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Abstract: The aim of this article is to use von-Mises coordinates to find a class of new exact solutionsof the equations 

governing the plane steady motion with moderate Peclet number of incompressible fluid of variable viscosity in presence of 

body force. An equation relating a differentiable function and a stream function characterizes the class under consideration. 

When the differentiable function is parabolic and when it is not, in both the cases, it finds exact solutions for given one 

component of the body force. This discourse shows an infinite set of streamlines and the velocity components, viscosity 

function, generalized energy function and temperature distribution for moderate Peclet number in presence of body force. 

Moreover, for parabolic case, it obtains viscosity as a function of temperature distribution for moderate Peclet number. 

Keywords: Martin’s System, Von-Mises Coordinates, Variable Viscosity, Navier-Stokes Equations with Body Force,  

Exact Solutions with Body Force 

 

1. Introduction 

In general, a moving fluid element experiences both the 

surface and body forces. The momentum of moving fluid 

element is given by the Navier-Stokes equations (NSE). The 

non-linear terms in NSE offers a great difficulty for its exact 

solution show ever, some transformation techniques and 

dimension analysis methods are workable. A variety of 

techniques/methods and references given there are practical 

for some exact solutions of NSE without body force [1-6]. 

Moreover recently Mushtaq A. et. al., applied a new 

technique for exact solution of variable viscosity fluids 

without body force term [7, 10]. Body force term like coriolis 

force is considered by Giga, Y. et. al. in [8] and Gerbeau, J. 

et. al. gives a fundamental remark on NSE with body force in 

[9] where as Mushtaq A. et. al. has applied successive 

transformation technique for exact solution for flow of 

incompressible variable viscosity fluids in presence of body 

force in [11-14]. 

To achieve the aim of this letter successive transformation 

technique is applied. According to this method the basic non-

dimensional flows equations with body force in Cartesian 

space ( , )x y  are transformed into Martin’s coordinates ( ),φ ψ  

then to von-Mises coordinates ( , )x ψ . In Martin’s 

coordinates, the curvilinear coordinates ( ),φ ψ  are such that 

the coordinate lines .constψ =  are streamlines and the 

coordinate lines constantφ = are arbitrary [15]. Whereas in 

the von-Mises coordinates, the arbitrary coordinate lines of 

Martin’s system is taken along the x axis− . Thus, the 

function xφ =  and stream function ψ  of Martin’s 

coordinates as independent variables instead of y  and x  

[16]. Further, the characteristic equation for streamlines of 

the class of flows under consideration is: 

( )
const.

y g x n

m

− − =                            (1) 

Where 0m ≠ , n  are constants and a differentiable 

function is ( )g x . Without loss of generality the equation (1) 

implies  
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( ) ( )y g x ν ψ= +                                (2) 

where ( ) m nν ψ ψ= + . 

Paper’s organization is follow: Section (2) givescentral 

flow equations in non-dimensional form and transforms them 

into Martin system ( , )φ ψ . Section (3) retransforms the basic 

equations to von-Mises coordinates. The exact solutions to 

the problem in presence of body force are given in section 4. 

Conclusions are given at the end. 

2. Basic Non-dimensional Equations in 

Martin’s Coordinates 

The equation of continuity, NSE and energy equation, for 

the steady plane motion of incompressible fluid of variable 

viscosity with constant thermal conductivity in the presence 

of unknown external force, in non-dimensional form are 

respectively following 

xu + yv = 0                                      (3) 

u xu + v yu = 1F xp−  

+
e

1

R
[(2 ) { ( )} ]x x y x yu u vµ µ+ +                   (4) 

u xv + v yv = 2F yp−  

+
e

1

R
[(2 ) { ( )} ]y y y x xv u vµ µ+ +                     (5) 

x yuT vT+ =
e r

1

R P
( )xx yyT T+  

+ 
c

e

E

R

2 2 2[2 ( ) ( ) ]x y y xu v u vµ µ+ + +                (6) 

Where ( , )u x y , ( , )v x y  are the components of velocity 

vector, 1( , )F x y , 2 ( , )F x y  are the components of the body 

force, ( , )p x y  pressure, ( , )x yµ  the viscosity, and ( , )T x y  is 

temperature. The numbers cE , rP  and eR  are the Ecart 

number, the Prandtl number and the Reynolds number 

respectively. The product of eR  and rP  is Peclet number 

eP ′ . The solution of the basic fluid dynamics equations is 

found for very large and very small eP ′ where as the solution 

for moderate eP ′  is challenging. Please refer to [17-22] and 

reference therein. 

The solution of the equation (3) is a stream function 

( , )x yψ  such that 
2 2

x y y x

ψ ψ∂ ∂=
∂ ∂ ∂ ∂

and 

u
y

ψ∂=
∂

, v
x

ψ∂= −
∂

                                  (7) 

The solution of the remaining system of equations (4-6), as 

experience teaches, offers a great difficulty because of the 

presence of the non-linear term. These equations are 

managed by introducing the total energy function xT  and the 

vorticity function Ω defined by: 

xT = p +
1

2

2 2( )u v+ −
e

2

R

xuµ
                       (8) 

Ω = xv − yu                                      (9) 

Utilizing equation (8-9) in equations (4-6), we have  

– v Ω = 1F xL− +
e

1

R
yA                          (10) 

u Ω  = 2F
1

y y
e

L B
R

− −  +
e

1

R
xA                   (11) 

x yuT vT+ =
1

eP ′
( )xx yyT T+  

+ 
c

e

E

R
( )2 21

4
4

B A
µ

+                        (12) 

where 

A  = ( )y xu vµ + and B = 4 xuµ                   (13) 

Consider the allowable change of coordinates: 

( , )x x φ ψ= , ( , )y y φ ψ=                            (14) 

where the system ( , )φ ψ  are curvilinear coordinates in the 

( , )x y plane− such that the Jacobian
( , )

0
( , )

x y
J

φ ψ
∂= ≠
∂

is finite. 

Let curvilinear coordinateψ  is stream function as defined in 

Martin [15]. Let λ  be the angle between the tangent to the 

streamlines .constψ =  and the curves .constφ =  as arbitrary 

at a point ( , )P x y , then  

tan( )λ  = 
y

x

φ

φ
                                    (15) 

The first fundamental form is  

2ds = ( , )E φ ψ 2dφ  + 2 ( , )F φ ψ dφ dψ + ( , )G φ ψ 2dψ  (16) 

wherein: 

E  = 
2 2x yφ φ+  

F  = xφ xψ + yφ yψ  

G  = ( xψ )2 + ( yψ )2                          (17) 
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Differentiating equation (14) with respect to x  and y , 

and solving the resulting equations, one finds: 

yφ = − J xψ , yψ = J xφ  

xφ = J yψ , xψ = − J yφ                       (18) 

wherein 

J  = ±
2E G F−

= ± (
xφ yψ − yφ xψ ) = ±W        (19) 

Application of trigonometric identities on equation (15) 

and equation (18) provides 

xφ  = E ( )Cos λ  

xψ  = 
1

E
[ F ( )Cos λ − J ( )Sin λ ] 

yφ  = E ( )Sin λ  

yψ  = 
1

E
[ F ( )Sin λ + J ( )Cos λ ]               (20) 

The integrability conditions: 

xψφ  = xφψ , yψφ  = yφψ                       (21) 

for x  and y , yield: 

φλ = 
2
11J

E

Γ
, ψλ = 

2
12J

E

Γ
                   (22) 

where 

2
11Γ  = 2

1
[ 2 ]

2
FE E F E E

W
φ φ ψ− + −  

2
12Γ  = 2

1
[ ]

2
E G F E

W
φ ψ−                     (23) 

Equation (21), applying the integrability condition 

φ ψ ψ φλ λ=  for ( , )λ φ ψ , yields 

2 2
11 121 W W

K
W E E

ψ φ

    Γ Γ = −           

               (24) 

where K is called the Gaussian curvature.  

Now equations (10-11), on substituting equation (15), 

equation (18), equation (20) andequations (22-23) simplifies 

to following 

eR J E− Ω = ( )1 2cos sineF R J E F Fλ λ− +

( )1 2sin coseJ R J E F Fλ λ+ − + eR J E Lψ  

+ ( )2 2( )cos 2 2 sin 2A F J FJφ λ λ− −  

+ EAψ ( )sin 2 cos 2 )J Fλ λ−  

–
2 21

( )sin 2 cos 2
2

B F J FJφ λ λ − + 
 

 

+ E Bψ
21

sin 2 cos
2

F Jλ λ + 
 

                (25) 

and 

0 = [ ]1 2cos sineR J E F Fλ λ+  

– eR J Lφ + cos 2E Aψ λ  

– [ ]cos 2 sin 2A F Jφ λ λ−  

+ 
21

sin 2 sin
2

B F Jφ λ λ − 
 

 – sin 2
2

E Bψ λ         (26) 

According to differential geometry [23], the expression 

x yuT vT+  in equation (12) simplifies to 
T

J

φ
 and  

( )xx yyT T+  

= 
1

J

G T F T E T F T

J J

φ ψ ψ φ

φ ψ

 − −   
 +   
     

            (27) 

Therefore, the energy equation (12)becomes 

1

J eP ′

G T F T E T F T

J J

φ ψ ψ φ

φ ψ

 − −   
 +   
     

 

= –
c

e

E

R
( )2 21

4
4

B A
µ

+ +
T

J

φ
               (28) 

The magnitude of velocity vector ( , )u v=q  is 

2 2q u v= + and it simplifies to: 

E
q

J
=                                 (29) 

The equation (13) on substitute values from equations (18-

23), provides 

( , )B φ ψ =
3

4

EJ

µ
[

2( sin cos )E F Jφ λ λ+  

–2 ( sin cos )E F Jλ λ+ ( sin cos )F Jφ φλ λ+  

+ 
2 2( sin 2 sin )E J Gψ φλ λ+ ]                   (30) 
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( , )A φ ψ = µ [− 2 5

( cos sin )

4

F J

E J

λ λ−
 

{
3(2 cos sin )E E J F Eφ λ λ+  

–
2 24 cosE J Jφ λ − 2 sinE E Fφ λ  

+ sinE E Eψ λ } 

+
3

cos

2J

λ
{ ( sin cos )E F Jψ λ λ+  

– 2 cosEJψ λ − sinE Gφ λ } 

+
3

( sin cos )

2

F J

EJ

λ λ+
{ ( 2 )J E EJφ φ− sin λ  

+ cosλ [ 2 ]FE E F E Eφ φ ψ− + − } 

− 3

sin

2 J

λ
{ ( ( sin cos )E J Fψ λ λ−  

– 2 sinEJψ λ + cosEGφ λ }]                      (31) 

The vorticity function Ω in Martin’s system is  

x x y yv v u uφ ψ φ ψφ ψ φ ψΩ = + − −                 (32) 

Equation (32) on substituting equation (15), equation 

(18)and equation (20) provides 

Ω =
3

( sin cos )

2

F J

EJ

λ λ+
{ ( 2 )J E EJφ φ− sin λ  

+ cosλ [ 2 ]FE E F E Eφ φ ψ− + − } 

− 3

sin

2 J

λ
{ ( sin cos )E J Fψ λ λ−  

– 2 sinEJψ λ + cosE Gφ λ }] 

+ 2 5

( cos sin )

4

F J

E J

λ λ−
 

{
3(2 cos sin )E E J F Eφ λ λ+  

– 
2 24 cosE J Jφ λ − 2 sinE E Fφ λ  

+ sinE E Eψ λ } 

– [
3

cos

2J

λ
{ ( sin cos )E F Jψ λ λ+ – 2 cosEJψ λ  

− sinE Gφ λ }]                                (33) 

The fundamental system of equations transformed to 

Martin’s system as momentum equations (25-26), the energy 

equation (28) for moderate Peclet number together with 

equations (30-31) and equation (33).  

3. Basic Equations in Von-Mises 

Coordinates 

Since the purpose of this communication is to determine a 

class of exact solutions to flow equations in von-Mises 

coordinates therefore the definition of von-Mises coordinates 

in [16] demands to set  

xφ =                                        (34) 

The equation (15), equation (17), equations (19), equations 

(30-31) and equation (33) reduces to 

1
cos

E
λ =                                   (35) 

( )2
1 ( )E x g x′= +                                (36) 

J m x=                                       (37) 

2

4
B

m x

µ−=                                    (38) 

( )
2

( ) 2 ( )A x x g x x g x
m x

µ ′ ′ ′= − 
 

                (39) 

and 

( )( )x g x

m x

′′
Ω =                                  (40) 

The equations (25-26) and equation (28) on utilizing 

equations (34-40), give  

eR− Ω = – ( )2eR m x F + eR Lψ – m x
xA  

+ x g ′ Aψ + Bψ                                    (41) 

0 = ( )1 2eR F x g F′+  

– e xR L +
( )21 ( )A x g

m x

ψ ′−
+ xx g A′  – 

x g B

m x

ψ′
            (42) 

x xm xT 2 xx g Tψ′− +
( )21 ( )x g

T
m x

ψ ψ

′+
 

+ ( )e xm P T′−  + ( )x g Tψ′ ′  
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= – ( )2 24
4

c rm x E P
B A

µ
+                        (43) 

and 

2
1 N

q
m x

+= , ( )N x g x′=                     (44) 

Applying the integrability condition x xL Lψ ψ=  on 

equations (41-42) yields 

x xm x A 2 xN A ψ− – 

2
1 N

A
m x

ψ ψ

 −  + xm A  

– A Nψ ′ – x

g B
B

a

ψ

ψ

′  − 
  

= e xR Ω  

+ ( )1 2eR F F N ψ+ ( )2e x
R m x F−                 (45) 

Through the solution of equation (45), the viscosity µ  

from either equation (38) or equation (39), the generalized 

energy function L  from equations (41–42)for pressure p  

from Equation (9), the temperature distribution T  for 

moderate Peclet number from equation (43), the velocity 

components from equation (7)streamlines from equation (2) 

are found.  

4. Exact Solutions in Presence of Body 

Force 

The compatibility equation (45) involves functions A  and 

B  which depends upon the viscosity function µ , ( )g x  and 

derivative of ( )g x  and the body force components 1F , 2F . 

Although the analytical solution of equation (45) extremely 

difficult however the difficulty is eased on eliminating on 

eliminating µ from equation (38) and equation (39) on 

introducing the function ( )X x  as follow 

A = ( )X x B                                    (46) 

where 

( )1
( ) 2

4
X x x N N

− ′= −                           (47) 

provided ( )2 0x N N′ − ≠ . 

Use of equation (46) in equation (45), gives 

x xm x X B  – (1 2 )N X+ xB ψ  

+ { }2(1 )
B

N X N
m x

ψψ − −  + { }2xm B x X X′ +  

– ( )2B N X N Xψ ′ ′+  + ( )m B x X
′′  

=
e

N
R

m x

′
 ′
 
 

 + ( )1 2eR F N F ψ+ ( )2e x
R m x F−      (48) 

In equation (48) the coefficients of the derivative x xB , 

xB ψ , Bψ ψ , xB , Bψ  and B  are all functions of x  only, this 

suggests to seek a solution of equation(48) of the form 

( , ) ( ) ( )B x R x Sψ ψ= +                           (49) 

Equation (48), on substituting equation (49), becomes  

( )x XR
′ ′ 

  
+ { }2(1 )

S
N X N

m x

′′
− −  

– ( )2S N X N X′ ′ ′+ + ( )m x X S
′′  

= 
e

N
R

m x

′
 ′
 
 

 + ( )1 2eR F N F ψ+ ( )2e x
R m x F−         (50) 

The equation (50) involves the components of unknown 

body force 1( , )F x ψ , 2 ( , )F x ψ  the functions ( )R x and ( )S ψ  

therefore the solution of equation (50) will depend upon the 

form of 1F and 2F . One select many possible forms of 1F  

and 2F  leading to the solution of equation (50) for ( )R x  and 

( )S ψ , however they are required to satisfy (41-42) and (43). 

The search for the appropriate form of 1F or 2F  reveals 

( ) ( )2 [ ]e ex

N
R m x F R x X R

m x

′
 ′ ′ ′= − 
 

             (51) 

or 

2eR F = 
2 2e

N
R

m x

 ′
  
 

– ( )X R
′
+

1( )Q

m x

ψ
             (52) 

where 1( )Q ψ  is function of integration.  

Insertion of equation (52) in equation (50) keeps ( )R x  and 

( )S ψ  arbitrary and provides 

1eR F = { }2(1 )
S

N X N
m x

′
− −  

– ( )2S N X N X′ ′+ + ( )m x X S dψ′′ ∫  

+ 1( )P x ( ) 1

2 2

( )
e

QN
N R XR

m xm x

ψ  ′ ′− − +      
              (53) 

where 1( )P x  is function of integration. Solution of equations 

(41-42) for L , on substituting equations (52–53), is following 
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eR L = 1( )Q dψ ψ∫ ( ) ( )m x X S dψ ψ′+ ∫  

– ( 1) ( )N X S ψ+ + ( )x xe e N XR dx− ′∫ + xe 1c        (54) 

provided 

1m =                                         (55) 

1c  is constant of integration. 

Thus from equation (38) or equation (39)viscosity is 

[ ]
2

( ) ( )
4

x
R x Sµ ψ= − +                           (56) 

The energy equation (43), on utilizing equation (46), 

equation (49) and equations (55–56) becomes  

x xxT 2 xN Tψ− +
2(1 )N

T
x

ψ ψ
+

+ ( )1 e xP T′− N Tψ′−  = 

( ) { }
21 4

( ) ( )c r

X
E P R x S

x
ψ

+
+                 (57) 

The right-hand side of equation (57) suggests seeking 

solution of the form 

1 2( , ) ( ) ( ) ( )T x T x T x Hψ ψ= +                    (58) 

Equation (57) for equation (58) becomes 

1xT ′′ + ( ) 11 eP T′ ′− }+ H { 2xT ′′ + ( ) 21 eP T′ ′− } 

+ H ′  {–2 N 2T ′ N ′− 2T }+
2

2(1 )N T
H

x

+ ′′  

= 
( ) { }

21 4
( ) ( )c r

X
E P R x S

x
ψ

+
+                     (59) 

Let us differentiate equation (59) with respect toψ . 

( )H ψ′ { 2xT ′′ + ( ) 21 eP T′ ′− }+ ( )H ψ′′  {–2 N 2T ′ N ′− 2T } 

+
2

2(1 )
( )

N T
H

x
ψ+ ′′′ = 

( )21 4
( )c r

X
E P S

x
ψ

+
′          (60) 

Since x  and ψ  are independent variables therefore the 

right-hand side of equation (60) demands 

1 2( )S s sψ ψ= +                               (61) 

and 

3 4( )H s sψ ψ= +                              (62) 

where 1s , 2s , 3s  and 4s  are constants of integration. 

Substitution of equations (61-62) in equation (60)provides  

2xT ′′ + ( ) 21 eP T′ ′−  = 
( )2

1

3

1 4
c r

XE P s

s x

+
      (63) 

Utilization of equations(61-62) in equation(59), gives 

1xT ′′ + ( ) 11 eP T′ ′−  = 3s {2 N 2T ′ N ′+ 2T } 

– 4s { 2xT ′′ + ( ) 21 eP T′ ′− } 

+ 
( ) { }

2

2

1 4
( )c r

X
E P R x s

x

+
+                       (64) 

when ( )1 0eP ′− ≠  the solution of equations (63-64) are  

2 ( )T x = { }(1 ) (1 )
2 ( )e eP P

x x Z x dx dx′ ′− − −
∫ ∫  

+ 2c
(1 )eP

x dx′− −
∫ + 3c                         (65) 

1( )T x = { }(1 ) (1 )
1( )e eP P

x x Z x dx dx′ ′− − −
∫ ∫  

+ 4c
(1 )eP

x dx′− −
∫ + 5c                              (66) 

where 2c , 3c , 4c and 5c are constant of integration and 

( )2
1

2 2
3

1 4
( )

c rE P s X
Z x

s x

+
=                         (67) 

1( )Z x = 3s {2 N 2T ′ N ′+ 2T } 

– 4s { 2xT ′′ + ( ) 21 eP T′ ′− } 

+ 
( ) { }

2

2

1 4
( )c r

X
E P R x s

x

+
+                     (68) 

Utilization of equations (65-68) in equation (58) provides 

the temperature T  formoderate eP ′  and the back substitution 

gives the viscosity µ from equation (56), the velocity 

components from equation (7), the pressure p  from equation 

(9) using equation (55), and streamlines from equation (2) for 

non-parabolic function ( )g x . 

Now when ( )1 0eP ′− =  the equations (65-66) give 

2 ( )T x = { }2 ( )Z x dx dx∫ ∫ + 6c x + 7c                 (69) 

and 

1( )T x = { }3( )Z x dx dx∫ ∫ + 8c x + 9c                  (70) 

where 

3 ( )Z x = 3s {2 N 2T ′ N ′+ 2T }– 4s 2xT ′′  
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+ 
( ) { }

2

2

1 4
( )c r

X
E P R x s

x

+
+                     (71) 

and 6c , 7c , 8c and 9c are constants of integration. Insertion 

of equations (69-71) in equation (58) gives T  for

( )1 0eP ′− =  and by back substitution µ from equation (56), 

the velocity components from equation (7), p  from equation 

(9) using equation (56), and streamlines from equation (2) for 

non-parabolic function ( )g x . 

The case ( )2 0x N N′ − = , on supplying ( )N x from 

equation (35), shows that the function ( )g x  is a parabolic 

function 

2
10 11

1
( )

2
g x c x c= +                          (72) 

where 10c  and 11c  are constants. In view of equation (72), 

the equation (48) reduces to  

xB ψ− + 
N B

m x

ψ ψ
 

 = ( )1 2eR F N F ψ+ ( )2e x
R m x F−              (73) 

Here equation (73) is to provide the function ( , )B x ψ  but 

it involves the components of unknown body force 1( , )F x ψ
and 2 ( , )F x ψ therefore its solution will depend upon the form 

of 1F and 2F . It is easy to see that the arbitrary selection of 

the forms for 1F  and 2F  to the solution of equation (73) for 

( , )B x ψ  does not lead to the solution of the momentum 

equations (41-42) for the function L  and the energy equation 

(43) for T . However, it is found that the solution of the 

equations (41-42) is obtainable if the function 2F  is a 

solution of the following differential equation 

( )2 0e x
R m x F =                                 (74) 

or 

2
2

( )
e

Q
R F

m x

ψ
=                                 (75) 

where a function of integration is 2 ( )Q ψ . Substitution of 

equation (75) in equation (73), provides  

1eR F = 10
2 ( )

c x
Q

m
ψ− – xB + 10c x

B
a

ψ + 2 ( )P x          (76) 

where the function of integration is 2 ( )P x . Utilizing 

equations (75–76), in equations (41–42) and solving for the 

function L one have 

eR L = 
102

e

c
R

m

 −  
 

ψ  + 2 ( )Q dψ ψ∫ – ( , )B x ψ  

+ 2 ( )P x dx∫                                        (77) 

In view of equation (72), the energy equation (43), 

becomes 

2 3 2 4
10 10

1
2 (1 )x x xm x T c x T c x T

m
ψ ψ ψ− + +  

+ ( )e rx m P T′− +
2

102c x Tψ = ( , )c rE P B x ψ          (78) 

On substituting value from equation (43) in equation (78), 

the viscosity µ is obtained as a function of temperature T  

µ =

2

4 c r

m x

E P

 −
  
 

 [
2 3

102x x xm x T c x Tψ−  

2 4
10

1
(1 )c x T

m
ψ ψ+ + + ( )e rx m P T′−  

+
2

102c x Tψ ]                                     (79) 

for moderate eP ′ . It is now easy to find the velocity 

components from equation (7), the pressure p  from equation 

(9) using equation (77), and streamlines from equation (2) for 

( )g x  given by equation (72). 

5. Conclusion 

The following dimensionless parameters are used to obtain 

the non-dimensional form of the basic equations for the two-

dimensional steady motion of incompressible fluid of 

variable viscosity in the presence of body force 

*

0

x
x

L
= , 

*

0

y
y

L
= ,

*

0

u
u

U
= ,

*

0

v
v

U
=  

*

0

µµ
µ

= ,
*

0

p
p

p
= ,

* 1
1

0

F
F

F
= ,

* 2
2

0

F
F

F
=  

where .v pc c Const= = where vc is specific heat at constant 

volume and pc is specific heat at constant pressure, the 

thermal conductivity 0 .k k Const= = and density 

0 .Constρ ρ= =  

This paper finds a class of new exact solutions of the 

equations governing the two-dimensional steady motion with 

moderate Peclet number of incompressible fluid of variable 

viscosity in presence of body force in von-Mises coordinates. 

The characteristic equation for the streamlinesis 

( )y g x nψ= + + where a differentiable function is ( )g x , 

ψ is stream function and n is constant. The exact solutions 

for moderate Peclet number in the presence of body force is 
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determined for given one component of the body force, for 

both the cases when ( )g x is non-parabolic function and when 

it is a parabolic function of x . For non-parabolic ( )g x  the 

streamlines are ( ) .y g x n Constψ− − = = and for parabolic 

case 2
10 11

1
( )

2
g x c x c= + and the streamlines are 

2
10 11

1
.

2
y c x c n Constψ − + − = = 
 

 where 10 11andc c  are 

constants. In both the cases, an infinite set of velocity 

components, viscosity function, generalized energy function, 

temperature distribution for moderate Peclet number in 

presence of body force can be constructed and graph of 

streamlines can easily be drawn through computer algebra 

system software to observe the streamline patterns. For 

parabolic case, viscosity is obtained as a function of 

temperature distribution for moderate Peclet number. 
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