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Abstract: While policy and decision-makers are striving to enhance food security amidst maddening impacts of climate 

change, climate smart agriculture is thought of as a promising breakthrough for responding to climate change impacts in 

Tanzania and elsewhere in the world as it strives to increase food productivity; build resilience of agricultural systems to climate 

change impacts and reduce agricultural greenhouse gas emission. Studies show that agricultural sector is both, a cause and a 

victim of climate change. It significantly contributes greenhouse gases to the atmosphere. However, achieving climate change 

mitigation through agriculture without compromising food security is a huge policy and research challenge, some scientists say, 

it is practically impossible. This study sought to determine tradeoffs and preferences of smallholder farmers on the attributes 

climate smart agricultural practices, specifically modeling choices of smallholder farmers using choice experiment method. 

Upon estimating three different models, positive utilities were observed in high productivity, Moderate and low GHG emission 

as well as on moderate and high resilient farming systems. Smallholder farmers showed a complete disutility on low and 

moderate agricultural productivity, high GHG emission and low resilient farming systems. The models therefore justified the fact 

that, attaining more yield without a compromise in greenhouse gas emission reduction targets is a blue-sky dream. In order to 

concisely inform policy, more research on farmers’ preference and tradeoff on the attributes is needed to establish a scientific and 

logical progression about the tradeoffs people are willing to make with regard to the attributes of climate smart agriculture 

practices. 
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1. Introduction 

Smallholder farmers in the breadbasket areas of Tanzania are 

under threat from climate change impacts as they inhabit areas 

that are highly dependent on farming systems which are 

sensitive to the already volatile climate. Therefore, policy and 

decision-makers are striving to intensify agriculture in order to 

enhance food security amidst maddening impacts of climate 

change. However, in addition to the policymakers’ effort to 

enhance food security under the changing climate, climate 

smart agriculture (CSA) is also thought of as a promising 

breakthrough for responding to climate change impacts in 

Tanzania. CSA strives to attain three main goals, which are 

increasing food productivity; building resilience of agricultural 

systems to climate change impacts and reducing agricultural 

greenhouse gas emission through promoting efficient use of 
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land, water, soil and other environmental resources. Arguably, 

agriculture directly accounts for about 14% of global 

greenhouse gas emissions or 25% [4], if agriculture-driven 

deforestation is included. This makes agriculture as big a 

contributor to climate change as the energy sector [7]. Although 

agriculture is the sector most vulnerable to climate change, it is 

a significant contributor of greenhouse gases emissions. 

In that regard therefore, the Alliance for Green Revolution 

in Africa (AGRA) through its Environment Policy Action 

Node in Tanzania, has proposed a number of CSA practices 

for the breadbasket areas of the Southern Highlands of 

Tanzania through the project titled “Securing smallholder 

farm production Against Climate Induced Risks”. However, 

attaining higher yields, more carbon in the soil and crops and 

greater resilience to prolonged dry spells and unpredictable 

rainfall seasons are not supposed to be alternative targets but 

parallel outputs of climate-smart agriculture. In reality though, 

a trade-off in the three objectives of climate smart agriculture 

is inevitable, and thus achieving mitigation in agriculture 

without compromising food security is a huge policy and 

research challenge. 

Generally, there is a daunting scarcity of empirical data on 

the economic appreciation of local preferences and choices on 

mitigation and adaptation measures all over the world. The 

trade-offs people make are always underestimated and 

probably are ignored. This has been leading to unsuccessful 

climate change interventions in Tanzania and elsewhere in the 

world. It is clear that the future of agricultural productivity in 

Tanzania is intertwined with climate change impacts, and 

hence immediate adaptation measures are necessary [8]. 

Accordingly, rains are increasingly declining in most parts of 

the country and cycles are detrimentally changing [21, 15, 12]. 

Such changes in climatic variables are expected to alter the 

characteristics of the agro-ecological zones, leading to 

reduced yields of some crops such as maize by 33% nationally 

[18]. This projection in crop yield reduction is in line with the 

prediction of many researchers for the same crop, which 

showed that maize will decrease by between 16% - 35% by 

2050 [4]. It estimated that by the 2080s, the world agricultural 

productivity could decline by 3 - 16 %, with the loss in Africa 

projected to be 17-28 % [6]. 

It has further been reported that smallholder farmers are 

always vulnerable to climate change because they face various 

socio-economic, demographic, and policy trends that limit 

their capacity to cope with climate change [14, 10]. Probably, 

the ignored preferences and perceptions are some of the 

socio-economic and policy trends exacerbating vulnerability 

of smallholder farmers and other marginalized communities to 

the impacts of climate change. 

It is thus argued that improved integration of economic and 

social science expertise in climate change studies is highly 

needed [20, 13, 16]. Nevertheless, while policy, 

decision-makers, researchers and practitioners are striving to 

make climate smart agriculture a workable solution to climate 

change impacts on smallholder farmers in the breadbasket 

areas of Tanzania, the success of this effort hinges on the 

willingness of the farmers themselves to adopt the practices, 

which is mainly influenced by the attributes of the climate 

smart practices themselves. Even though science is very clear 

about the vulnerability of smallholder farmers to climate 

change impacts, farmers themselves do not perceive the 

climate risk with the same weight as science provides. 

Therefore, farmers who do not feel vulnerable to climate 

change impacts are likely to go for the status quo (do nothing) 

scenario of crop productivity and climate change impacts. 

It is thus imperative to assess farmers’ preferences to 

climate change management strategies. In that regard, the 

basic research questions which guided this study are; (a) How 

much are smallholder farmers ready to trade-off among the 

three goals of climate smart agriculture (i.e. increased 

productivity, reduced agricultural greenhouse gas emissions 

and increased agricultural resilience (b) What aspects of 

climate smart agricultural practices are the most desirable to 

smallholder farmers? (c) Do farmers’ trade-offs and choices 

enhance or further constrain the ability of smallholder farmers 

to adapt to climate change? 

This study therefore sought to determine the tradeoffs and 

preferences of smallholder farmers on the proposed climate 

smart agricultural practices, specifically seeking to model the 

choices of smallholder farmers on the attributes of climate 

smart agricultural practices under different climate change and 

policy scenarios. The study will contribute to the scanty (if 

any) literature on choice modeling in climate change 

adaptation and mitigation in Tanzania. This study provides 

important additional information for cost-benefit analysis of 

climate smart agriculture and therefore feed into climate 

change adaptation and mitigation policies in Tanzania. An 

integration of economic and climate change adaptation is 

another academic contribution of this study, as it has been 

proven that very few climate change adaptation and mitigation 

studies from an economic point of view have been conducted. 

2. Methods and Approaches 

2.1. Study Area Description 

 
Figure 1. Map of the study area. 
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This study was carried out in the breadbasket regions of 

Tanzania, which fall under two Agro-ecological zones, 

(Northern highlands which lie between 1000-2500m above sea 

level), characterized by reliable bimodal rainfall, ranging from 

1000-2000mm per year and the Southern and Western 

highlands, characterized by undulating plains to dissected hills 

rising between 1200 to 2300 m above sea level. Rainfall pattern 

is mainly unimodal ranging from 1000-2000mm per year [1]. 

2.2. Modeling Preferences of Smallholder Farmers: A 

Theoretical and Empirical Overview 

With choice experiment, a three-step design was adopted. 

The steps are; (i) choice model specification, (ii) development 

of a choice experiment survey and (iii) administering of 

choice experiment. The attributes and attribute levels of the 

choice model were identified through a series of focus group 

discussions, key informant interviews, literature reviews and 

pilot surveys. The CE data were collected using a face-to-face 

interview approach. SPSS Software was used for data 

handling and analysis. CSA factors and their values were 

defined by the researchers well in advance, being informed by 

the existing body of literature on climate smart agriculture, 

smallholder farmers’ vulnerability and preferences with 

regard to adapting to potential and the current climate change 

impacts. The various combinations of the attribute/factor 

values yielded fictive combinations of the CSA strategy that 

were ranked by the smallholder farmers in the Southern 

highlands breadbasket areas of Tanzania (Table 1). 

A full factorial experimental design which combined every 

level of each CSA attribute/factor with every level of all other 

attributes was used. This experiment was constructed with 

three attributes (n=3, Productivity, GHG Emission and 

Agricultural resilience to climate change impacts) each of 

which had three levels (L=3) as shown in Table 1. Therefore, 

the number of profiles (np) generated for a full factorial design 

was L
n 
= 9 profiles. Using Conjoint Analysis technique, metric 

partial utilities from the ranking results were derived, the 

summation of which resulted in metric total utilities. 

Table 1. A Conjoint Plan. 

Card ID Agricultural Productivity (APD) 
Agricultural Greenhouse Gas 

Emission (AGHGE) 

Agriculture Climate Change 

Resilience (ACCR) 
Rank 

1 Low Productivity Low GHG emission Low resilient farming  

2 High productivity Moderate GHG Emission High resilient farming  

3 Low Productivity High GHG Emission High resilient farming  

4 High productivity Low GHG emission Moderate resilient farming  

5 Moderate productivity Low GHG emission High resilient farming  

6 Low Productivity Moderate GHG Emission Moderate resilient farming  

7 Moderate productivity Moderate GHG Emission Low resilient farming  

8 Moderate productivity High GHG Emission Moderate resilient farming  

9 High productivity High GHG Emission Low resilient farming  

 

All the three CSA attributes/factors were assumed to be 

discrete in nature. To that effect, the discrete model indicates 

that the factor levels are categorical and that no assumption is 

made about the relationship between the factor and the ranks. 

Choice Experiment (CE) technique, which has its 

theoretical background in Lancaster’s model of consumer 

choice [9, 2] and its econometric basis from the McFadden’s 

Random Utility Maximization (RUM) theory was applied to 

model the preferences of smallholder farmers regard to CSA 

attributes and their levels. CE method applies probabilistic 

models for choosing between the different alternatives 

available in each choice set [11]. 

The basic assumption in choice experiment is that 

smallholder farmers choose the best bundle of climate smart 

agricultural practice which maximizes their utility. 

Accordingly, it is assumed that smallholder farmers can rank 

their preferences logically and consistently within the limits of 

their constraints, for example budget and knowledge as 

explained by [19]. To explore the preference order and 

trade-offs among multiple attributes of CSA practices, choice 

modeling using conjoint technique to the attribute levels was 

carried out. Accordingly, utility maximization gives the 

behavioural model of decision making [17, 5], where; 

i j
U U>  i j⇒ ≻  j C∀ ∈            (1) 

This means that the alternative i is chosen over any other 

alternative j only if it provides highest utility. That is, if the 

utility of alternative i is greater than the utility of all 

alternatives, j; Alternative i will be preferred and chosen from 

the set of alternatives, C. 

i j⇒ ≻ , means the alternative to the left is preferred to the 

alternative to the right, and, j C∀ ∈ ; means all the cases j, in 

the choice set C. The probability that alternative i is chosen is 

depicted by equation 2. 

P Pr( )
i i i j j

V V j iε ε= + > + ∀ ≠         (2) 

Furthermore, the Random Utility Maximization (RUM) 

theory allowed researchers to include some uncertainty in the 

model as the utility is expressed in observed (deterministic) 

utility (V) and unobserved (stochastic) utility ( ε ). RUT 

postulates that individual utility (U) is unknown but can be 

decomposed into a systematic or deterministic component (V) 

and an unobserved or stochastic component (e). Thus, for 

individual smallholder farmer j in scenario i, utility was 

expressed as; 

ij ij ij
U V ε= +                 (3) 

The explanatory variables also include the socioeconomic 

characteristics of a respondent. Since a respondents’ 
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decision-making process is expected to be iterative and the 

scenarios will be logically grouped into a decision tree, the 

nested multinomial logit model is the appropriate model to be 

used. 

Part-worths (conjoint utilities) were expressed in a common 

unit, allowing them to be added together to give total utility, or 

overall preference, for any combination of CSA 

attribute/factor levels. In addition to estimating the impact of 

each level using the part-worth utilities, the relative 

importance of each CSA attribute was determined by 

calculating the range of part-worth utilities (the difference 

between the highest and lowest utility value). The resulting 

importance values were converted into percentages by 

multiplying by 100 as shown in equation 4. 

1

(max min )
100

(max min )

p p

p t

p p
p

u u
O x

u u
=

−
=

−∑
        (4) 

Where 
p
O  is the relative importance of the attribute; 

max
p
u is the utility of the attribute’s most preferred level and 

min
p
u  is the utility of the least preferred level of the 

attribute. 

3. Results 

3.1. Utility Estimates Models 

This study sought to determine the tradeoffs and 

preferences of smallholder farmers on the proposed climate 

smart agricultural practices. Three models were estimated as 

shown in Tables 2, 3, and 4. Positive utilities were observed in 

the following attribute levels. High productivity, Moderate 

and low GHG emission as well as on moderate and high 

resilient farming systems. Smallholder farmers showed a 

disutility on low and moderate agricultural productivity, high 

GHG emission and low resilient farming systems. Of all the 

detested attribute levels, low climate change resilient farming 

system was the most serious variable, scoring the highest 

disutility value in all three models. 

Table 2. Utilities Estimates (Kilolo Model). 

Attribute Attribute Level 
Utility 

Estimate 

Std. 

Error 

APD 

High productivity 1.143 0.365 

Moderate productivity -0.321 0.365 

Low Productivity -0.821 0.365 

AGHGE 

High GHG Emission -0.973 0.365 

Moderate GHG Emission 0.570 0.365 

Low GHG emission 0.403 0.365 

ACCR 

Low resilient farming -0.973 0.365 

Moderate resilient farming -0.053 0.365 

High resilient farming 1.027 0.365 

Constant 5.031 0.258 

Table 3. Utilities Estimates (Sumbawanga Model). 

Attribute Attribute Level 
Utility 

Estimate 

Std. 

Error 

APD 

High productivity 1.040 0.208 

Moderate productivity -0.413 0.208 

Low Productivity -0.627 0.208 

AGHGE 

High GHG Emission -0.575 0.208 

Moderate GHG Emission 0.425 0.208 

Low GHG emission 0.151 0.208 

ACCR 

Low resilient farming -0.781 0.208 

Moderate resilient farming 0.168 0.208 

High resilient farming 0.613 0.208 

Constant 4.832 0.147 

Table 4. Overall results (Combined Kilolo and Sumbawanga Model). 

Attribute Attribute Level 
Utility 

Estimate 

Std. 

Error 

APD 

High productivity 1.095 0.277 

Moderate productivity -0.370 0.277 

Low Productivity -0.725 0.277 

AGHGE 

High GHG Emission -0.763 0.277 

Moderate GHG Emission 0.458 0.277 

Low GHG emission 0.305 0.277 

ACCR 

Low resilient farming -0.890 0.277 

Moderate resilient farming 0.035 0.277 

High resilient farming 0.855 0.277 

Constant 4.984 0.196 

The constant term can be interpreted as base utility, and the 

other factor values contrast with it in positive or negative 

direction. 

 
Figure 2. Ideal CSA Model. 

 
Figure 3. Real CSA Model. 

3.2. Relative Importance of CSA Attributes/Factors 

Averaged/Relative importance score tells us that a 

Combined Conjoint Analysis has been performed. These 

values give us a measure (in percent) of the relative 

importance of the single factors for the determination of the 

utilities. From Table 5, it is shown that, when considering the 

overall model, productivity is the most important factor 

whereas Resilience is the least important one. With regard to 

Sumbawanga and Kilolo models, reduced GHG emissions and 

Increasing Resilience of the farming systems were found to be 

the most important CSA factors respectively (see Table 5). 
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Table 5. Relative Importance values of CSA Attributes/Factors. 

Model 

CSA Practice Attribute 

Increased 

Agricultural 

Productivity 

Reduced 

Agricultural 

Greenhouse Gas 

Emissions 

Increased 

Resilience of 

Farming Systems 

Climate Change 

Kilolo Model 33.564 31.304 35.131 

Sumbawanga 

Model 
34.032 36.575 29.393 

Overall 

Model 
34.484 33.310 32.206 

3.3. Model Fitness 

The Pearson’s R and Kendall’s tau statistics in Table 6 are 

an indication of how well the models fit the data. They are 

correlations between the observed and estimated preferences 

for smallholder farmers to the CSA attributes/factors and their 

levels. As such, the rule of thumb is that, these coefficients 

should always be very high, and indeed, they are very high, 

ranging from 0.966 to 0.980 for Pearson’s R, and 0.722 to 

0.873 for Kendall’s tau coefficient. 

Table 6. Model fitness results. 

Model fit estimator Overall Model p-value Sumbawanga Model p-value Kilolo Model p-value 

Pearson's R 0.974 0.000 0.980 0.000 0.966 0.000 

Kendall's tau 0.722 0.003 0.873 0.001 0.817 0.001 

 

The Correlation coefficients are a measure for the quality of 

reproduction of the empirical data by the results of the 

conjoint analysis. While Pearson’s R measures the 

relationship between the observed and the predicted 

preferences of smallholder farmers, Kendall’s Tau represents 

the difference between the probability that the observed data 

are in the same order versus the probability that the observed 

data are not in the same order. Overall, the sample of 

smallholder farmers demonstrates a relatively high convergent 

validity. 

4. Discussion 

The CSA models developed by this study justify the fact 

that, attaining more yield without a compromise in greenhouse 

gas emission reduction targets is a blue-sky dream, and 

probably next to impossible. This study has therefore 

proposed the best climate smart agriculture policy model 

which is also advocated for elsewhere in the world. The 

concept advocates for high yield, high resilient farming 

systems, but moderate greenhouse gas emission scenario. 

Clearing forests, use of fertilizers to boost production, 

transport of inputs and farm produce are the factors leading to 

increasing the farm carbon footprint; and these factors 

therefore validate this model, especially the idea of 

accommodating moderate greenhouse gas emission instead of 

low GHG emission scenario, which seems unrealistic (Fig. 2). 

The choice experiment results indicate that farmers have 

their choices and preferences. However, farmers constraints 

like knowledge and income have to a large extent interfered 

with informed choice making. Generally, the results give us a 

glimpse of an idea that, the optimal amount of pollution is not 

zero. The moment you do not want to see pollution in the 

environment, is the moment you do not want to see any bit of 

development and livelihood advancement. However, the 

optimal level of greenhouse gas emission is that which takes 

into account all the costs of production, and seeks to promote 

social welfare and not private benefits. That level of emission 

has to be decided by the community and not an investor or a 

scientist for that matter. 

While some tradeoffs are inevitable between the three CSA 

attributes, major synergies exist between climate change 

mitigation, adaptation to climate change, food security, 

environmental sustainability and rural social and economic 

development. These synergies are key to realizing both, 

mitigation and adaptation in the agricultural sector in Tanzania 

and worldwide. Smallholder farmers and probably farmers in 

general are ready to trade-off among the three goals of climate 

smart agriculture (i.e. increased productivity, reduced 

agricultural greenhouse gas emissions and increased 

agricultural resilience, and the findings of this study show that 

the aspects of climate smart agricultural practices which are 

the most desirable to smallholder farmers are increased 

production and resilience. 

5. Conclusion and Recommendations 

These results clearly indicate that a trade-off in the three 

objectives of climate smart agriculture is inevitable, and thus 

achieving mitigation in agriculture (more GHG sequestration) 

without compromising food security is a practical and policy 

challenge. The overall relative importance of CSA factors and 

the rating of the importance of CSA factors by Sumbawanga 

smallholder farmers revealed that inconvenient reality. 

Much as low-emission, high climate change resilient and 

highly productive farming system is ideal, it is not practical, 

this study has found. In that regard therefore, realizing climate 

change mitigation in agriculture is both, a policy and research 

challenge. Climate change-related policies need to be 

reworked in order to make possible the transition to 

low-emission agriculture in most developing countries. 

In order to concisely inform policy, more research on CSA 

preference and tradeoff is needed to establish a scientific and 

logical progression about the tradeoffs people are willing to 

make with regard to the attributes of climate smart agriculture 

practices. 
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