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Abstract: Power system state estimation is an effective online tool for monitoring, control and for providing consistent 

database in energy management systems. This paper presents an algorithm for state estimation of the Tanzanian power system 

network using a non-quadratic state criterion. Equality and inequality constraints existing in a power system are included in 

formulating the estimation problem. Equality constraints are target values used in load flow analysis and are included in power 

system state estimation in order to restore observability to those parts of the power system network which are permanently or 

temporarily unobservable. Inequality constraints are limits such as minimum and maximum reactive power generation, 

transformer tap and phase-shift. The solution techniques used is primal-dual interior point logarithmic barrier functions to treat 

the inequality constraints. An algorithm is developed using the method and a program coded in MATLAB is applied in 

implementing the simulation. Computational issues arising in the implementation of the algorithm are presented. The 

simulation results demonstrate that the primal-dual logarithmic barrier interior point algorithm is a useful numerical tool to 

compute the state of an electrical power system network. The inequality constraints play essential role in enhancing the 

reliability of the estimation results. Also, it is expected that significant benefit could be gained from application of the 

constrained state estimation algorithm to the Tanzanian power system network. 

Keywords: Power Systems, Non-Quadratic State Estimation, Simulation, Interior Point Method, MATLAB Program 

 

1. Introduction 

Power system state estimation is a mathematical procedure 

[1] which processes a set of real-time measurements such as 

voltages, real and reactive power injections, real and reactive 

power flows using the topology determined by the topology 

processor to come out with the best estimate of the current 

state of the power system. The state of a system is defined as 

a vector of the voltage magnitude and voltage angle of each 

bus of that system. 

Power system state estimation is important for control and 

security monitoring of a system. Using real-time system 

measurements, it is easy to identify whether the system is 

normal or not. In addition, the state estimator is used to build 

the model for the observable part of the network [2]. It is 

used to filter redundant data [2-3] to eliminate incorrect 

measurement, and to produce reliable state estimates. 

Before any control action can be taken or security 

assessment can be made, a reliable estimate of the current 

state of the system must be determined. For this purpose the 

number of physical measurements cannot be restricted to 

only those quantities required to support the load flow 

computations. The input to the load flow studies is confined 

to real and reactive power injections at load buses, and real 

power and voltage magnitude at voltage-controlled buses. If 

one of these inputs is unavailable, the load flow solution 

cannot be determined. In addition, gross-error in one of the 

input quantities can cause the load flow solution to be useless. 

In practice, other conveniently measured quantities such as 

real and reactive power flows are available, but they cannot 

be used in the load flow program. These limitations can be 

removed by state estimation. 

The main objective of the state estimator is to find best 

estimate of unknown voltage angle at every bus in the 

modelled system network [4]. Since inexact measurements-

such as those from SCADA system are used to calculate the 

state vector, the estimate will also be inexact. This introduces 

the problem of how to device the best estimate for the state 
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vector given the available measurements. 

The results from state estimation provides the real-time 

database [1],[3] for other network applications such as 

security assessment, determination of power flows in parts of 

network that are not directly metered, optimal power flow, 

contingency analysis, etc. State estimation can also be used 

for data validation. One of the major benefits of state 

estimation is its ability for detection and identification of bad 

data. 

The technical literature is rich pertaining to power system 

state estimation. The pioneering work is due to Schweppe et 

al [5-7]. The first practical implementation of state estimator 

is reported in [8]. The model for state estimation problem is 

well established and diverse solutions are also well known. 

Appropriate background information on power system state 

estimation can be found in [9], [2], and [10]. 

Particularly interesting is the work by Abur et al [11-12]. 

The work reported in [11] implements a fast algorithm for the 

weighted least absolute value (WLAV) state estimation using 

simplex method. WLAV fall under non-quadratic criterion. 

This work is extended in [12] to include equality and 

inequality constraints on measurements. Incorporating of 

constraints in formulating state estimation problem enhances 

the reliability of the estimator. In all the described work the 

state estimation problem is formulated as a linear 

programming (LP) problem and solved by using simplex 

method. Interest of using interior point method is described 

in the work of Clements et al [13]. Application of interior 

point method is extended in [14-15]. The work reported in 

[13], [14] is different from the work described in this paper. 

In [13] logarithmic barrier function is directly used in solving 

the problem. In [14] the authors formulated the state 

estimation problem as an optimization problem and   used the 

barrier function method in solving the primal formulation and 

affine scaling method in solving the dual formulation of the 

problem. 

In this paper, the problem is set up as an optimization 

problem with a linear objective function subject to a set of 

non-linear constraints resulting from the measurement errors. 

Primal-dual logarithmic barrier path following method is 

applied in solving the constrained non-quadratic state 

estimation problem. This approach is computationally 

extremely useful because the principal computational step in 

solving the symmetric positive semi-definite system is 

identical to that of solving unconstrained weighted least 

squares (WLS) problem. Consequently, this method is 

implemented using modified WLS MATLAB software. 

The paper is organized as follows. Section 2 presents 

Tanzanian power system network generation and high 

voltage transmission system status. The system is used as a 

case study in testing the non-quadratic state estimation 

algorithm. Section 3 gives material and method followed by 

problem formulation in which measurement model, least 

absolute value (LAV) state estimation formulation, non-

quadratic constrained state estimation problem and algorithm 

are presented. 

In section 4 a method of solving the non-quadratic 

estimation problem using primal-dual logarithmic barrier 

path following method is presented. Section 5 presents input 

data, simulation procedures and results. Section 6 discusses 

the obtained results and section 7 concludes the paper. 

2. Tanzanian System Network 

2.1. Generation 

The Tanzanian power system comprises of hydro, thermal 

and isolated thermal generation plants [16]. The hydro 

system is comprised of 6 plants with a total nameplate of 

561MW (See Table 1). The installed capacity of thermal 

generating plants totals 453.6MW. The installed capacity of 

isolated thermal generating plants totals 38.45MW. Currently, 

the total nameplate capacity is 1,053.05 MW [16]. The 

demand for electricity in Tanzania is growing at a relatively 

fast rate (See Table 4). The annual average load growth rate 

between 1990 and 1998 was 5 percent; the average load 

growth rate between 2003 and 2006 has been above 11 

percent [17]. This load growth rate has been achieved despite 

long period of load shedding due to drought and inadequate 

water and rainfall in the main hydropower reservoirs and 

their catchments areas. 

Tanzania Electric Supply Company Limited (TANESCO) 

owns all of the hydro generating plants in the country and 

some of the thermal generating plants, although there are 

some independent power producers (IPPs) owned by private 

operators. Tables 1 and 2 show the installed grid connected 

generation capacities for the country. The system presently 

consists of an interconnected grid and several isolated 

systems. The model of the interconnected grid is shown in 

Figure 1. The interconnected system consists of hydro and 

thermal generating plants providing power to Cities, 

Municipals and Townships. 

Table 1. Installed hydro grid generation capacity 

Plant Name Fuel Type Installed Capacity [MW] Ownership 

Kihansi Hydro 180.00 TANESCO 

Kidatu Hydro 204.00 TANESCO 

Mtera Hydro 80.00 TANESCO 

NPF Hydro 68.00 TANESCO 

Hale Hydro 21.00 TANESCO 

NYM Hydro 08.00 TANESCO 

TOTAL  561.00  

Table 2. Installed thermal grid generation capacity 

Plant Name Fuel Type Installed Capacity [MW] Ownership 

Songas Natural gas 202.00 Private 

Ubungo Natural gas 102.00 TANESCO 

IPTL HFO 103.00 Private 

Dodoma IDO 07.44 TANESCO 

Mbeya IDO 13.90 TANESCO 

Mwanza IDO 12.50 TANESCO 

Musoma IDO 02.56 TANESCO 

Tabora IDO 10.20 TANESCO 

TOTAL  453.60  

Source: Economic Survey Report: 2007 and 2009 IDO – Industrial Diesel 

Oil, HFO- Heavy Fuel Oil 
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Figure 1. Tanzanian network model 

2.2. Transmission Network 

TANESCO owns high voltage and low voltage 

transmission and distribution lines of different voltage levels 

scattered all over the country. The high voltage transmission 

lines (See Table 3) are estimated to comprise of 2,624.36 km 

of system voltage 220 kV; 1,441.50 km of 132 kV and 

486.00 km of 66 kV, totalling to 4,551.86 km by the end of 

December 2006 [16]. High voltage transmission lines use 

pylons made of steel. Almost all HV transmission lines are 

radial single circuit lines. The country power system is 

alternating current (AC) and the system frequency is 50 Hz. 

The TANESCO grid comprises of: South-West grid, North-

West grid and North-East grid. South-East grid is still under 

planning stage. 

South-West grid mostly of 220 kV connects: Ubungo-

Morogoro-Kidatu-Kihansi-Iringa-Mufindi-Mbeya. North-

West grid connects: Ubungo-Morogoro-Kidatu-Kihansi-

Iringa-Mtera-Dodoma-Singida-Shinyanga-Mwanza (220 kV); 

Mwanza- Musoma (132 kV)-Shinyanga- Tabora (132 kV) 

North-East grid connects: Ubungo-Tegeta-Zanzibar (132 kV); 

Ubungo-Chalinze- Hale-NPF-Tanga (132 kV); Chalinze – 

Moshi – Arusha (132 kV); NYM – Moshi (66 kV); Arusha-

Babati-Singida (220 kV). 

 

3. Material and Method 

Electrical data used in this study were obtained from 

Tanzania Electric Supply Company Limited (TANESCO). A 

computer software programme, MATLAB was used to 

determine the state vector of the Tanzania Power Electrical 

Network. 

3.1. Problem Formulation 

3.1.1. Measurement Model 

The mathematical measurement model of state estimation 

is based on the mathematical relations between the 

measurement and the state vector given by: 

( ) rxhz +=                                    (1) 

Where 
1mxz ℜ∈ Is the vector of measurements i.e. the voltages, 

injection powers and flow powers 
12 −ℜ∈ Nx  is the vector of state variables 

( ) 1. mxh ℜ∈  is the non-linear function relating the 

measurement to state vector 
1mxr ℜ∈  is the measurement residual vector 

N  is the number of buses 

m  is the number of measurements 

12 −= Nn  is the number of state vector components 
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The measurement system consists of real and reactive 

power injections, real and reactive line power flows and bus 

voltage magnitude. 

3.2. Least Absolute Value (LAV) State Estimation  Criterion 

The least absolute value (LAV) state estimation problem 

criterion is formulated as: 

( ) ∑
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The objective of the estimator is to minimize the errors in 

order to get a best estimate of the system. In this way 

equation (2) is transformed into: 
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Where 
N

Vkm ℜ∈,  is the number of voltage magnitude 

measurement 
N

Pk inj
m ℜ∈,  is the number of real power injection 

measurement? 
N

Qk inj
m ℜ∈, is the   number of reactive power injection 

measurement 
N

Pk flo
m 2

, ℜ∈  is the number of real power flows 

measurements 
N

Qk flo
m 2

, ℜ∈ is the number of reactive power flows 

measurements 

:,Vkε    is the error corresponding to voltage magnitude 

injPk ,ε  is the error corresponding to real power injection 

injQk ,ε is the error corresponding to reactive power 

injection 

floPk ,ε is the error corresponding to real power flows 

floQk ,ε is the error corresponding to reactive power flows 

δ : Voltage angle (unknown variable) 

:σ Standard deviation 

:J Objective function 

The state estimator needs a set of analogue measurements 

and system topology to estimate the system state. The 

minimal measurement number required is equal to (2N-1) the 

dimension of the state vectors. Hence, the critical number of 

real and reactive measurement pair is (N-1) with addition of 

voltage magnitude measurement. 

3.3. Constrained State Estimation Problem 

The non-quadratic constrained state estimation problem is 

formulated by including equality and inequality constrains 

existing in the system. Equality constraints are target values 

used in load flow analysis and are included in power system 

state estimation in order to restore observability to those parts 

of the power system network which are permanently or 

temporarily unobservable. Equality constraints can be treated 

as pseudo-measurements with relative high weights [18].The 

equality constraints are the power balance equations which 

are described in Momoh [19] as: 
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Where 

p is not a slack bus, and 0=slackδ  

pp QP , is the real and reactive power injection at bus p 

ppV δ∠  is the voltage at bus p 

qppq δδδ −=  

pqpq jBG + Are the corresponding elements in system 

bus admittance matrix 

The power injection at bus p is defined as 

LpGpp PPP −=                                (6) 

LpGpp QQQ −=                              (7) 
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Where 

GpGp QP , Are the real and reactive power generation at 

bus p, while LpLp QP ,  are the real and reactive load power at 

bus p.  Bus voltage magnitude including the slack bus, and 

bus voltage angles except the slack bus where 0=slackδ  are 

taken as state vector x. 

Inequality constraints are limits such as minimum and 

maximum reactive power generation, transformer tap and 

phase-shift limit 

The constraints are initially relaxed as one approach to the 

solution and those constraints that are violated are enforced 

on the corresponding limits either as equality constraints with 

relative high weights. Interior point methods have been 

suggested in relaxing the constraints as proposed in [20] 

Therefore, the aim of this paper is to minimize the errors 

given in (3) by considering all constraints existing in the 

system network. Normally, in the weighted least squares 

(WLS) estimators, the influence of a measurement on the 

state estimate increases with the size of its residual while 

non-quadratic estimators (LAV/WLAV) are designed to 

bound the influence of large residuals on state estimation 

with prediction that these residuals correspond to gross error 

measurements. With this idea in mind, in this paper a non-

quadratic criterion is used in developing the method and 

algorithm for solution of estimation problem. 

In this way the non-quadratic constraint weighted least 

absolute value (WLAV) state estimation is formulated as 

follows: 
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Where 

WRdiag =− )( 1  is the weighting factor 

( ) 1mxxhz ℜ∈=− ε  is the measurement error vector 

The measurement error vector is of the whole system as 

given by equation (3). 

:g is the non-linear vector function of the equality 

constraints. 

Since it is difficult to solve Eqns (8) and (9) directly, the 

problem is transformed to the following equivalent problem 

as: 
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The solution technique employed is solving the non-

quadratic constrained estimation problem is a primal-dual 

logarithmic barrier path following interior point method. 

4. Solution Method 

4.1. Primal-Dual Interior Point Methods 

Interior point methods (IPMs) for non-linear programming 

problems have been studied since the early 1950s by Fiacco 

and McCormick [21]. Interest in interior point method was 

rekindled by introduction of projective method by Karmarkar 

in 1984 [22]. Karmarkar’s method was equivalent to an 

interior point method known as the logarithmic barrier 

function method. In this method, the inequality non-linear 

constraints in (10) can be converted to equality non-linear 

constraints by adding non-negative slack variable vectors (u, 

l≥0). 

To ensure that these slack variable vectors will remain 

positive, the logarithmic barrier function is appended to the 

objective function of eqn (10). Then the state estimation 

problem (10) is transformed to a problem with equality 

constraints (11), which can be written as: 
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Where 

µ> 0 is the barrier parameter. It value is forced to decrease 

towards zero as the iterations progress. 

m is the number of rows of measurement vector z 
kk lu , : are the kth elements of the slack variable vectors u 

and l 

The Lagrangian function of the problem (11) is defined as: 
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Where 

λ,β,η, and γare vectors of Lagrange’s multipliers 

The Karush-Kuhn-Tucker (KKT) first order necessary 

conditions for an optimal solution of the sub-problems of (12) 

can be expressed in terms of a stationary point of the 

Lagrangian function are given by 

01 =−−=∇ − λµ eULu                          (13) 

01 =−−=∇ − βµ eLLl                           (14) 
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0=++=∇ βλε WL                             (15) 

0=−+=∇ urL ελ                              (16) 

0=−−=∇ lrL εβ                               (17) 

0=−−=∇ ηβλLr                              (18) 

( ) 0=−=∇ xgLγ                                 (19) 

( ) 0=−+−=∇ xhzrLη                            (20) 
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x GHL                           (21) 

( ) 0, ≥βλ  

Where 

H and G are Jacobian matrices of h(x),g(x). 

U and L are diagonal matrices defined by slack variables u 

and l, respectively given by equations (22) and (23) as: 
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Let e = [1, 1, 1]
T
: a vector with all its elements equals to 

one. 

The KKT non-linear equations can be solved using 

different methods. They can be solved either as all equations 

together or by reducing them by elimination of variables. In 

this paper, the equations are solved iteratively using the 

Newton-Raphson method. In this method, the following 

linearizing approximations are made at each iteration. 
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After these approximations are made and du and dl are 

eliminated, the following system of equations results: 
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Where 

D is a diagonal matrix given by 

( ) ( ){ }225.0 kk LUdiagD +=
µ                        (26) 

( )25.0 kUT
µ

=                                    (27) 

The solution of Eqn (25) is used to calculate the direction 

of changes inβ,γand x. It may not be possible to take a full 

Newton-Raphson step without violating the inequality 

constraints [23-24]. Hence, the new values ofβ,τ, and x are 

computed from: 
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αP and αD are scalars known as primal and dual step length. 

An advantage of using primal-dual method is that of using 

two step lengths, one for primal variables and the other for 

dual variables 

In practice equality constraint measurement are error free, 

in this way the equality constraints component in equation 

(25) is neglected; this transforms the equation into 
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∆x can be computed from the following equation 

WHTWDHxHDH TTT −=∆ −− 11 22                        (30) 

[ ] ( )WHTWDHHDHx TTT −=∆ −−− 111 22                  (31) 

4.2. Updating and Adjusting the Variables 

Assuming that an initial starting point in the interior of the 

feasible region is known, and then the solution is updated in 

this way: 
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The step length α is choosen such that the solution remains 

within the feasible region i.e. 0>u and 0>l . In order to 
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u

u
kk

k

α
 

Then 













<−= 0,min du
du

u k

uα                     (34) 

Similarly 

To keep 

0

:0

1

1

>+=
≥

+

+

dlll

l

l

kk

k

α
 

Then 













<−= 0,min dl
dl

l k

lα                    (35) 

In this way the step length is choosen using the following 

condition 

( )lu αατα ,,1=                              (36) 

τ is a scalar constant. The scalar constant value is set at 

0.9995 in order to prevent the state estimation to be close to 

the feasible boundary. In the same way step length α is 

appropriately choosen in order to make x
k+1

 remains interior 

to the feasible region. The iteration is performed until the 

norm [25] of ∆x becomes less than the pre-defined tolerance 

i.e. 

tolx ε≤∆  

However, care should be taken when adjusting the barrier 

parameter because the parameter is linked to diagonal matrix 

D. if barrier parameter becomes zero, the diagonal matrix D 

becomes singular and the whole matrix of equation (30) 

becomes singular and the solution cannot be found. Therefore, 

the barrier parameter should be appropriately adjusted and it 

should be close to zero but not equal to zero when x 

approaches the optimal solution. At each iteration the 

complementary gap is used to adjust the barrier parameter 

and is choosen as proposed in [15] i.e. 

m

lu TT

2

βλµ +=                                     (37) 

4.3. The Algorithm 

The complete non-quadratic state estimation algorithm 

which uses primal-dual logarithmic barrier method in solving 

the state estimation problem is presented as follows. The 

algorithm has two parts. The first part is concerned with 

initialization procedure. Initial values are obtained from load 

flow results. The second part deals with computation of 

variables and implementation of the algorithm. The full 

algorithm is given as: 

PART I: Initialize: 

Initialize k = 0. 

x
0
= flat start using values obtained from the load flow 

program 

r
0
 = z-h(x

0
) 

ε0
 = z-h(x

0
) 

u
0
 = ε0

 + r
0
 

l
0
 = ε0

 – r
0
 

γ = 0; τ = 0,λ =- 0.5ε, β = -0.5ε 

PART II: Calculation and implementation 

i Calculate the Jacobian matrix H  

ii Calculate the transpose matrix H
T
 

iii Calculate the complementary gap  

iv Calculate the barrier parameter (µ) 

v Calculate D 

vi Calculate du = ε +r - u
k
 

vii Calculate dl = ε - r + l
k
 

viii Calculate l
k
 and u

k
 

ix Calculate r
k
 = z-h(x

k
) 

x Solve ∆x  

xi Calculate step length  

xii Update x
k+1

 = x
k
 +α∆x 

xiii Check ifz-h (x
k+1

) <0.0001 if yes STOP.  Otherwise 

go to III 

xiv Update λand β 

xv Update u and l 

xvi Check convergence criteria 

If optimum TERMINATE the procedure. Otherwise update 

k = k+1 and go to III 

5. Simulation and Results 

5.1. Input Data 

Voltage magnitude, real and reactive power injections, real 

and reactive power flows models are used for solving the 

state estimation problem. These models are written as: 

NizVz N
iViii ,1, =ℜ∈+= ε               (38) 

( )
Niz

Vhz

N
i

injiinjiinji

,1
2

,,,

=ℜ∈

+∠= εδ
                  (39) 

( )

flow

m

i

flowiflowiflowi

miz

Vhz

flow ,1

,,,

=ℜ∈

+∠= εδ
                   (40) 

Voltage magnitude, real and reactive power injections, real 

and reactive power flows measurements are obtained from 

the load flow program and are accepted as true measurement 

values of the system. 

Input data for simulation of the developed algorithm is 

given in Tables 3 and 4. Table 3 gives transmission line data 

of the Tanzanian Power System Network. Table 4 gives load 
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demand and generation of each bus. Input data for IEEE 14, 

IEEE30 bus test systems are obtained from [26].  

Table 3. Line data 30-Bus Tanzania System Network  

From To Impedance 
Half of line 

charging 

Tap ratio 

setting 

1 2 0.012+j0.081 0.00+j0.065 1.00 

2 3 0.020+j0.111 0.00+j0.085 1.00 

1 5 0.039+j0.154 0.00+j0.122 1.00 

2 5 0.025+j0.136 0.00+j0.010 1.00 

2 24 0.016+j0.090 0.00+j0.068 1.00 

3 4 0.034+j0.019 0.00+j0.143 1.00 

5 6 0.014+j0.011 0.00+j0.087 1.00 

6 7 0.00+j0.274 0.00+j0.00 1.00 

6 8 0.018+j0.015 0.00+j0.117 1.00 

7 12 0.086+j0.196 0.00+j0.020 1.00 

8 9 0.00+j0.062 0.00+j0.00 1.00 

9 10 0.043+j0.098 0.00+j0.00 1.00 

9 12 0.010+j0.232 0.00+j0.024 1.00 

10 11 0.052+j0.030 0.00+j0.00 1.00 

12 13 0.018+j0.418 0.00+j0.043 1.00 

13 14 0.009+j0.027 0.00+j0.00 1.00 

13 15 0.063+j0.014 0.00+j0.00 1.00 

14 15 0.049+j0.014 0.00+j0.00 1.00 

13 16 0.026+j0.597 0.00+j0.062 1.00 

16 17 0.00+j0.7373 0.00+j0.00 1.00 

17 19 0.036+j0.716 0.00+j0.00 1.00 

18 17 0.018+j0.037 0.00+j0.00 1.00 

20 19 0.00+j0.1416 0.00+j0.00 1.00 

20 21 0.023+j0.014 0.00+j0.111 1.00 

21 22 0.021+j0.131 0.00+j0.100 1.00 

22 23 0.033+j0.017 0.00+j0.137 1.00 

23 24 0.021+j0.012 0.00+0.081 1.00 

22 25 0.034+j0.188 0.00+j0.143 1.00 

25 26 0.022+j0.118 0.00+j0.095 1.00 

25 29 0.00+j0.160 0.00+j0.00 1.00 

26 27 0.00+j0.160 0.00+j0.00 1.00 

27 28 0.263+j0.597 0.00+j0.061 1.00 

29 30 0.021+j0.485 0.00+j041 1.00 

Table 4. Busdata 30 -Bus Tanzania System Network 

Bus No. 
Load demand Generation 

MW MVAr MW MVAr 

1 - - - - 

2 06.20 01.60 - - 

3 20.00 07.00 - - 

4 27.00 07.80 14 - 

5 - - 142.00 - 

6 18.00 09.10 - - 

7 00.00 00.00 - - 

8 233.10 45.10 - - 

9 - - 259.00 - 

10 - - 100.00 - 

11 17.60 09.00 - - 

12 12.00 02.50 - - 

13 - - 10.50 - 

14 - - 68.00 - 

15 21.00 08.30 - - 

16 23.10 09.00 - - 

17 00.00 00.00 - - 

18 - - 03.60 - 

19 22.00 05.00 - - 

20 00.00 00.00 - - 

21 06.50 01.20 - - 

22 05.00 01.40 - - 

23 06.20 01.60 - - 

Bus No. 
Load demand Generation 

MW MVAr MW MVAr 

24 - - 74.00 - 

25 21.70 09.00 - - 

26 29.70 09.60 - - 

27 - - 13.00 - 

28 11.50 05.00 - - 

29 00.00 00.00 - - 

30 05.40 01.50 - - 

Table 5. Test systems  

No. of buses Ward Hale 6 IEEE 14 30-Bus 

No. of lines 7 20 33 

No. of measurements 25 41 97 

Redundancy 227.27 151.85 164.41 

5.2. Simulation 

The prototype code of the non-quadratic constrained state 

estimation algorithm was implemented in MATLAB 7.1 and 

run on a personal computer having a 3.33GHz Pentium IV 

processor and 0.99GB of RAM. Simulations were carried on 

using the IEEE 14, IEEE30 test systems and the 30-bus 

Tanzanian power system network model. The problem 

statistics are summarized in Table 5, where the number of 

buses, lines, total number of measurements and redundancies 

are given. The measurements were simply chosen such that 

the systems become numerically observable. Numerical 

observability was checked using the rank (.) function in 

MATLAB. 

The measurements are simulated adding normally 

distributed random error to the load flow results.  The 

following standard deviations of the measurements are used: 

0.004, 0.008, and 0.01 p.u. standard deviations for voltage 

magnitudes, line flows and bus injection, respectively. To 

verify the accuracy of the resulting estimates, the following 

error criteria are calculated according to [12] 

( )∑
=

−=∆
N

p

non
pprms VV

N
V

1

1
                       (41) 

( )∑
=

−=∆
N

p

non
pprms

N
1

1 δδδ                       (42) 

Where 

:, ppV δ Are the true (load flow solution) voltage 

magnitude and phase angle at bus p  

:,,
non
p

non
pV δ Are the estimates obtained from the non-

quadratic state estimator representing the voltage magnitude 

and phase angle at bus p. 

5.3. Simulation Results 

Voltage magnitude and voltage angle profiles are presented 

in Table 6. Figures 2 and 3 present voltage magnitudes and 

voltage angle profiles in graphical form. The estimation 

errors for voltage magnitudes and voltage angles are 
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presented in Figures 4 and 5, respectively. Figure 6 shows 

upper (u) and lower (l) slack variable distribution in 

measurements and comparison of measurement residual (r) 

and measurement error ( ε  ) distribution is presented in 

Figure 7. 

 

Figure 2. Voltage magnitude profile-Tanzania Network 

 

Figure 3. Voltage angle profile-Tanzania Network 

 

Figure 4. Voltage magnitude errors-Tanzania Network 

 

Figure 5. Voltage angle errors-Tanzania Network 

Table 6. Voltage mag. and Angle profiles of Tanzania System Network 

Bu

s 

No

. 

Voltage 

Magnitude[p

.u.] 

Voltage 

Angle[Degr

ee] 

Bu

s 

No

. 

Voltage 

Magnitude[p

.u.] 

Voltage 

Angle[Degr

ee] 

1 00.9614 00.0000 16 00.9350 14.4283 

2 00.9594 04.2278 17 00.9646 09.9308 

3 00.9608 01.7868 18 00.9675 09.9496 

4 00.9548 01.7692 19 00.9605 02.4502 

5 00.9636 13.1024 20 00.9696 02.9531 

6 00.9687 14.3279 21 00.9697 02.9651 

7 00.9579 19.2351 22 00.9494 03.4359 

8 00.9716 15.8562 23 00.9533 05.2061 

9 00.9675 26.6922 24 00.9450 05.8016 

10 00.9545 30.7587 25 00.9989 -02.6612 

11 00.9511 31.0538 26 00.9854 -04.5657 

12 00.9775 23.1554 27 00.9823 -04.4707 

13 00.9715 27.9832 28 00.9443 -8.6637 

14 00.9715 28.9300 29 01.0458 -02.3242 

15 00.9649 28.5558 30 01.0568 -03.7123 

The estimation errors for voltage magnitudes and voltage 

angles are presented in Figures 4 and 5, respectively. Figure 6 

shows upper (u) and lower (l) slack variable distribution in 

measurements and comparison of measurement residual (r) 

and measurement error ( ε  ) distribution is presented in 

Figure 7. 

 

Figure 6. Upper (u) and lower (l) slack variable distributions 

 

Figure 7. Comparison of residual (r) and error distribution 
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6. Discussion 

The following observations from simulation results can be 

made. The voltage magnitude and voltage angle profiles of 

the Tanzanian power system are within acceptable limits i.e. 

0.95-1.10 per unit for voltage magnitude and -35
0
-+35

0
 

degree for voltage angle. The power factor (pf) of the system 

is around 0.857 (+31
0
 degree) which is the accepted 

operating value by TANESCO. Voltage magnitude estimation 

errors are within pre-defined range of ±5%.  

The number of iterations is conditioned by the fact that not 

full Newton-Raphson step length (α) for primal variables is 

taken in order to remain in the feasible region. If in case 

measurements are acting in such way that some of constrains 

tend to be violated, the step length is only restricted to some 

iterations. The decrease of iterations number is achieved if 

more accurate initialization i.e. flats start initialization of 

state vector x
0
is applied. 

7. Conclusion 

Power system state estimation is a critical function in 

determining real-time model for interconnected system 

networks. In this environment, a real-time model is extracted 

at intervals from snapshots of real-time measurements. It is 

generally accepted that the ever expanding system networks 

demand network models that are more accurate and reliable 

than ever. This can only be achieved with robust state 

estimators that reliably deal with state and topology 

processing. With that in mind, this paper has presented 

development of a non-quadratic state estimation method and 

algorithm that incorporate equality and inequality constraints 

in its formulation. The simulation results demonstrate that the 

primal-dual logarithmic barrier interior point algorithm is a 

useful numerical tool to compute the state of an electrical 

power system network, when inequality constraints play the 

essential role in enhancing the reliability of the estimation 

results. Also, it is expected that the significant benefit could 

be gained from application of the constrained state estimation 

method and algorithm to the Tanzanian power system 

network. 
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