric potential, our main ambition is to
examine the condition:

”Gross Neveu model at critical values of the imaginary
chemical potential→ Fractional quantum Hall effect at critical
values of the ν Landau levels”.

Of course a model with a chemical potential is closed to
a model with an electric field in a crystal and polarization
phenomena from the Berry phase coming from the periodic
structure of the crystal. So if one imagines the movement of
an electron in a crystal (along for example the first Brillouin
zone) a neighbor electron somehow travels around it because a
Brillouin zone in one dimension can be mapped onto a circle,
in view of the fact that wavevectors k = 0 and k = 2π

a label
the same states.

An equivalent picture is the above: When fermions are
coupled to a Chern-Simons gauge field in a monopole
background, their system exhibits intriguing properties such
as the emergence of anyonic statistics, which refer to statistics
that are neither fermionic nor bosonic but can be fractional.
The study of theories like these finds applications in condensed
matter physics, like the FQHE and topological insulators.

At finite temperature, it has been postulated that in three
Euclidean dimensions, when considering Dirac fermions
coupled to an abelian Chern-Simons field at level κ 1, the
presence of a monopole charge is closely related to the case
when an imaginary chemical potential is introduced into the
system [12, 13]. A similar work at higher odd dimensions
appeared in [14, 15]. Let’s see the connection:

1 My notations follow [12].
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Zfer(β, κ) =

∫
[DAν ][Dψ̄][Dψ] exp

[
−Sfer(ψ̄, ψ,Aν)

]
, (34)

Sfer(ψ̄, ψ,Aν) = −
∫ β

0

dτ

∫
d2x̄

[
ψ̄(/∂ − i/A)ψ + i

κ

4π
ενλρAν∂λAρ + ...

]
. (35)

There are also some fermionic self interactions that their presence presented with dots. When one expands the CS field around
time independent monopole configuration Āν [16]

Aν = Āν + bν , Āν = (0, Ā1(x̄), Ā2(x̄)) , bν = (b0(τ), b1(τ, x̄), b2(τ, x̄)) , (36)

which is normalized as2

1

2π

∫
d2xF̄12 = 1 , F̄νλ = ∂νĀλ − ∂λĀν (37)

and bν is a backround gauge field.
Hence, (35) describes the possibility of monopole configurations in the fermionic theory (or the case involving the attachment

of κ units of monopole charge to the fermions) as

Sfer(ψ̄, ψ,Aν) = −
∫ β

0

dτ

∫
d2x̄

[
ψ̄(/∂ − iγiĀi − iγνbν)ψ + i

κ

4π
ενλρbν∂λbρ + ..

]
− iκ

∫ β

0

dτb0 . (38)

We can perform the path integral over the CS fluctuations
like viewing the theory with fixed total monopole charge.
To do this, I use a mean field approximation in this sector
where the spatial CS fluctuations balance out the magnetic

background gauge filed 〈bi〉 = −Āi [17].3 It is comperable
to how we may think of a reduction in which the background
gauge field’s integral along the thermal circle is fixed to be a
constant. One obtains

Zfer(β, κ) =

∫
[Db0][Dψ̄][Dψ] exp

[∫ β

0

dτ

∫
d2x̄

[
ψ̄(/∂ − iγ0b0)ψ + ..

]
+ iκ

∫ β

0

dx0b0

]

=

∫
(Dθ)eiκθZgc,fer(β,−iθ/β) , (39)

where θ =
∫ β

0
dτb0(τ), Zgc,fer(β,−iθ/β) is the grand

canonical partition function for the fermionic theory and I have
used standard formulae from [12]. Observing the situation, it
becomes evident that the Chern-Simons level κ assumes the
role of the eigenvalue Q of the U(1) charge operator. Here
is an important conclusion that the finite temperature partition
function of Dirac fermions coupled to abelian CS gauge field
at level κ in a monopole background, can be equivalently
represented as the canonical partition function of the fermions
with a fixed fermion number κ. This discussion shows that
the partition function of fermions coupled to abelian CS in a
monopole background is intimately related to the respective
canonical partition function at fixed total U(1) charge.

Let’s compare the two theories by using previous results.
Here we have a theory of N Dirac fermions ψi (i = 1, ...., N)
coupled to U(N) Chern-Simons gauge field Aµ. The theory

has a definition described by the Lagrangian

LCS(f) = ψ
i
Dµψ

i+σψ
i
ψi+

iκ

4π
εµνρTr(Aµ∂νAρ+

2

3
AµAνAρ)

(40)
where Dµψ = ∂µψ − iAaT aψ.

When the theory is critical (The Gross-Neveu model with
Chern-Simons interactions at the saddle point), the primary
scalar operator denoted by σ, assumes a crucial role in
the theory, necessitating its inclusion in the path integral
computation. A previous work was made by using the light-
cone gauge to eliminate the non-abelian part of the Lagrangian
[7]. Since in thermodynamics the fermions have anti-periodic
boundary conditions on the thermal circle, the momentum on
the circle is quantized as p3 = 2π

β (n+ 1
2 ), n ∈ Z.

The free-energy density of the system is

FCS
V2

=
N

2πβ3

{
µ3
F

3

(
1∓ 1

λ

)
+
σ̃µ2

F

2λ
− σ̃3

6λ
+

1

πiλ

∫ ∞
µF

dyy
[
Li2

(
−e−y+πiλ

)
− c.c.

]}
(41)

where σ̃ = σβ and λ = N
κ is the ’t Hooft coupling. When the theory is critical we extremize the FCS

V2
with respect to σ̃ and we

find
2 It is interesting to put the theory on S1 × S2.
3 It would be interesting to further explain whether an appropriate large-N is also necessary for the validity of such an approximation.
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σ̃ = ±µF (42)

With the appropriate choice of signs (the (-) sign in the parenthesis and the (+) sign at the above equation) the critical free-
energy density we obtain is

FCS
V2

=
N

2πβ3

{
µ3
F

3
+

1

πiλ

∫ ∞
µF

dyy
[
Li2

(
−e−y+πiλ

)
− c.c.

]}
(43)

and the saddle point equation is

λµF = − 1

πi

[
Li2

(
−e−µF−πiλ

)
− c.c.

]
(44)

The main difference here with the 2+1 Gross-Neveu model in the canonical formalism from previous calculations is to include
the integral over all the possible A0 values (A0 = 2πnc

e where cε [−1/2, 1/2])[13]. The corresponding result is

FGN =
NV2

2π

{
m3

3
+

∫ ∞
0

pdp

(
1

iπ
(
n
e

)) [Li2 (−e−L√p2+m2+i2π(ne )
)
− Li2

(
−e−L

√
p2+m2−i2π(ne )

)]}
(45)

Obviously the expressions of the free-energies of the two
models are the same if we consider that

µF = mβ (46)

and

λ =
n

e
(47)

and also

m = − 1

πi
(
n
e

) [Li2 (−e−mβ−πi(ne )
)
− c.c.

]
(48)

In principle, the free-energy FGN together with the gap
equation are sufficient for investigating the thermodynamic
properties of the Gross-Neveu model up to leading order in
N .

However the main conclusion from the above analysis is that
as the Chern-Simons gauge field ”ties” charge with flux by the
Chern-Simons κ level and somehow we have fixed number

of particles, the constraint that we insert at the Gross-Neveu
model tells us that we have also fixed number of particles.
One may assume this from the beginning of our analysis by
examine carefully the Lagrangians of the models and find the
equivalence of the parts.

L1 = iκb0 (49)

which is a (flux)×(gauge potential as magnetic field) and

L2 = iBθ (50)

which is also a (electric flux arises from the charge of
particles)×(potential) [13]. So we may say that with the
constraint we put in the Lagrangian we ”create” something like
a topological gauge field.

5. Partition Function and Bloch Waves

The grand canonical partition function of a Dirac fermion4

in 3d and at imaginary chemical potential can be written as

Zfgc(β, iθ/β) =

∫
(Dψ)(Dψ̄)e−

∫ β
0
dτ

∫
d2~x[ψ̄(γµ∂µ−iγ0θ/β)ψ+V (ψ̄ψ)] (51)

where momentarily we are not interested in the potential
term V (ψ̄ψ). Placing the fermions at finite temperature
requires imposing antiperiodic boundary conditions along the
compactified Euclidean time τ as

ψ̄(β, x̄) = −ψ̄(0, x̄) , ψ(β, x̄) = −ψ(0, x̄) (52)

When there is an imaginary chemical potential in (51)
is actually equivalent to the coupling of the fermions to a
background gauge potential of the formAµ = (θ/β, 0, 0). One
therefore might think that this is removable by a simple gauge
transformation, and setting

ψ̄(τ, x̄) 7→ ψ̄′(τ, x̄) = e−i
∫ τ
0
dτ̃α0(τ̃)ψ̄(τ, x̄) , (53)

ψ(τ, x̄) 7→ ψ′(τ, x̄) = ei
∫ τ
0
dτ̃α0(τ̃)ψ(τ, x̄) . (54)

could do the job. However, such a transformation would twist
the antiperiodic boundary conditions (52) since now we would
obtain

ψ̄(β, x̄) = −eiθψ̄(0, x̄) , ψ(β, x̄) = −e−iθψ(0, x̄) (55)

4 For simplicity in this section I consider theories with a single fermion or complex scalar.
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where these twists are intimately related to the
confining/deconfining of colour singlets. Obviously there is
a connection with (33) and this is a main result of this work.
Also, if one consider ψ as a Bloch wave then θ could change
the ”lattice” periodic part of the wavefunction.

Then I discuss the theory for imaginary chemical potential.
The important point is that this situation corresponds to having
the GN model coupled to a U(1) potential fluctuating around
its Z-vacua. This is the proposal of my previous work [13].
The fact that I use an imaginary chemical potential brings the
Lee-Yang theorem into the game. We need to elaborate on
that, in particular since I find negative free-energy densities.
This shows that we probe unstable critical points. But this is
not the main case in this work.

This case resembles to investigations of quantum
mechanical systems in a periodic potential akin to a periodic

crystal. If we conceive of θ as a periodic coordinate,
then it corresponds to computing the overlap between two
Bloch wavefunctions that vary by lattice momentum B [18].
Typically, such systems yield a band structure that can be
analysed by confining the lattice momentum to the first
Brillouin zone.

Consider a system in three dimensions and at finite
temperature T = 1/β with a global U(1) charge operator Q̂.
Its canonical partition function can be formally calculated as
the thermal average over states with fixed Q̂ as

Zc(β,B) = Tr
[
δ(Q̂−B)e−βĤ

]
(56)

If the eigenvalues B of Q̂ are integers, namely if the system
contains elementary excitations, an explicit representation of
(56) can be written as

Zc(β,B) =

∫ 2π

0

dθ

2π
eiθB Tr

[
e−βĤ−iθQ̂

]
=

∫ 2π

0

dθ

2π
eiθB Zgc(β, iµ = iθ/β), (57)

whereZgc(T, iµ) is the grand canonical partition function with
imaginary chemical potential iµ.

In the simple systems we are interested in one expects that

Zgc(β, i(µ+ 2πk/β)) = Zgc(β, iµ) , k ∈ Z (58)

One then notices with Bloch’s theorem as follows. In
quantum system, taken here to be 1d for clarity, in a periodic
potential with period a the energy eigenstates are the Bloch
waves

ψk(x) = eikxu(x) , u(x+ a) = u(x) (59)

where k is the lattice momentum vector. The transition
amplitude between two Bloch waves with different lattice
momenta is

Z(k2 − k1) ≡ 〈ψk1 |ψk2〉 =

∫ a

0

dxei(k2−k1)x|u(x)|2 (60)

Notice the formal equivalence of (60) with (57), which
implies that B may be thought of as a transfer momentum
when a Bloch wave scatters from a lattice point [19]. A
suitable expression of a 1d Bloch-wave is of the form:

ψk = eikxu(x) (61)

where u function has the periodicity of the lattice a like
Zgc(β, iµ = iθ/β) has the periodicity of the chemical
potential.

6. Conclusion
I have pointed out that the canonical partition function of

the Gross-Neveu model at finite temperature and imaginary
chemical potential is intricately connected to the thermal

partition function of abelian Chern-Simons fields coupled
to matter in a monopole background, particularly when
employing a suitable mean-field approximation. In this
context, the system can be viewed as being in a regime where
the U(1) charge density essentially aligns with the monopole
charge. Motivated from my past works about the relationship
between the partition function of the fermionic model and the
Bloch theorem I shed more light to the connection between
the periodic structure of the imaginary chemical potential on
the thermal circle and a periodic band structure where a Bloch
wave travels [19]. It would also be interesting in the future
to examine the specific values of the imaginary chemical
potential where there are phase transitions of the model and
their relationship with the FQHE.
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