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Abstract: This paper presents a parallel finite element toolbox for computing large electromagnetic devices on unstructured 
tetrahedral meshes, FEMAG—Fem for ElectroMagnetics on Adaptive Grids. The finite element toolbox deals with unstructured 
tetrahedral meshes and can solve electromagnetic eddy current problems in both frequency domain and time domain. It adopts 
high-order edge element methods and refines the mesh adaptively based on reliable and efficient finite element a posteriori error 
estimates. We demonstrate the competitive performance of FEMAG by extensive numerical experiments, including TEAM 
(Testing Electromagnetic Analysis Methods) Problem 21 and the simulation for a single-phase power transformer. 
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1. Introduction 

Large devices in electric engineering usually have very 
complicated structures and are made of anisotropic and 
nonlinear materials. A large power transformer, for example, 
consists of nonmagnetic plates, magnetic oil tank, 
grain-oriented steel laminations, complex exciting coils and so 
on. It is extremely difficult to simulate the whole structure of a 
large power transformer. Commercial software is usually not 
competent for such a task because of memory limitation and 
low scalability for large computers. Moreover, the inefficiency 
of algebraic system solver also limits their applications to 
large-scale computing. The purpose of this paper is to propose 
a parallel finite element toolbox, FEMAG (Fem for 
ElectroMagnetics on Adaptive Grids), and to demonstrate the 
competitive performance of our finite element algorithms and 
the FEMAG. We propose to study the following eddy current 
problem: 

       (1) 

where  is the electric field,  is the magnetic flux, 

 is the magnetic field, and  is the current density defined 
by 

   (2) 

Here σ  is the electric conductivity, Js
 is the source 

current density carried by some coils, and 
cΩ  denotes the 

conducting region. The eddy current problem is a 
quasi-static approximation of Maxwell’s equations at very 
low frequency by neglecting the displacement currents in 
Ampere’s law (see [1]). The material parameters could be 
very complicated for electric engineering applications. For 
example, grain-oriented steel laminations are widely used in 
iron cores and magnetic shields of large power transformers 
(see Figure 1 for a TEAM benchmark model) [2]. They are 
very anisotropic and have multiple scales. The transformer 
size could be 610  times the thickness of coating films over 
laminations. The magnetic permeability differs a lot in the 
rolling direction and the other two orthogonal directions. 

E B = µH

H J
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Furthermore, the energy loss in coils should also be 
considered for complex exciting source. This necessitates 
huge number of elements in partitioning the domain. Full 
three-dimensional (3D) finite element simulation is very 
difficult due to extensive unknowns. With the evolution of 
the computer technology, the massively parallel computing 
with ten thousands of even hundred thousands of CPU cores 
becomes one of the trends of the scientific computing. The 
main challenge for simulating large transformers is focused 
on developing efficient algorithms for solving the discrete 
problem and scalable parallel finite element codes for large 
supercomputers. 

The second issue concerns low regularity of the solution of 
Maxwell’s equations. It is well-known that the solution of 
Maxwell's equations may have local singularities at corners 
and edges of the structure and material interfaces. Numerical 
methods based on uniform meshes are inefficient in resolving 
the local singularities. The adaptive finite element method 
(AFEM) based on the a posteriori error estimates has been 
successfully and widely applied in many other areas [3-6], 
which provides a systematic way to achieve the optimal 
computational complexity by refining the mesh according to 
the local a posteriori error estimator on the elements. 
Unfortunately, parallel implementation of the AFEM on 
distributed memory parallel computers is very difficult 
because of the complexities of the mesh management and 
load balance issues. Also, highly efficient numerical 
methods for solving the linear system resulting from finite 
element discretization are required. For facilitating 
implementing the AFEM, we have developed the toolbox 
PHG, Parallel Hierarchical Grid [7]. The motivation of this 
toolbox is to support the research on AFEM algorithms and 
development of AFEM codes. PHG deals with conforming 
tetrahedral meshes and uses bisection for adaptive mesh 
refinement and MPI for message passing. Using the idea of 
object oriented design, the details of complex mesh 
management and parallelism are hidden from users. PHG 
provides supports for adaptive finite element computations, 
such as finite element bases (including the Nédéléc edge 
elements for electromagnetic computations) [8], numerical 
quadrature, and basic operations with finite element 
functions. For building, assembling, and solving linear 
systems and eigenvalue problems resulting from finite 
element discretization, an unified linear algebra module for 
manipulating distributed sparse matrices stored in 
compressed sparse rows (CSR) and distributed vectors is 
provided,. Load balancing is achieved through mesh 
repartitioning and redistribution. 

FEMAG is developed based on PHG. It solves both 
time-dependent and time-harmonic eddy current problems and 
can deal with nonlinear and anisotropic materials. For 
large-scale computing, the scalability of algebraic system solver 
plays the key role in parallel finite element codes. An efficient 
solver should possess two properties: (1) its convergence rate 
should keep quasi-uniform as the number of elements increases; 
(2) its convergence rate should not degenerate when using 
massive CPU cores. In FEMAG, the Maxwell solver for the 

discrete problem is a GMRES algorithm with the auxiliary 
space preconditioning [9]. And the auxiliary problems are 
solved by the conjugate gradient method with the Boomer 
algebraic multigrid preconditioning [10].  

 

Figure 1. A magnetic shield model (TEAM Problem 21c-M1, The magnetic 

shield made of steel laminations). 

The most challenging task is to compute the iron loss and 
eddy current density in grain-oriented steel laminations. An 
iron core may consist of hundreds of even more than one 
thousand of laminations, each of which is only 0.18-0.35mm 
thick. But the thickness of the coating film over the 
laminations is only 2-5µm. Thus the lamination stack has 
multi-scale sizes and the ratio of the largest scale to the 
smallest scale can amount to 106 (see Figure 1). Full 3D finite 
element modeling is extremely difficult due to extensive 
unknowns from meshing both laminations and the coating 
film. There are very few papers on the computation of 3D 
eddy currents in the literature. In FEMAG, steel laminations 
are treated by two approaches: 

1. Compute 3D eddy current density with an approximate 
eddy current model that omits the coating film and 
meshes each lamination respectively [11-12]. This 
approach yields accurate results but requires a fine mesh 
for the lamination stack. 

2. Compute 3D eddy current density with effective or 
homogenized conductivity and permeability [13]. This 
approach is very fast but less accurate in computing iron 
loss in laminations than the previous one. But it is more 
favorable in the simulation of the whole of a power 
transformer. 

In this paper, we present the numerical results for a power 
transformer by using homogenized conductivity and 
permeability. 

In this paper, we present a numerical experiment on 
hp-adaptive finite element method for time-harmonic eddy 
current problem. The h-adaptive finite element method 
reduces the error by local mesh refinements. It has been 
well-studied in the a posteriori error analysis, mesh refinement 
algorithms, and optimal complexity. Using the idea of error 
equidistribution, the h-adaptive method based on a posteriori 
error estimates could yield a quasi-optimal approximation 
with algebraic convergence rate  
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,/ dp

hh CN −≈η
 

where ηh
is the a posteriori error estimate, d  is the spatial 

dimension, p  is the polynomial degree, and Nh
 is the 

number of degrees of freedom. However, due to the 
singularity of the solution, the quasi-optimality ηh

 will 

degenerate for higher-order finite elements since the constant 
C  may blow up with increasing p . 

The hp-adaptive finite element method reduces the error by 
both local mesh refinement and local improvement of 
polynomial degrees. It is more efficient than the pure 
h-adaptive or p-adaptive methods and could reduce the error 
exponentially. For example, the optimal convergence rate of 
the hp-adaptive method is 

,
3/1

hpN

hp Ce
δη −≈

 

for two dimensional elliptic problems [14], and is also 
conjectured to be 

ηhp ≈ Ce
−δNhp

1/5

,
 

for three dimensional elliptic problems [15], where δ,C  are 

positive constants independent of h  and p , 
hpη  is the a 

posteriori error estimate for the hp-adaptive method, and 
hpN  

is the number of degrees of freedom. But for solutions with 
edge singularities, the meshes leading to the exponential 
convergence must be obtained by anisotropic refinements, that 
is, by using "needle elements'' which are parallel to the edges 
(see [15] for more comments). The implementation of the 
hp-adaptive method is very challenging for higher 
dimensional problems. In this paper, we present an hp-type a 
posteriori error estimate for the time-harmonic eddy current 
model. Then based on the a posteriori error estimate, an 
hp-adaptive algorithm is proposed by the strategy of predicted 
error reduction. We implemented in FEMAG the parallel 
hp-adaptive method on unstructured tetrahedral meshes. The 
numerical experiment is performed on TEAM Problem 21a-2. 
The hp-adaptive method shows exponential decay of the a 
posteriori error estimate and the numerical results agree well 
with experimental data. 

The second numerical experiment is performed on TEAM 
Problem 21b-MN which has a magnetic plate and a 
nonmagnetic plate. It shows that, on 12288 CPU cores, 
FEMAG has very good scalability for nonlinear eddy current 
problems. The last numerical experiment is performed on a 
homemade single-phase transformer. We use effective 
material parameters for iron core and iron yokes. The relative 
error of the iron loss is less than 10%. 

2. The A-Formulation of Eddy Current 

Problems 

We start by the -formulation of eddy current model for 
laminated conductors. Let A  be the magnetic vector potential 

satisfying ∇ × A = B . Then the -formulation of eddy current 
model reads (cf. e.g. [11]): 

σ ∂A

∂t
+ ∇ × ν∇ × A( ) = Js  in Ω ,

                          A × n = 0 on Γ ,

         (3) 

where Ω  is the truncated domain with boundary Γ , n  is 
the unit outer normal of Γ , and  stands for the excited 

current or source current satisfying ∇ ⋅ Js = 0 . In (1), σ  is 

the conductivity, ν = diag(H1 B1,  H2 B2,  H3 B3 )  is the 

nonlinear and anisotropic reluctivity, and H = (H1, H2, H3)  

denotes the magnetic field and is determined by BH-curves 
and the magnetic flux B = (B1, B2, B3). 

Now we introduce some function spaces used in this paper: 

        L
2 (Ω) =  u :  { u(x)

2

Ω∫ dx < ∞},

 H(curl,Ω) =  u ∈ L2 (Ω) : ∇ × u ∈ L2(Ω){ },

H0(curl,Ω) =  u ∈ H(curl,Ω) : u × n = 0   on  ∂Ω{ }.  

The weak formulation of (1) reads: Find A ∈ H0(curl,Ω)  

such that, for all v ∈ H0 (curl,Ω) , 

σ ∂A

∂t
⋅ v +ν (∇ × A) ⋅ (∇ × v)






Ω∫ = Js ⋅ v
Ω∫       (4) 

Let Tttt N =<<<= ⋯100  be a partition of the time 

interval ],0[ T  and 1−−= nnn ttτ  denote the n-th time step. 

Let nℑ  be a tetrahedral triangulation of Ω  at time nt  such 

that ℑn
Ωc

 forms a tetrahedral mesh of 
c

Ω . We define the 

edge element space as follows 

U(ℑn ) = {v ∈ H0 (curl,Ω) : v
T

∈ Pk (T )3  for all  T ∈ ℑn} ,   (5) 

where  is the space of polynomials of order 0>k . 

The fully discrete approximation to (4) reads: Given , 

find un ∈ U(ℑn ) , 1≥n  such that 

 a(un, v) = JnΩ∫ ⋅ v               (6) 

for all v ∈ U(ℑn ) , where 

 

3. Numerical Experiments for FEMAG 

3.1. Scalability for Nonlinear Eddy Current Problem 

In this subsection, we report the numerical experiment for 
the TEAM Problem 21b[2]. The conducting region consists of 
a magnetic plate and a nonmagnetic plate (see Figure 2). The 
unit of dimensions in Figure 2 is millimeter. The thickness of 

A

A

Js

)(TPk

u0 = 0
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the plate is 10mm. The conductivity is 610484.6 ×  
Siemens/Metre. The height of each coil is 12mm and the 
radiuses of the inner arc and the outer arc at four corners are 
10mm and 45mm respectively. The vertical distance between 
them is 24mm. The two coils carry the source currents of 3000 
Ampere/Turn in opposite directions. The frequency of source 
currents is 50 Hertz.  

 

Figure 2. Geometric illustration for TEAM Problem 21b-MN. 

 

Figure 3. Magnetic flux: numerical data versus experimental data. 

We carry out the computation on the super computer 
Tianhe-1A, Tianjin, China. We use the second-order edge 
element method of the second family [8] to solve the problem. 
The largest number of CPU cores used is 12288 and the finest 
mesh contains 0.44 billions of degrees of freedom. Table 1 
shows that the weak scalability is larger than 70%. It also 
shows that, with 12288 CPU cores and 0.44 billions of 
unknowns, the solution time for the algebraic system is only 
11 minutes. Table 2 shows the measured iron loss versus the 
calculated iron loss in the steel plates. They agree very well 
with each other. Figure 3 shows the experimental values and 
the numerical values of the magnetic flux density. 

 

 

Table 1. Weak scalability and computational time for solving the algebraic 

system. 

Number of 

CPU cores 

Number of 

unknowns (million) 

Computational 

time (S) 

Weak 

scalability 

768 29 501.0 100% 

1,536 57 542.9 90% 

3072 110 556.4 85% 

6144 222 683.8 70% 

12288 443 665.9 71% 

Table 2. Iron loss for TEAM Problem 21b-MN. 

Calculated iron loss Measured iron loss 

7.005 7.03 

3.2. Hp-Adaptive Finite Element Method for 

Time-Harmonic Eddy Current Problem 

The second numerical experiment is to test the hp-adaptive 
finite element method for TEAM Problem 21a-2 (see [2]). This 
problem consists of a non-magnetic steel plate with two slits 
and two racetrack shaped coils (see Figure 3). The steel plate 
has a conductivity of 6103889.1 × Siemens/Metre. The 
driving current for each coil is 3000 Ampere/Turn and has a 
frequency of 50 Hz. The driving currents for the two coils are 
in opposite directions. Since the material parameters are linear, 
we consider the time-harmonic eddy current problem 

 

where i  is the imaginary unit, ω  is the angular frequency, 
and µ  is the magnetic permeability in the empty space. 

 

Figure 3. Geometric illustration for TEAM Problem 21a-2. 

Let F(ℑh )  be the set of interior faces on the mesh ℑh
. 

For any face F ∈ F(ℑh )  with F = K1 ∩ K2, we denote the 

jump of a function v across F by v[ ]
F

= v
K1

− v
K2

.  For 

convenience in notation, we define the residual functions on 
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each K ∈ ℑh  and F ∈ F(ℑh ) as follows 

rK = µ∇⋅ (Js − iωσ A),    RK = µ(Js − iωσ A)− ∇ × ∇ × A

jF = µ (Js − iωσ A) ⋅n[ ]
F
, JF = (∇ × A)× n[ ]

F
.                   

 

Then the error indicator is defined on each element as 
follows [16] 

ηK = hK

pK

rK L2 (K )
+ RK L

2 (K )( ) + 1

2

hF

pF











1/2

jF L2 (F )
+ JF L

2 (F )( )
F∈∂K

∑ .
 

It is used to refine the mesh adaptively. The global and 
maximal a posteriori error estimates are defined by 

ηhp = ηK

2

K∈ℑh

∑










1/2

, ηmax =
K∈ℑh

maxηK .

 

FEMAG uses the predicted error decrease strategy (PEDS) 
to refine the mesh. The algorithm assumes that the solution is 
locally smooth and the optimal convergence can be obtained 
by either local h-refinement or local p-refinement. Then on 
each element K  marked for refinement, an error decrease 

factor Kλ  is computed to judge which of the h-refinement 

and p-refinement should be performed. According to [16], 

Kλ  can be defined heuristically as follows 

λK = pT

pK











pT /2
| K |

| T |











pT /3

,
 

where KT ⊇  is the parent element of K . It may happen that 

KT =  if the element is not refined at the previous adaptive 
iteration. The PDES is presented as follows: 

Algorithm PDES. Given a tolerance 0>ε  and an initial 

mesh ℑ0  and an initial distribution of polynomial degrees

P0
. Set 0=l  and )1,0(1 ∈θ . 

1. Solve for the finite element solution uhp ∈ U(ℑl, Pl ). 

2. Compute the local error indicator Kη  for all 
lK ℑ∈ , 

the global error estimate lη , and the maximal error 

estimate maxη . 

3. While εη >l  do 

(1). Let { }max1:ˆ ηθη >ℑ∈=ℑ Kll K  be the set of 

elements marked for refinement. 

(2). Refine lℑ̂  according to the predicted error 

decrease strategy, namely, 

(3). For any 
lK ℑ∈ ˆ , compute Kλ  and Tη . If 

TKK ηλη ≤ , set 1+← KK pp ; otherwise, refine K  

using the bisection algorithm [17-18]. 
(4). Solve the finite element solution uhp ∈ U(ℑl, Pl ) 

based on the new mesh and the new distribution of 
polynomial degrees. 

(5). Compute the local error indicator Kη  for all 

lK ℑ∈ , the global error estimate lη , and the 

maximal error estimate maxη . 

end while. 

 

Figure 4. Eddy current distribution on a slice of the steel plate. 

 

Figure 5. Values of the magnetic flux density on two lines: numerical data versus experimental data. 
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Figure 4 shows the eddy current distribution on a slice of 
the steel plate. The flow directions are clearly illustrated. 
Figure 5 shows the first component of the magnetic flux 
density B. The values are taken at some discrete points along 
two lines (x, y, z) : x = 0.00676, y = 0.0{ }  and 

(x, y, z) : x = −0.00476, y = 0.0{ } which correspond to the two 

lines (x, y, z) : x = ±0.00576, y = 0.0{ } in [2] respectively. The 

numerical data agree well with the experimental values. 
Figure 6 shows the reduction rates of the a posteriori error 
estimate by the h-adaptive method for p = 1, the PERS of the 
hp-adaptive method, and the Maximum Strategy of the 
hp-adaptive method used in [16]. We find that the hp-adaptive 
methods show great superiority over the h-adaptive method in 
reducing the error. It also shows that both of the algorithms 
yield exponential decay of the a posteriori error estimate: 

ηhp ≈ Ce
−δNhp

1/5

.
    

 

Figure 6. Decreasing rate of the a posteriori error estimate: hp-adaptive 

FEM versus h-adaptive FEM. 

Figure 7 shows the hp-pair (ℑ47, P47 )  by the PDES 

algorithm on the slice 

Σ1 = (x, y, z) ∈ Ω : x = 0.0059999{ } , where the number of 

degrees of freedom is 1,729,148. From the figures, we find 
roughly that the hp-adaptive method use 

1. lower order elements near the boundary where the error 
is very small,  

2. lower order elements in the conducting domain where 
the solution varies rapidly, and  

3. high order elements in the insulating region away from 
the boundary where the error is moderate. 

Since the solution varies rapidly in the conducting domain, 

ℑ47  displays a fine mesh there in Figure 8. 

 

Figure 7. An adaptively refined mesh and the distribution of polynomial 

degrees on one slice after 47 refinements. 

 

Figure 8. An adaptively refined mesh after 47 refinements. 

3.3. Simulation for a Single-Phase Power Transformer 

The last numerical experiment is carried out for a 
single-phase power transformer. The magnetic conductors are 
the wall of the oil tank, the iron core, and two iron yokes. 
Moreover, the model also contains nonmagnetic conductors 
and coils which carry exciting source currents (see Figure 9). 

The computations are performed on the cluster LSEC-III of 
the State Key Laboratory on Scientific and Engineering 
Computing, Chinese Academy of Sciences.  

We partition the computational domain into a tetrahedral 
mesh with 1,381,600 elements. The polynomial degree of the 
finite element space is set by 2=k . The total number of 
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degrees of freedom is 13,147,086. We use 128 CPU cores in 
the computation. At each time step, the relative residual of the 
Newton method is reduced to be less than 0.0001. Table 3 
shows the measured iron loss versus the calculated iron loss in 
the conductors. The relative error is about 10%. This 
demonstrates that FEMAG has the capability to simulate 

complicated electromagnetic devices. 

Table 3. Iron loss in the lamination and the magnetic palte (KW). 

Calculated iron loss Measured iron loss 

4.10 4.55 

 

Figure 9. The geometric illustration of a single-phase transformer. 

4. Concluding Remarks 

In this paper, we report the parallel finite element toolbox, 
FEMAG (Fem for ElectroMagnetics on Adaptive Grids), for 
simulating large electromagnetic devices. Three numerical 
experiments are proposed to demonstrate the competitive 
performance of FEMAG, in terms of the scalability of parallel 
computation, the adaptivity for both mesh refinement and 
distribution adjustment of polynomial degrees, and the 
capability to deal with complex electromagnetic devices. All 
numerical results are verified by experimental data. The 
FEMAG is efficient for large-scale simulation of 
electromagnetic problems and has the potential in practical 
applications. 
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