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Abstract: In the finite element analysis of the engineering eddy current fields in electrical machines and transformers there are 

the problems such as the huge scale of computation, too long computing time and poor precision which could not meet the 

demand of engineering accuracy. The current research situation and difficulties of these problems are analyzed in this paper 

mainly from the aspect of computation methodology. The methods to deal with these problems, e.g., homogenization models of 

the laminated iron core, the sub-domain perturbation finite element method, domain decomposition method, and EBE (Element 

by Element) parallel finite element method are described. Their advantages and limitations are discussed, and the authors’ 

suggestions for the further research strategies are also included. 
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1. Introduction 

The electromagnetic fields in most of the electrical 

devices, such as electrical machines and transformers, are 

classified as quasi-static field. The quasi-static 

electromagnetic field in which conductive materials are 

included is called eddy current field too. It is of great 

significance to calculate the distribution of the eddy current 

field with its losses induced in the conductive materials 

accurately for optimal design and safe operation of the 

electrical devices. As an example, there are many metal 

structural components in power transformer. The eddy 

current losses in the components induced by the variation of 

leakage magnetic field are one of the heating sources for 

temperature rise. Although decreasing the whole losses in 

the structural components is important, the local loss 

concentration due to non-uniform distribution of the losses is 

the direct reason of local over-heating and operating faults, 

which deserve to pay close attention. Even if the 

computational technology has got rapid development in 

nowadays, to improve the computation precision is still a 

difficult task for numerical analysis of eddy current fields in 

super-huge type of power transformers. The features of this 

kind of computation include very small skin depth of 

ferromagnetic material, nonlinear and anisotropic 

electromagnetic characteristics of the structure components, 

structural discontinuity of the laminations, three dimensional 

feature of the spacial configuration, non-sinusoidal variation 

of the field physical quantities, and so on. Therefore, 

although there have been some commercial softwares of 

electromagnetic field analysis used in manufacture 

enterprises of power transformers extensively for 

performance verification and aided design, the calculated 

results are not agree well with the experimental ones. The 

crux of the problem is in the aspects of the conflict between 

the huge computational scale and high precision required, 

the difficulty of magnetic characteristic modeling for 

laminated iron core, the higher harmonics of exciting electric 

current and magnetic field being not easy to included, and 

lack of the data which can describe the electromagnetic 

characteristics of materials of the structural components 

accurately and completely. The aim of this paper is to 

analyze the current study situation of these problems, discuss 

the research strategies, and propose the further research 

directions from the authors’ point of view. 
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2. Simulation of the Material 

Characteristics of Laminated Iron 

Core 

2.1. Difficulty of the Magnetic Characteristic Modeling of 

Laminated Iron Core 

Proper modeling of material characteristics is the basis to 

improve the accuracy of electromagnetic field computation. 

However, it is not easy to simulate the electromagnetic 

characteristics of laminated iron core. The iron core and 

magnetic shield of power transformer consist of 

grain-oriented silicon steel sheets laminated, and the thickness 

d of each sheet is around 0.3 mm or even less, see Fig. 1(a). In 

the plane of the sheet and the angles with the rolling direction 

ranging from 0
0 
to 90

0
, the magnetic characteristics including 

permeability and loss per kg are angle-dependent anisotropic, 

which need to be depicted by the so-called two dimensional 

magnetic characteristic model. M. Enokizono and N. Soda 

proposed the well-known E&S model [1] in 2000 and kept 

improving it. With this model not only the loss in silicon steel 

sheets resulted from alternating magnetic field can be 

calculated, but the losses due to local rotating magnetic field 

can also be computed. In order to incorporate the E&S model 

into finite element (FE) analysis the 2D magnetic 

characteristic test device [2] has to be used to obtain a great 

deal of data for different angles in the sheets, different exciting 

levels and moments of a sinusoidal period, as the computation 

basis. However, this model has been confined to 2D 

computation [3, 4], not being extended to 3D yet. The reason 

is that at first the specialized 2D test device has not been used 

commonly, and more importantly this model involves 

time-discretization and iterations, which will cause the 

calculational scale over-increasing thus lead to unworkable 

computation effort if the model is used in 3D analysis directly. 

Furthermore, for 3D analysis more factors have to be 

considered, e. g., the material nonuniformity of the laminated 

iron core, the increasing of the unknowns, the ill-conditioned 

degree of the coefficient matrix, and so on. 

It is known that for the magnetic field in iron core under a 

sinusoidal excitation when the direction of the magnetic field 

is parallel to the surface of the sheet the distribution of its 

magnitude and phase are nonuiform along the thickness of the 

sheet. At this condition the 1D classical analytic solutions of 

flux density ( )
z
B xɺ and eddy current density ( )

y
J xɺ are given 

as [5, 6] 
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where x stands for the coordinate along the direction 

perpendicular to the sheet, 
0
Bɺ  and 

0
Jɺ are the amplitude of 

( )
z
B xɺ and ( )

y
J xɺ  at / 2x d= ±  respectively. ϖ , µ , σ are 

angle frequency, permeability and conductivity respectively. 

Fig. 1(b) shows the magnitude of flux density and eddy 

current density versus x respectively, in which the component 

of magnetic field perpendicular the sheet is neglected, 

although it exists in practical operating condition. 

 

Figure 1. (a) Sketch map of laminated iron core (b) Bz and Jy versus x . 

 

Figure 2. FEM model of the eddy current in laminated sheets of magnetic 

shield [7]. 

Considering the nonuniformity of the magnetic field in the 

thickness of the sheet, the sheet itself should be meshed in 3D 

FE analysis. It has been done so as in [7], in which the TEAM 

Problem P21-M1/M2 is chosen as a numerical model and the 

single sheet of magnetic shield is meshed. The magnetic shield 

is made of 20 sheets with a thickness of 0.3mm for each in the 

model, and the supplied magnetic field is perpendicular to the 

surface of the sheets, as shown in Fig. 2. According to the 

results of experiment, the distribution of magnetic field in the 

6 sheets which are near the surface of the shield is three 

dimensional, while in the other sheets further from the surface 

the magnetic field direction is parallel to the sheet surface 

basically. Therefore, the laminated region is divided into two 

sub-regions of “2D” and “3D” in 3D FE analysis, see Fig. 2. In 
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the “3D” sub-region each sheet is meshed into 3 layers, and 

the insulation layer between two sheets is also meshed with 

one layer, while for the “2D” sub-region the electromagnetic 

characteristics are given using more rough meshes with the 

conventional homogenization of iron core material, which has 

been used extensively and will be illustrated in Section 2.2. 

The calculated results of this model satisfied the demand of 

engineering precision basically. However, the model is too 

small compare with the practical huge transformer products. 

For the latter, the so refined meshes lead to over huge 

computational scale so that the computation task cannot be 

fulfilled. 

2.2. Conventional Rough Homogenization of Laminated 

Iron Core 

To avoid too large scale of computation in FE analysis the 

simplified modeling method for the electromagnetic 

characteristics of the laminated iron core has been used 

commonly, that is, taking the laminated stack as a continuum 

and its electromagnetic characteristics are given uniformly as 

follows, i. e. [8] 
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where µ and σ are permeability and conductivity 

respectively, and their components can be determined, 

depending on the connection in series or in parallel of the 

silicon steel sheets and insulation layers according to the 

magnetic and electric circuit theory. After proper simplifying 

the values of the components can be given as 0
x
σ = , 

sy z
σ σ σ= = , ( )0

1
x

kµ µ= − , 
sy y

kµ µ= , 
sz z

kµ µ=

for the laminated direction shown in Fig.1(a), where k is the 

lamination coefficient, 
0
µ is the permeability of vacuum, and 

the subscript s stands for silicon steel sheet. This method has 

been used extensively, and some commercial softwares of 

electromagnetic field analysis also use the method in a similar 

way. However, for the computation of eddy current field and 

its losses due to leakage magnetic field in practical 

transformer products this modeling of the homogenization is 

too rough to obtain satisfied results. 

2.3. New Development of Magnetic Characteristic Modeling 

of Laminated Iron Core 

Reference [9] proposes a more refined homogenized 

method for laminated iron core, with which the eddy current 

density in silicon steel sheet is divided into two components, 

that is, the component 1 induced by the alternating flux 

density parallel to the sheet and the component 2 due to the 

flux density perpendicular to the sheet. To incorporate the 

method into 3D FE analysis of magnetic vector potential and 

electric scalar potential scheme, for the component 2, the 

electromagnetic characteristic modeling is the same as that 

described in Section 2.2, the conventional homogenization, 

while for the component 1, an addition item is added into the 

Galerkin weak formulation. 

 

(a) 

 

(b) 

Figure 3. Single phase transformer model of 380MVA/500 KV (a) Structural 

diagram (b) Meshes of the transformer model. 

For the low frequency case, the addition item is given as 
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where N is the basis function, A is the magnetic vector 

potential,
β

J  corresponds to the eddy current density 

generated by the flux density parallel to the sheet, which is 

regarded as a kind of source electric current density, and V is 

the laminated region. The deducing of (5) is on the condition 

that the skin effect in a sheet is neglected, i. e. the distribution 

of flux density along the thickness of a sheet is uniform which 

equals to the average flux density, and the distribution of 
β

J

is linear. That is, contrasting with 
y
J  in Fig. 1(b), J

β
 is a 
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straight line instead of a curve in this case. The method is used 

in a numerical model of laminated stack with FE computation 

in frequency domain and a satisfied result is obtained [9]. For 

more complicated calculated model, a practical product model 

of a 380MVA/500 KV single phase power transformer with 

the engineering frequency of 50 Hz is used by the authors, and 

its structure and FE meshes are shown in Fig. 3. The method 

proposed in [9] is extended to time domain and nonlinear 

permeability is considered [10, 11], the calculated total losses 

due to leakage magnetic field are agree with the experimental 

values and the error is around 6%. Figure 4 shows parts of the 

numerical results, i. e. the flux density distribution on the 

symmetry plane and the eddy current density distribution on 

the oil tank inner surface of the transformer model. It is 

obvious that with this method the good computed results are 

obtained with relative less and acceptable computational 

effort. 

 

(a) 

 

(b) 

Figure 4. (a) Flux density distribution of the symmetry plane of the 

transformer, (b) Eddy current density distribution of the oil tank inner 

surface of the transformer. 

For higher frequency, the skin effect cannot be neglected. A 

more accurate homogenization method is presented by [9]. 

Based on the classical analytic solutions of magnetic flux 

density and eddy current density, i.e. (1) and (2), a more 

complicated addition item is put into the weak formulation to 

simulate the eddy current generated by the flux density 

parallel to the sheet. Furthermore, the method has been 

extended from frequency domain to time domain, and the 

insulating layers of finite width between the laminated sheets 

are considered too [12]. The test numerical model is a linear 

3D axisymmetrical one and a good result is achieved. A 

quantitative conclusion is drawn by [12] that the simplified 

model for the low frequency case is valid up to a frequency for 

which the skin depth is equal to the half-thickness of the 

laminations, while the accurate model is valid for any 

frequency. However, till now the method hasn’t been used in 

practical engineering model yet. 

3. Transformation of Global Solution to 

Combination of Partial Solutions 

Since the computational scale is very large for a global 

solution, trying to substitute combination of a certain partial 

solutions with less computational effort for global solution 

may be a novel strategy, among which the sub-problem 

perturbation FE method and domain decomposition method 

are both typical examples. 

3.1. Sub-Problem Perturbation FE Method 

The so-called perturbation FE method is proposed initially in 

[13]. The method is applied to eddy current nondestructive 

evaluation problems. To probe the flaw of metallic tube using 

external magnetic field created by exciting coil a 3D eddy 

current field calculation has to be carried out. However, 

compared with the dimension of the coil and tube, the size of 

the flow is too small, which results in the conflict of 

computation scale and accuracy. In fact, the computation of the 

tube eddy current field is much easier for the case without the 

flaw, e. g., through analytical solution, or adopting FE 

calculation of axisymmetric filed based on the symmetry of the 

tube, but when computing the eddy current field with the flaw, 

the known solution without the flaw cannot be used. To solve 

the problem an ingenious method is presented by [13]. The 

main idea is that the practical eddy current field with the flaw 

involves three fields, denoted here as field 0 for the tube with 

the flaw, field 1 for that without the flaw, and field 2 the 

perturbed field created by the flaw. The governing equations of 

field 2 can be obtained by subtracting the governing equations 

of field 1 from that of field 0. The 3 governing equation systems 

are all Maxwell equations, however, there is an additional item 

in the right side of the equations of field 2. Taking the curl 

equation of magnetic field as an example, that is 

iJEH +=×∇ 22 σ              (6) 

Equation (6) is the perturbation equation of magnetic field, 

where i
J = 112 )( Eσσ − , called as incident electric current 

density. It is i
J which causes the perturbation to field 1, and 

the perturbation results from the conductivity change of the 

flow region. H and E are magnetic field intensity and electric 

field intensity respectively, subscript 1 and 2 correspond to 

field 1 and 2 respectively, 2
σ is the conductivity of the flaw 

region, and 1
σ is that of the region outside of the flaw. 
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Obviously the field of the tube with flaw, the field 0, is equal 

to the sum of the field 1 and field 2 for the case of linear 

electromagnetic characteristics. The advantage of this 

perturbation FE method is that the solution of field 1 can be 

obtained easily; the computation of field 2 can be carried out 

using conventional FE method and is independent of field 1. 

Furthermore, the computational domain and mesh size of the 

field 2 are much less than that of field 1, because the affected 

area of the flaw is not very large, in general beyond 5~6 skin 

depth the flaw field may considered zero. 

Getting the hint of perturbation FE method in 

nondestructive testing, reference [14] extends the method to 

the computation of the skin and proximity effects in 

conductors of any properties and shapes, in both frequency 

and time domains. Because two sub-problems have to be 

calculated, the developed method could be called as 

sub-problem perturbation FE method. The main points are as 

follows. The practical eddy current field (field 0) is regarded 

as the superposition of reference field (field 1) and 

perturbation field (field 2). The field 1 and field 2 are 

calculated respectively, and their computational effort is much 

less than that of computing the field 0 directly. The calculation 

methods in two cases in which the conductive or magnetic 

material is included in the solved domain, are proposed in [14], 

which will be described in Section 3.1.1 and 3.1.2 respectively 

and briefly. 

3.1.1. Case of Electric-Conductive (Non-Magnetic) Material 

Included 

Reference field (field 1): Set the solid conductive material 

as ideal conductor, i.e., the conductivity of which equals to 

infinite, so that the conductor can be excluded from the solved 

region. Provide that the normal component of magnetic flux 

density is equal to zero at the boundary of the region. 

Perturbation field (field 2): Include the conductive domain 

in the solved region, in which the practical conductivity is 

assigned. Consider the difference of the conductivity from that 

of ideal conductor as the perturbation to field 1. At the 

interface of conductive and non-conductive domains set the 

tangential component of magnetic intensity as that of the 

calculated results of field 1, which is taken as the source of the 

perturbation field. 

3.1.2. Case of Magnetic (Non-Electric-Conductive) Material 

Included 

Reference field (field 1): Set the solid magnetic material as 

ideal magnetic conductor, i.e., the permeability of which 

equals to infinite, so that which is removed from the solved 

region. At the boundary adjacent to the ideal magnetic 

conductor the tangential component of magnetic intensity is 

set as zero. 

Perturbation field (field 2): Include the magnetic material in 

the solved region, in which the practical permeability is 

assigned. Assign the normal component of flux density as that 

of the calculated results of field 1 at the interface of the 

magnetic and non-magnetic domains, which is taken as the 

source of the perturbation field. 

3.1.3. Discussion 

In the two cases described in Section 3.1.1 and Section 3.1.2 

the solutions of the practical problem are all equal to the 

superposition of the solutions field 1 and field 2. For the 

calculation of field 1 the computational scale is reduced 

because that the conductive or magnetic region is removed so 

that the pressure of mesh generation is decreased. For the 

calculation of field 2 the solved region can be reduced as 

explained in Section 3.1. Fig. 5 and Fig. 6 are two numerical 

examples given by [14] for the two cases respectively. 

 

Figure. 5. Magnetic flux lines of the system with a conductive non-magnetic 

core [14]. Left: for the conventional FE solution, Middle: the reference 

solution, Right: the perturbation solution. 

 

(a)                   (b)                 (c) 

Figure 6. Magnetic flux lines of the system with a magnetic conductive core 

(non-electric conductive) [12]. (a) for the conventional FE solution, (b) the 

reference solution, (c) the perturbation solution 

Compared with the well-known Surface Impedance Method 

[15-17], Sub-problem Perturbation FE Method can describe 

the field inside the conductors in more detail. However, it 

worth noting that there is still room for studying the method 

further, e. g., in fact the silicon steel is not only magnetic but 

also electric conductive material, therefore when considering 

both the magnetic and electric parameters at the same time, 

how to deal with the problem? Besides, the principle of 

superposition is valid only in the linear cases, then how to 

incorporate the nonlinearity of the material parameters in the 

calculation? Even though there are the questions to be answer, 
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the method offers a very good idea to solve complicated 

problems. 

3.2. Domain Decomposition Method 

Domain decomposition method [18] is the one with which 

the solved domain of a definite-solution problem of partial 

differential equation is divided into two or more than two 

subdomains. The method itself can be classified overlapping 

domain decomposition method and non- overlapping domain 

decomposition method according to that the subdomains are 

overlapping or not. The solution of each subdomain is 

conducted independently, and the discretized meshes of 

subdomains are independent of each other. The interaction of 

the subdomains is dealt with by means of the iterations of 

certain interface conditions. In this way, the solution of the 

original problem for global domain is transformed into the 

solutions of subdomains, so that the computational scale is 

reduced greatly. 

3.2.1. Overlapping Domain Decomposition Method 

 

(a)                                (b) 

Figure 7. Sketch map of domain decomposition (a) Overlapping domain 

decomposition method; (b) Non-overlapping domain decomposition method. 

Overlapping domain decomposition method (ODDM) is 

based on the so-called Schwarz alternating method. There are 

various choices for the domain division strategy due to the 

difference of the concrete problems. One of the division 

modes is shown in Fig. 7(a), where 
0
Ω is the global domain of 

the original problem, and 
1 0
Ω ∈ Ω is the interested domain. In 

the calculating process of the domain decomposition, denote 

the subdomain between boundary 
0

∂Ω and 
0
'∂Ω as 

subdomain 1 while the subdomain surrounded by boundary 

1
'∂Ω as subdomain 2, and the calculation of the two 

subdomains are conducted separately. The numerical 

boundary conditions are given alternately at the boundary 

0
'∂Ω and 

1
'∂Ω till the iterative solutions at these boundaries 

satisfy the convergent condition. A typical calculating 

procedure is given as follows. 

1. Carry out the FE calculation in global domain 
0
Ω with 

coarse meshes then retrieve the discrete solution at
1
'∂Ω . 

2. Calculate the FE solution in subdomain 2 with refined 

meshes. The Dirichlet condition at the outside boundary
1
'∂Ω

of the subdomain 2 is provided by step 1 at the first iteration 

and by step 3 at and after the second iteration. 

3. Calculate the FE solution in subdomain 1 with coarse 

meshes. The boundary condition at the inside boundary 
0
'∂Ω

is provided by step 2. 

4. Calculate the iteration error of the solution at 
0
'∂Ω and 

1
'∂Ω respectively. If the error criterion is met then stop, or go 

to step 2. 

It should be pointed that the setting of step 1 is to accelerate 

the convergence, which is not a necessary step. If the whole 

computation begins with the step 2, the boundary condition at 

1
'∂Ω could be set arbitrarily. 

3.2.2. Non-Overlapping Domain Decomposition Method 

The sketch map of non-overlapping domain decomposition 

method (NODDM) is shown in Fig. 7(b). It is obvious from 

the figure that there is no overlap between the two subdomains, 

0
Ω and

1
Ω . Their interface, 

01 0 1
' ' '∂Ω = ∂Ω ∂Ω∪ , can be 

regarded as the limit case of the overlapping area reduced in 

Fig. 7(a). The calculation steps of the NODDM are similar as 

that of the ODDM. However, in the calculation of the former 

the Dirichlet and Neumann boundary conditions are 

alternately adopted in general. For a same problem, the 

convergence speed of the ODDM is faster than that of the 

NODDM. Furthermore, the lager the overlapping area, the 

faster the convergence, but the greater the calculation scale of 

each subdomain. Therefore, it is necessary to balance the 

convergence speed and the calculation scale of the 

subdomains properly and choose the division of overlapping 

or non-overlapping subdomains reasonably. 

3.2.3. An Example to Compare the Computation Time 

To compare the computation time of the domain 

decomposition method with conventional FE method, a small 

model, the P21
a
 -0 of TEAM-based Benchmark Family [7] is 

calculated using the ODDM [11]. Table 1 lists the 

discretization data of the model for two subdomains, and 

Table 2 shows the comparison of calculated results of the 

model with the ODDM and conventional FE Method. It can be 

seen from Table 2 that at similar accuracy level the 

computation time with ODDM reduced to a quarter of that 

with the conventional method. 

3.2.4. Discussion 

The domain decomposition method has been applied in 

fluid dynamics problems, wave and Laplace equation 

problems more commonly [19-21], but not been used to eddy 

current field computation very often. For the FE analysis of 

nonlinear and anisotropic eddy current field the use of the 

method is restricted to the model with relatively simple and 

regular structure [11]. It should be noted that when using the 

method to analyze 3D eddy current field of large scale 

transformer products the boundary positions of subdomains 

have to be chosen carefully to avoid the abrupt change of 

electric and magnetic parameters in the boundary that could 

result in poor convergence performance. Therefore, the 

division of subdomains for practical products with 

complicated structure becomes troublesome, which is an 

obstacle to the application of the domain decomposition 

method in this field. 



18 Dexin Xie et al.:  Finding Better Solutions to Reduce Computational Effort of Large-Scale Engineering Eddy Current Fields  

 

Table 1. Discretization Data of P21a-0 Model for Two Subdomains. 

Name of Subdomain Subdomain 2 (Interested) Subdomain 1 

Type of element Hexahedron of 8 nodes 
Hexahedron 

of 8 nodes 

Number of elements 18816 20844 

Number of nodes 21315 18161 

Number of unknowns 71820 54204 

Non-Zero Elements of 

Matrix 
3066446 2019909 

Table 2. Comparison of Calculated Results of P21a-0 Model with the ODDM 

and Conventional FE Method. 

 
Measured 

Losses (W) 

Calculated 

Losses (W) 

Error 

(%) 

Computation 

Time (h) 

Conventional 9.17 9.233 0.687 2.0 

ODDM 9.17 9.245 0.818 0.5 

4. New Development of Parallel 

Algorithm-EBE Method 

Parallel algorithm is a powerful tool to deal with the large 

scale computation in engineering domain. The parallel 

methods for FE analysis include mainly the parallel solution 

of FE equations, the parallel of domain decomposition, and 

the parallel based on element level, i.e., Element by Element 

(EBE) parallel FE method. 

The parallel solution of FE algebraic equations has been 

adopted in different areas, but its parallel efficiency is not 

very high. Especially for the large scale computation of an 

engineering problem the requirement of memory rises steeply, 

then when conducting the conventional CPU-based 

calculation the date interchange have to be performed, which 

makes the computation time for that increased greatly, so that 

the calculating speed declines [22-23]. The limitations of the 

domain decomposition method have been stated in Section 

2.2. 

The EBE FE method based on the element-level is an 

effective method to improve the degree of parallelism at the 

algorithm-level. With this method the main calculation can 

be performed independently and parallelly for each element, 

and only in limited stages the correlation and transmission of 

the element data should be carried out. Therefore, it doesn’t 

need to create and store the global coefficient matrix, thus the 

requirement of memory is reduced greatly. The more great 

the computational scale, the more obvious the effect by using 

the method, so that this method is especially suitable for the 

numerical computation of engineering electromagnetic field 

problems with complicate structure and huge computational 

scale. The method is proposed initially by [24] in1983, and is 

applied to the domains of heat conduction, solid mechanics 

and structural mechanics gradually [25-26]. 

At present the research of EBE method has come to a stage 

of combining algorithm, software and hardware. In recent 

years, based on the Graphic Processing Units (GPU), the 

General Purpose Computation on GPUs (GPGPU) has 

developed rapidly. Furthermore, the arising of the Compute 

Unified Device Architecture (CUDA) [27] supplies a reliable 

programming environment for the realization of the GPGPU, 

which provides a certain condition for the parallel 

computation of large-scale engineering problems. Currently, 

the GPU has been applied to electrical system, graphic 

processing, mechanics [28-32], etc.. 

For the application of the EBE algorithm to electromagnetic 

field it is still confined to the problems of static field [33] now. 

Because of the specificity of eddy current problems, the EBE 

parallel FE Method with the GPU computing platform is not 

applied in the solution of the eddy current fields yet so far. The 

key point is that the implementation of EBE method is 

combined with Conjugate Gradient (CG) method, but the 

convergence performance is poor when using the CG method 

to solve the FE equations of eddy current field. The main 

calculation of the CG method involves the product of matrix 

and vector, which is particularly suitable for parallel 

computation, but the use of the method should be based on the 

condition that the coefficient matrix of the solved equations is 

positive definite and symmetric. For the boundary value 

problem of Laplacian equation, the EBE method can be used 

successfully because that the condition is satisfied. As an 

example, it is shown that for a 2D coaxial-cable model of 

static electric field using the EBE parallel calculation with the 

multi-core GPU of the first and third generations the 

computational speed is accelerated 14 and 111 times 

respectively than that of the serial calculation with CPU. 

However, for the eddy current problem, although the 

coefficient matrix of FE discretized equations is symmetric, 

which is not positive definite, so that the precondition of 

applying CG method is dissatisfied. Furthermore, when 

solving 3D eddy current field by using ,φ−A A or 

,ψ ψ−T scheme which is adopted commonly at present, the 

coefficient matrix of the resultant FE equations is 

ill-conditioned. In this case if the CG method is still used to 

solve the equations, the convergence performance will get 

worse greatly, or even a stable solution cannot be obtained. 

This is the major obstacle to use EBE method for solution of 

eddy current field. To overcome the obstacle it is necessary to 

start with mathematical model, preprocessing of parallel CG 

method, etc. The attempt of this aspect is now in progress [34]. 

5 Conclusions 

This paper starts from the current problems in large scale 

eddy current field FE computation of electrical machines and 

transformers, then analyzes the present research situation in 

this domain, expounds the main difficulties to solve the 

problems, introduces several methods for reducing 

computational effort and improving calculating accuracy, e.g., 

the material performance homogenization model of laminated 

iron core, sub-problem perturbation FE method, domain 

decomposition method, and EBE parallel FE method, at the 

same time indicates the advantages and limitations of the 

different methods. In the methods above mentioned the EBE 

parallel FE method is a powerful tool to implement the accurate 

computation of 3D eddy current field by the authors’ opinion, 

but in order to realize the computation it is still necessary to 

solve a set of problems. Therefore, more efforts still need to be 
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put into exploring further the ways to fulfill the computation 

task rapidly and effectively by drawing lessens from and 

synthesizing the research results with the above methods. 
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