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Abstract: The solid oxide fuel cell (SOFC) is widely acknowledged for clean distributed power generation use, but critical 

process problems frequently occur when the stand-alone fuel cell is directly linked with the electricity grid. To guarantee the 

optimal operation of the SOFC in a power system, it is essential, that its generation ramp rate and load following is fast enough 

to sustain power quality. In order to address these problems, a suitable and highly efficient control system will be required to 

control and track power load demands for complex SOFC power systems under grid connection. Therefore, novel nonlinear 

hybrid adaptive Fuzzy Neural Network (AFNN) is developed for control of grid connected SOFC. During peak power demand 

schedules from electric utility grid and large load perturbations, maintaining optimal power quality and load-following is a big 

challenge. Both the rapid power load following and safe SOFC operation requirement is taken into account in the design of the 

closed-loop control system. Simulation results showed that the proposed hybrid AFNN enhance the optimal power quality and 

load-following than conventional PI controller. 
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1. Introduction 

Distributed generation (DG) is a promising technology that 

can be used to address some of the technical as well as 

environmental concerns in power systems. As a kind of high-

temperature fuel cell, SOFC presents an attractive option for 

the DG technology because it is modular, efficient and 

environmentally friendly. Unlike other types of fuel cells, the 

SOFC is entirely solid state with no liquid components. It 

usually works at a high temperature, in the range of 800–

1000 ◦C to reach the electrolytes ionic conductivity 

requirement [1]. 

As one of the second generations of fuel cells, the SOFC 

has been demonstrated to be a promising power generation 

technology, especially in stationary applications [2-6]. The 

SOFC/gas turbine (GT) based distribution generation can 

provide ancillary services such as load following and 

regulation with respect to the current deregulation and 

unbundling of the energy market [5, 6]. However, load 

following problems occur when the response of the fuel cell 

system cannot safely meet both the external power load 

demand and the balance of parasitic plant power demand [7]. 

For example, the phenomenon of oxygen starvation will 

appear in a fuel cell when the sudden power load changes 

greatly [8]. In that case, the partial pressure of oxygen falls 

dramatically, accompanied by rapid decrease in cell voltage, 

which would shorten the life of the fuel cell stack. On the 

other hand, the fuel cell may also be permanently damaged 

when the fuel starvation occurs in case of deficient fuel 

supply [9, 10]. Therefore, an effective control system is in 

great demand to ensure that the fuel cell system meets the 

time-varying power load demand with high process operation 

efficiency [2-11]. 

The efficiency of fuel cell system increased greatly when 

used in co-generation. A control mechanism for the 

integration of a hybrid generation system i.e., fuel cell and 

micro turbine with utility grid is explored in [12]. Other fuel 

cell based hybrid systems are analyzed in [13]. To improve 

the dynamic response of fuel cell system, a control 

architecture is given in [14] with emphasis on fuel flow 

regulation to meet the power demand schedule. W. Du and 

H.F. Wang presented the effects of grid connected SOFC on 

system stability and performance [15]. A PID based control 

of power flow from SOFC connected to the electric grid is 
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examined in [16]. Also, model predictive control design for 

SOFC is presented in [17]. Although the control ofnonlinear 

SOFC system is challenging due to the slow response under 

tight safe operation constraints, several predictive control 

strategies have been proposed for rapid load following. In 

[18], a fuzzy Hammerstein model was identified from the 

input–output operation data of an SOFC stack, and then the 

associated standard predictive controller was applied to the 

fuel control of the stand-alone SOFC stack to meet stepwise 

power load demands. Unfortunately, the stability issues of 

these closed-loop model predictive control systems have 

been largely ignored. 

Classical and intelligent control strategies have been 

applied to the control system of renewable energy technology 

[19]. Conventional control algorithms, i.e., PI controllers 

require precise mathematical model of the system and are 

very complex to parameter discrepancies [20]. Intelligent 

control techniques such as artificial neural networks, fuzzy 

logic, or neuro-fuzzy are more effective and vigorous than 

conventional control, since they do not require model of the 

system and enhance the dynamic performance of the system. 

Among the fuzzy neural network has faster in convergence 

and ability to improve dynamic behavior of the system. 

Fuzzy logic models have been widely accepted in control 

community for its capability to represent nonlinear dynamics. 

Fuzzy systems are demonstrated to have very good 

approximation and interpretation capability to general 

nonlinear systems [21-23]. The transient performance is of 

much more concern in industrial process control and 

economical plant operation. Fortunately, several neuro-fuzzy 

based predictive control approaches have been developed 

most recently [24, 25]. Many researcher worked on fuzzy 

logic control interfacing with renewable technologies is 

presented in [26, 27]. 

As to overcome aforementioned control problems, highly 

nonlinear control approaches are required to meet peak 

power demand schedules from electric utility power and 

maintaining optimal power quality. Therefore, novel 

nonlinear hybrid adaptive Fuzzy Neural Network (AFNN) is 

developed for control of grid connected SOFC. In this study, 

AFNN control algorithm is designed to control and track 

power load demands for complex SOFC power systems 

under grid connection. Both the rapid power load following 

and safe SOFC operation requirement is taken into account in 

the design of the proposed closed-loop control system. 

2. SOFC Dynamic Modeling 

SOFC is a type of fuel cell, which operates at high 

temperature range of 600-1000C. The electrolyte material is a 

solid metal oxide ceramic, generally dense Yttrium Stabilized 

Zirconia (YSZ) (Y203stabilized with ZrO). YSZ proved to be 

very good material for the conduction of negatively charged 

ions, which are O2in case of SOFC. The typical structure and 

components of SOFC are shown in Figure 2. The fuel 

electrode or anode is usually made of a cement like material, 

a mixture of zirconium oxide (CO=ZrO2or Ni=ZrO) and 

cobalt (Co) or nickel (NI). The Co or Ni gives conductivity 

improvement, and the whole cement mixture enhances 

negative ion conductivity. The air electrode or cathode is 

made of an ion conducting ceramic mixture [28], which is 

strontium-doped lanthanum magnetite (LaMnO2). At the 

anode, preheated hydrogen molecule is oxidized by releasing 

two electrons, which flow through the external circuit and 

feed the load. At the cathode, reduction of preheated air or 

oxygen molecule take place by absorbing two electrons 

coming from external circuit. This taking up of electrons 

make it negatively charged ions. Concentration gradient of 

oxygen occurs, which result in ion migration from cathode 

through the electrolyte via vacancy transport to the anode 

side. Equations (1) to equation (3) show the chemical 

reactions associated with SOFC. 

At anode; 

2

2 2 22 2H O H O e− −+ → +                         (1) 

At the cathode; 

2

2

1
2

2
O e O

− −+ →                            (2) 

Overall reaction becomes; 

2 2 2

1

2
H O H O+ →                         (3) 

 

Figure 1. Schematic of SOFC 

A valid mathematical model of any system can be very 

helpful in predicting the system behavior by controlling and 

optimizing the performance of various system parameters. 

Growing interest in design and control of SOFC power plant 

has led to the demand for appropriate and valid field oriented 

SOFC models [29]. In this section, the dynamic model of a 

tubular SOFC stack is presented, based on its electrochemical 

relations, partial pressure properties, and mass conservation 

laws with emphasis on terminal electrical characteristics of 

the fuel cell. Following assumptions are considered while 

modeling the SOFC. 
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• Hydrogen is supplied at the anode and oxygen at the 

cathode. 

• Gases considered in this system are ideal. 

• For output cell voltage, Nernst voltage applies. 

• Stable cell temperature is considered. 

• Voltage losses (ohmic, activation, concentration) are 

considered. 

2.1. Gibb’s Free Energy Theory 

In the development of fuel cell’s mathematical model, 

Gibb's free energy provides the basic diagnostic 

understanding. Gibb's free energy can be termed as the 

energy which performs external work. This work done is not 

due to variation in the volume or pressure levels of reactants 

and products involve in the fuel cell. In this condition, the 

movement of electrons in the external circuit is referred to as 

“external work” or electrical work done. Gibb's free energy at 

slandered temperature (STP) is represented by “Gs”. The 

changes occur in this parameter G is critical and is related 

with release of free energy. Mathematically, this change is the 

difference between Gibb's free energies of reactants and 

products i.e; 

products reactants

s s sG G G∆ = −                        (4) 

Gibb's energy per mole can be written as; 

products reactants

s s sg g g∆ = −                       (5) 

In the electrochemical process of SOFC, the reactants are 

hydrogen and oxygen and product is water, so equation 5 can 

be written as; 

2 2 2

1
( ) ( ) ( )

2
s s H O s H s Og g g g∆ = − −                (6) 

The open circuit potential of SOFC can be shown as; 

2

s
g

E
F

∆
= −                                  (7) 

where, F is Faraday's constant, and its value is 96487 C/mol. 

2.2. Variation in Pressure 

The Gibb’s free energy and voltage of SOFC depends on 

variations in temperature and pressures.  Equation 8 shows 

how the parameter ∆gschange from its standard value ∆gstp; 

2 2

2

0.5

ln
H O

s s

H O

P P
g g RT

P

°
 

∆ = ∆ −  
 
 

                      (8) 

where, R is universal gas constant having a value of (8.314 

J/mol K), T is the operating temperature and PH2, PO2 and 

Pare the partial pressures of hydrogen, oxygen and water 

respectively. The relation for fuel cell voltage at STP can be 

written as; 

2

g
E

F

°
° ∆= −                                       (9) 

Using equations (7), (8) and (9), the “Nernst potential” E 

of SOFC can be representedas follows; 

2 2

2

0.5

ln
2

( )H O

N

H O

P PRT
E E

F P

°= +                         (10) 

Nernst equation is used to relate the open circuit cell 

potential with varying pressure at standard temperature. 

2.3. Partial Pressures Calculation 

For the calculation of partial pressure of any gas, famous 

“ideal gas equation” is extensively used. 

pv nRT=                                        (11) 

In case of SOFC, the partial pressure of hydrogen can be 

written using ideal gas relation as follows; 

2

2

H

H anode

m RT
P

V
=                                 (12) 

where, V
anode

=Volume of the anode, mH2= Number of moles 

of hydrogen 

Taking derivative on both sides of equation (12), getting; 

2

2 2

H

H Hanode anode

m R Td d R T d
P m

dt dt dtV V
= =            (13) 

where uh2 is the derivative of mh2, and it represents the molar 

flow rates of hydrogen with units (Kmols
-1

). There are three 

quantities, which represent the overall molar flow rate of 

hydrogen in SOFC; 

2 2 2 2
( )in out r

H H H Hanode

d R T
P u u u

dt V
= − −              (14) 

where 

2

in

Hu = Hydrogen molar flow rate in the anode channel 

2

t

H

ouu = Hydrogen molar flow rate out of anode channel 

2

r

Hu = Hydrogen molar flow rate which reacts in the 

channel 

Considering the electrochemical laws, the amount of 

hydrogen which reacts in the cell is given by; 

2
2

2

r FC

H p FC

N I
u K I

F

°

= =                            (15) 

where 

N = Number of cells in SOFC stack 

IFC= Current provided by stack 

KP= Modeling constant,  

Equation (15) shows that fuel cell output current is directly 

proportional to hydrogen molar flow rate 
2
.r

Hu The value of 

this fuel flow rate is connected to the power changes 
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occurring at load side. Whenever current demand changes at 

the inverter input, that value is fed back to the reformer 

controller, which is responsible for changing the position of 

fuel valve. In this way, changes in active power are translated 

back by current to fuel cell for required flow of fuel in the 

channel. Putting the value from equation (15) in equation 

(14), the differential relation of hydrogen partial pressure can 

be written as: 

2 2 2
( 2 )in out

H H H P Fanode

d R T
P u u K I C

dt V
= − −             (16) 

By setting the initial conditions to zero, Laplace transform 

operation on both sides yield; 

2

2 2

2

1

( 2 )
1

H in

H H P FC

H

K
P u K I

Sτ

−

= −
+

                (17) 

where, 
2Hτ is the system pole value, concerned with 

hydrogen valve time constant,and it is expressed as; 

2

2

anode

H

H

V

K R T
τ =                              (18) 

Equation (17) represents the value of partial pressure, 

incorporated in Nernst equation to calculate cell voltage. In 

similar manner, partial pressures for oxygen and water 

become; 

2

2 2

2

1

( 2 )
1

O in

O O P FC

O

K
P u K I

Sτ

−

= −
+

                  (19) 

2

2

2

1

(2 )
1

H O

H O P FC

H O

K
P K I

Sτ

−

=
+

                  (20) 

2.4. SOFC Temperature Calculation 

Heat produced by fuel cell can be used to estimate the 

change in temperature of SOFC. Further, this change in 

temperature is used for computing the working temperature 

of SOFC. Total heat generated is formulated as; 

(1.485 )net FC SOFCq nI V= −                     (21) 

net
q

T
MC

∆ =                                  (22) 

Where, M and C are the mass and specific heat energy 

constant of fuel cell stack, whose values are 44kg and 

560J/kg-k, respectively. This change in temperature is used to 

determine the working temperature of the SOFC stack; 

initialT T T= + ∆                          (23) 

2.5. Fuel Utilization 

The slow response of fuel cell current can be related by 

equation (21); 

1

ref

FC

e

I
I

Sτ
 

=  + 
                         (24) 

where eτ is the electrical time constant and Iref is the reference 

or desired currentwhen the output power is Pref.. 

Mathematically; 

= ref

ref

SOFC

P
I

V
                            (25) 

Equations for fuel flow in terms of its utilization are 

represented by equation below; 

2

2 1

1

P

H

f

K
u

U Sτ
 

=   + 
                         (26) 

Where 
fτ is the response time of fuel and 

2Hu  is the “fuel 

utilization” factor. It is the ratio of fuel used in the cell to the 

total fuel supplied at the input. Generally, a range between 

80-90% is selected for fuel utilization. 

2.6. Stack Voltage Calculation 

Nernst equation is generally used for the calculation of 

SOFC output DC voltage ESOFC. Mathematically; 

2 2

2

0.5

ln
2

H O

SOFC

H O

P PRT
E N E

F P

° °
 

= +  
 
 



 



            (27) 

There are three types of losses occurring in fuel cell, due to 

which terminal cell voltage VSOFC is less than total cell 

voltage. 

SOFC SOFC act ohm concV E υ υ υ= − − −                   (28) 

where , ,act ohm concandυ υ υ , are the activation, ohmic and 

concentration losses. 

3. SOFC-Grid Interfacing 

SOFC is one of the DG technologies, which generates a 

DC power by an electrochemical energy conversion process. 

The generated DC voltages are low and variable, thus the 

fuel cell cannot be connected to the utility mains directly. To 

make this interface between SOFC and grid possible, suitable 

power electronic converters are used. One such integration 

between SOFC system and utility grid using a “power 

conditioning system” (PCU) is depicted in Fig. 2. The PCU 

consist of following components: 

• DC-AC Inverter 

• RL Filter 

The scenario for grid connected SOFC system is that the 

active power demand of the load is fulfilled by SOFC system. 

In addition, the system should have a fast response towards 

compensating the variations take place in the load demand 

schedule. 
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Figure 2. Grid connected SOFC system 

3.1. Active Power Control 

For controlling the active power of SOFC system 

connected to the utility grid, an equivalent circuit is shown in 

Fig. 3. Two voltage sources are considered connected 

through line inductance L. VSOFC is the fuel cell voltage, VG 

represents grid side voltage and δ  is the phase angle 

between SOFC and grid voltages. 

 

Figure 3. Equivalent circuit of SOFC system 

The complex power provided by SOFC system (neglecting 

VSI and transformer losses) to the utility grid is given by; 

SOFC FCS P jQ V I ∗= + =                    (29) 

In this work, reactive power is set to zero. The flow of 

active power from SOFC to grid is represented as follows; 

sin( )SOFC G
mV V

P
L

δ
ω

=                         (30) 

where m is the per unit value of variable modulation index. 

Using equations (28) to (30), current drawn from fuel cell 

can be shown as; 

sin( )G

FC

mV
I

L
δ

ω
=                             (31) 

In order to comply with active power demand and load 

following schedules, proper controller for inverter is essential. 

For this purpose, an AFNN is implemented with hysteresis 

current PWM to provide suitable gate pulses to the inverter, 

so that desired output power is generated. 

3.2. Inverter Topology 

There are two main types of inverters on output wave form 

basis, i.e., “square wave” and (PWM) inverters. A square AC 

wave output is generated by square wave inverters which can 

be altered by changing the input DC voltage. On the other 

hand, a switching sequence is used for PWM inverters to 

produce an AC output waveform. 

In this case study, a 3-phase inverter is considered in which 

switching devices are Insulated Gate Bipolar Transistors 

(IGBT). At the inverter input, DC voltage is provided by 

SOFC and followed by a DC link capacitor to filter out any 

pulsations in the incoming DC supply. RL filter at the output 

of inverter ensures the elimination of current harmonics to 

meet required standards. Schematic diagram of inverter 

topology is shown in Fig. 4. 

 

Figure 4. IGBT inverter topology 

3.3. Series Filter 

A series filter circuit having inductance La and resistance Ra 

is connected between inverter and grid as shown in Fig. 3. 

The Kirchhoff’s voltage law is used for calculating the 

voltage balance along the resistor and inductor as follows; 
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a
an a a a Gan

di
V L R i V

dt
= + +   (32) 

b
bn a a b Gbn

di
V L R i V

dt
= + +   (33) 

Where Van, Vbn and Vcn are the line voltages at the 3-phase 

inverter terminals and VGan, VGbn and Gcn are grid side 3-

phase voltages. 

4. Adaptive Fuzzy Neural Network 

The fuzzy logic is an effective method used for mapping 

précis decision from composite system having pale, uncertain, 

or imprecise order, was first reported by [30]. The exact 

approximation of nonlinear systems is difficult to get. In this 

regard, fuzzy based system modeling is efficient when 

compared with conventional methods [31, 32]. In this regard, 

Mamdani based fuzzy model was proposed first time for the 

control of boiler and steam engine using linguistic rules from 

a human operator by Mamdani and Assilian in earlier 70’s. 

The architecture of the proposed AFNN is based on 

multilayer perceptron model. A special case of neural 

networks which operates on back propagation mechanism is 

called multilayer perceptron. A neuro-fuzzy system is a 

combination of fuzzy systems and neural networks. 

A fuzzy logic system normally accumulates its data in the 

shape of a fuzzy algorithm [33], which consists of a fuzzy 

linguistic rules relating to the input and output of the network. 

Then the ith rule has the form: 

1 1 2 2
                 ...              

i i m mi i
If x is A and x is A and x is A Then u is y  

The output of the system can be expressed as: 

1

1

m

i i

i

m

i

i

w

u

µ

µ

=

=

=
∑

∑
                             (34) 

The structure for the AFNN is depicted in Fig. 5. It 

comprises of four layers: 

Layer I: This layer is the input layer, i.e., introduces the 

inputs (x1, x2, ...,xm). This layer accepts the input values and 

transmits it to the next layer. 

Layer II: In this layer the fuzzification process is 

performed and neurons represent fuzzy sets used in the 

antecedents’ part of the linguistic fuzzy rules. The outputs of 

this layer are the values of the membership functions, i.e.,
ijη . 

The membership of ith input variable to jth fuzzy set is 

defined by; 

2
1

2

i ijx m

v

ij eη
− 

−   
 =                          (35) 

 

Figure 5. Structure of the ABNF 

Layer III: This layer is the fuzzy inference layer. In this 

layer each node represents a fuzzy rule. In order to compute 

the firing strength of each rule, and min operation is used to 

estimate the output value of the layer. i.e., 

( ) ( )ij i ij i

i

x xµ η= ∏                               (36) 

where Π  is the meet operation, ( )ij ixη are the degrees of the 

membership function of the layer II and  ( )ij ixµ are the input 

values for the next layer. 

Layer IV: This layer is the output layer. In this layer, the 

defuzzification process is made to calculate the output of the 

entire network, i.e., It computes the overall output of system.  

4.1. Parameters Update rules 

The fuzzy neural network learning is to minimize a given 

function or input and output values by adjusting network 

parameters. The gradient descent method is used to adjust the 

values of weights and the mean and variance of membership 

function. To minimize the error between the actual output 

value of the system and the desired value. For this purpose, 

gradient descent method is can be expressed as: 

21
( - )

2
ref outJ P P=                                     (37) 

Where 
refP the desired output power of the system and outP

is the actual output power of system. The updated amount for 

the 
piw and

ijη  can be obtained as: 

( 1) ( ) -
pi pi

pi

J
w t w t

w
γ ∂+ =

∂                              (38) 

and 

( 1) ( ) -
ij ij

ij

J
m t m t

m
γ ∂+ =

∂                               (39) 
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( 1)  ( ) -
ij ij

ij

J
v t tv

v
γ ∂+ =

∂                                (40) 

Where γ is the learning rate. 

By taking the derivative of the above equations, it gives 

1

-( - ) i

ref out m

pi
i

i

J
P P

w

µυ
µ

=

∂ =
∂

∑
                           (41) 

2

-
 - (

( )
.2- )

( )

i iji

ref out j

ij j

j

ij

w u x mJ
P P

g vx
υ µ

µ
∂ =

−
∂ ∑             (42) 

and 
2

3

-
 - (

( )
.)

( )
2- i

ref o

i ij

ut j

ij j

j

ij

w uJ
P

x

x

v v
P

m
υ µ

µ
−∂ =

∂ ∑
          (43) 

Where the quantity 
y

u

∂
∂

is approximated by a constant υ

[34]. Equation (41)-(43) ate the required update equations of 

the AFNN. 

5. Simulation Results and Discussion 

The proposed adaptive AFNN control mechanism is 

applied on the 50 kW SOFC power plant system that has been 

modeled in MATLAB/Simulink. In order to check the 

performance and validation of the proposed controller, a 

short-duration active power transient study has been 

conducted considering SOFC stack under constant fuel flow. 

To estimate response of SOFC power system as grid real 

power demand change, step increase and decrease transients 

were applied on the system. The SOFC stacks have slow 

response to rapid and sustained load transients, observed 

throughout simulation. When a step change of power was 

experienced by utility grid, the power electronic inverter 

circuitry sensed these perturbations and the robust VSI 

control signal was effectively conditioned to able the SOFC 

plant to ramp up its output to meet required load demand. 

The results are compared with conventional PI controller to 

show the faster response time of proposed control strategy. 

The SOFC based DG system is tested with step changes in 

the grid real power demand. These abrupt variations in the 

active power are for estimating the dynamic response of the 

SOFC system. A load model that represents subsequent 

changes in the active power demand is used to examine the 

response of the proposed model. The closed-loop strategy for 

SOFC is depicted in Fig. 6. 

 

Figure 6. Closed-loop structure of AFNN based grid connected SOFC 

In the Fig. 7, the active power reference is varied from 

0.3p.u load to 1 p.u. at 0.1 sec and the response of the 

proposed AFNN model. It can be observed that reference 

active power demand curve is readily tracked by SOFC 

power output. This shows that proposed strategy is 

insensitive or robust against varying load conditions. 

 

Figure 7. Active Power Tracking 

A comparison of AFNN and PI controller is made to show 

the better performance of proposed control strategy. AFNN 

controller shows a rapid response, when it comes to tracking 

the active power demand. It can be observed that for a step 

change in active power from 0.3 p.u up to 1 p.u, the AFNN 

based SOFC takes almost 0.15 sec to acquire a new steady 

state condition. At the start, it is indicated that AFNN based 

SOFC take a bit timeto settle down to suitable values of 

system. Above system response show that AFNN control is 

capable of attaining rapid transient response with efficient 

rejection to load changes and achieve more stable response. It 

is observed that AFNN based grid-connected SOFC performs 

better than conventional PI controller. This shows that AFNN 

is computational strong and has ability to meet the desired 

response. 

Fig. 8 and 9, illustrate variations in SOFC output three 

phase currents and terminal voltage for changing loads. In the 

start, it is indicated that SOFC voltage and current both take 

different values for initial time span, and then settle down to 

suitable values of voltage and current. It is observed that 

large load perturbations have small effects on the voltage 

output of controlled inverter. 
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Figure 8. Load side voltage 

 

Figure 9. Load side current 

Figs. 10 and 11 show corresponding output response of the 

stack voltage and current of SOFC system when connected to 

grid. It is also observed that the stack voltage and stack 

current of SOFC changes accordingly during the variation in 

the load side power demands.  

 

Figure 10. Stack voltage 

 

Figure 11. Stack current 

Figs. 12-14 show the partial pressures of hydrogen, water 

and oxygen partial pressure of SOFC. It is observed that the 

SOFC is operating in safety region during the generation of 

desired output power. 
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Figure 12. Hydrogen partial pressure 

 

Figure 13. Water flow 

 

Figure 14. Oxygen partial pressure 

Figs. 15-17 depict the variations in the parameters of 

AFNN during online learning. This shows how the AFNN is 

flexible, computationally strong and his capability to meet 

desired demand of the grid. 

 

Figure 15. Update parameters of mean of membership functions 

 

Figure 16. Update parameters of variance of membership functions 

 

Figure 17. Update parameters of weights 

6. Conclusion 

In this paper, an integrated model of SOFC system, 

connected to the electric power grid is presented. The 

detailed modeling of grid connected SOFC is described 

including inverter, filter, transformer and grid integration of 

SOFC is explained. Also, dynamical equation of partial 

pressure, stack voltage, stack current and temperature are 

explained. The main objected was to control and meet the 

active power demand variations occurring at load side. For 

this purpose, an AFNN is applied to the system. These 

changing demands schedules are sensed by SOFC system 

connected the infinite bus, and controller generate the 

required gate pulses for IGBTs of VSI for proper switching to 

meet the load demand. The performance of SOFC based DG 

system in grid connected mode with AFNN and PI controller 

have been compared and analyzed. The faster transient 

response and robustness of the proposed strategy is illustrated. 

Adaptive parameters update for efficient learning of the 

controller is also presented in the results. 
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