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Abstract: This work aimed at detection of aerosols above clouds (AAC). It has been known that AAC has significant potential to 

change the global radiation budget, namely plays an important role in elucidating climate change. First we examined the advantages 

of multichannel data from near-UV to thermal infrared (IR) including polarization channels at red and near-IR collected using the 

GCOM-C/SGLI. The near-UV data at 0.38µm and 0.41µm not only detected absorbing aerosols such as biomass burning aerosols 

(BBA) or mineral dust (DUST), but were also used to distinguish between BBA and DUST with short wavelength IR measurements 

at 1.63µm. Because understanding aerosol types facilitates subsequent aerosol characterization, classification algorithms for aerosol 

types have been dealt with since the previous work. Discriminant verification was performed using ground measurements from 

NASA/AERONET and practically examined in a case of large forest fire. Then the detection of optically thick clouds was 

challenged in a similar way to aerosol classification in order to lead such a final goal of this work as detection of aerosols above 

clouds. Subsequently some scenes concerned with DUST type aerosols or BBA ones above water clouds were detected using 

GCOM-C/SGLI radiance or polarization measurements, respectively, and validated with Terra/MODIS products. 
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1. Introduction 

This work is an application of our aerosol type 

classification algorithm mentioned in the previous work [1] to 

the recent Japanese mission GCOM-C/SGLI measurements. 

The importance of aerosols is further recognized in reference 

to global warming and climate change being more serious and 

imminent. From many research studies, it is well known that 

aerosols directly and indirectly have various effects on the 

climate [2-5]. They have significant potential to change 

atmospheric circulation fields through changes in the radiation 

budget [6]. Aerosols are said to have negative effects on 

surface temperature and positive effects on cloud cover [7, 8]. 

On the other hand, the fifth Intergovernmental Panel on 

Climate Change (IPCC) report illustrates the warming effect 

of black carbon aerosols versus the cooling effect of other 

types of aerosols [9, 10]. Therefore, the accurate detection of 

aerosol types has become an urgent subject to understand 

global climate problems. Additionally, they have an effect on 

each other. For example, large forest fires have increased due 

to global warming and climate change, while at the same time 

the warming effect type biomass burning aerosols (BBA) are 

caused by the forest fires or agriculture burning [11-13]. 

Therefore, this work focuses on the efficient detection of BBA. 

Moreover, mineral dust aerosols (DUST) are the most 

abundant aerosols in both quality and quantity [14-17]. 

It is well known that not only BBA and DUST aerosols, but 

all types of aerosols have significant influences on factors such 

as air quality, global climate change, local environmental risk, 

and human and biological health [18-20]. Aerosol remote 

sensing from satellites has been occurring for more than 20 

years. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) is the most notable and valuable space-based 

instrument for aerosol observations [21]. MODIS has been 

operating on Terra and Aqua missions since 1999 and 2002, 
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respectively. Many kinds of products have been obtained from 

MODIS measurements with respect to the land, ocean, 

atmosphere, and cryosphere, and their data are available for 

download (modis.gsfc.nasa.gov/data) [22]. Historically, the 

Total Ozone Mapping Spectrometer (TOMS) onboard the 

Nimbus-7 satellite in November 1978 played an important role 

in aerosol remote sensing. The TOMS demonstrated that 

ultraviolet (UV) wavelengths were effective for the detection of 

absorbing aerosols such as carbonaceous aerosols or mineral 

dust [23]. Such observations continue via the Ozone 

Monitoring Instrument (OMI) onboard the Aura satellite [24]. 

Furthermore, an innovative instrument for aerosol remote 

sensing is Polarization and Directionality of the Earth's 

Reflectances (POLDER). POLDER is a passive optical 

imaging radiometer/polarimeter developed by CNES and it has 

demonstrated the usefulness of polarization information for the 

analysis of aerosols [25], clouds, and aerosol above cloud 

(AAC) systems [26]. The studies by Waquet et al. have pointed 

out that the direct AAC radiative forcing cannot be ignored and 

the direct aerosol radiative forcing in cloud scene should be 

considered in estimation of the global radiation budget [26-28]. 

The Japanese satellite Global Change Observation 

Mission-Climate (GCOM-C) was launched on December 23 

in 2017, and mounted with only the Second Generation Global 

Imager (SGLI) multi-spectral sensor, which has 19 channels 

that encompass the near-UV (0.38 µm) and violet (0.41 µm) 

wavelengths and two polarization channels in the red (0.67 

µm) and near-IR (0.86 µm) wavelengths. The previous work 

mainly used the measurements from ADEOS-2/GLI & 

POLDER-2 observed from April to October in 2003. The 

ADEOS-2 satellite carried Global Imager (GLI) multi-spectral 

sensor and the polarization sensor POLDER-2. It has been 

well that POLDER is a useful instrument for aerosol and cloud 

remote sensing. In that sense, GCOM-C/SGLI has the 

combined function of ADEOS-2/GLI and 

ADEOS-2/POLDER-2. Using the advantageous features of 

SGLI, we intend to develop algorithms for the classification of 

aerosol types and connect further to efficient aerosol retrieval 

of aerosols above clouds. Because aerosols not only modify 

cloud properties, but also aerosols above clouds have 

significant potential to change the radiation budget. 

Aerosol characteristics can be represented using many 

kinds of parameters. The spectral aerosol optical thickness 

AOT (λ) at wavelength λ is the basic parameter [29]. Several 

other aerosol properties such as size distribution and refractive 

index are derived from the AOT (λ) and angular dependency 

of scattered radiance [30]. The quantity and quality of aerosols 

change from time to time depending on the location. Therefore, 

many parameters have to be prepared for the retrieval of the 

optimized aerosol characteristics, especially at a global scale. 

Too many parameters are excessive for numerical analysis, 

and a reasonable simplification for aerosol models is expected. 

The classification of aerosol types facilitates subsequent 

aerosol retrieval [31]. In addition, the aerosol type is a key 

factor in understanding global climate problems. According to 

the automatic classification of accumulated 

NASA/AERONET data, atmospheric aerosols are classified 

into six categories, which are biomass burning (BB), rural 

(RU), continental pollution (CP), dirty pollution (DP), desert 

dust (DD), and polluted marine (PM) [32]. These aerosol 

classifications have been substantially evaluated and are 

useful for aerosol remote sensing. Improvements to the 

algorithm are ongoing [33-35] and the present study is a 

preliminary step in this, namely, developing algorithms for the 

rapid and simple distinction of the BB and DD aerosol types 

from the other types. 

The rest of this paper is organized as follows. Type 

classification of aerosols over land is treated using the features 

of GCOMM-C/SGLI measurements in section 2. In 

subsection 2.1, the similarity and diversity of the algorithms 

for distinguishing aerosol type between the present study and 

the previous one due to the observation performance of SGLI 

and GLI are described. After examination of the updated 

algorithms using the SGLI radiance measurements of R (0.38), 

R (0.41) and R (1.63) on a global scale, the aerosol 

classification criteria are obtained. In subsection 2.2, the 

obtained aerosol distinction criteria are verified. First, the 

biomass-burning episode that happened in North West Coast 

around Canada-United State border on September 18, 2020 is 

taken up to practically validate BBA type aerosol 

identification. Next, discriminant verification is performed 

using ground measurements from NASA/AERONET. 

In section 3, the selection of aerosols above clouds (AAC) 

is challenged. First, in subsection 3.1, the detection of 

optically thick clouds is considered in a similar algorithm as 

mentioned in section 2. Some instances for detection of DUST 

above optically thick clouds are examined based on DDI using 

SGLI measurements in subsection 3.2. Further possibilities 

for detection of BBA above clouds are examined using 

polarization information in subsection 3.3. Note that the 

practical results of aerosols above clouds are compared with 

Terra/MODIS products through NASA/World View. In order 

to capture the behavior of aerosols transported above water 

clouds, some case studies of AAC distribution are shown on 

the global scale in subsection 3.4. 

Finally, the obtained results in this study are summarized, 

and then future prospects aiming further development of this 

work are given in section 4. 

2. Classification of Aerosol Type Based on 

GCOM-C/SGLI Measurements 

2.1. Utilization of Near-UV Data 

The TOMS showed that UV data were effective for the 

detection of absorbing aerosols such as carbonaceous aerosols 

or mineral dust [23, 36, 37]. Our previous works [1, 38] were 

also based on a similar concept in the TOMS-AI (aerosol 

index). In this study, to follow on from previous works, we 

named the following index AAI (absorbing aerosol index): 

AAI = R (0.41) / R (0.38).           (1) 

The variable R in Eq. (1) represents the satellite observed 
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reflectance value at the near-UV (0.38µm) and violet (0.41 µm) 

wavelengths. It is added to avoid ambiguity, whereby the 

definition of our AAI differs from those employed by the TOMS 

or the Global Ozone Monitoring Experiment (GOME) [39]
 
in the 

formula and the reference channels. They employed a shorter 

wavelength (0.34µm) than that used in Eq. (1), and our index 

AAI has a simpler form, with only the ratio of the reflectance. 

Figures 1a, and 1b present observational channels and band 

performance of VN (Visible and Near infrared) to SW (Short 

Wavelength infrared) for SGLI, and those of GLI, respectively. 

The item “IFOV” is an abbreviation of Instantaneous Field of 

View. From Figure 1, it is evident that both sensors have 

similar wavelength channels because SGLI is a successor of 

GLI. The AAI, as defined in Eq. (1), can be applied to 

GCOM-C/SGLI in 2017 as was done for ADEOS-2/GLI in 

2002. In other words, our previous work is a bridge from GLI 

to SGLI for aerosol retrieval. 

 

Figure 1. Band performance of observational channels from VN (Visible and 

Near infrared) to SW (Short Wavelength infrared) of GCOM-C/SGLI, 2017 

and ADEOS-2/GLI, 2002 in Figures 1a and 1b, respectively. 

From the select data observed by ADEOS-2/GLI, we have 

drawn the results that absorbing aerosols such as BBA with 

AAI ≥ 0.83 and DUST with AAI ≥ 0.90 can help to distinguish 

them from other types of aerosols in the previous work. The 

term BBA represents biomass burning aerosols as previously 

defined. The AAI index is also available for the 

GCOM-C/SGLI data, and the same values have been obtained 

as a threshold of AAI for BBA as well as DUST in this study, 

using global SGLI data as shown below. 

In order to separate the BBA from the DUST in the domain 

AAI ≥ 0.9, another index was required. The shortwave 

infrared wavelength-channels were used to detect the dust 

aerosols [40, 41]. Therefore, the band with 2.21 µm of GLI 

was introduced in the previous work [1]. However, in 

reference to the performance shown in Figure 1, the 1.63 µm 

band seems to be better than the 2.21 one in the case of SGLI 

[42]. The following reflectance ratio (R) at a wavelength of 

1.63 µm to that of 0.38 µm is adopted here as an updated DDI 

(dust detection index); 

DDI = R (1.63) / R (0.38).           (2) 

Figure 2 presents histograms and cumulative frequencies of 

AAI at every interval of AOT (0.50µm) as [0.0, 0.1], [0.1, 1.0], 

and [1.0, 3.0] in the top, middle and bottom, respectively, where 

N represents the total number of available measurements of 

GCOM-C/SGLI/L2. The SGLI data for BBA are selected over 

BBA-domain areas such as the Amazon, South Africa, and 

Siberia from May 1 to October 15 in 2018 and May 1 to August 

26 in 2019. The data for DUST are selected over the Sahara 

Desert from May 1, 2018 to August 26, 2019. The total amount 

of data is enough for statistical processing. 

 

Figure 2. Histograms and cumulative frequencies of AAI at every interval of 

AOT as [0.0, 0.1], [0.1, 1.0], and [1.0, 3.0] in the top, middle and bottom, 

respectively, where N represents the total number of available SGLI data in 

the target areas. 

Figure 3 is the same as Figure 2 but for DDI. It is found 

from Figures 2 and 3 that the mean (m) and standard deviation 

(σ) values of the histogram were changed with the AOT 

intervals. From the cumulative frequency, AAI ≥ 0.83 in the 
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domain AOT ≥ 1.0 accounted for 99% of the total for BBA. 

Similarly, AAI ≥ 0.9 accounted for 97% of the total for DUST. 

Furthermore, in respect to DUST, it was mentioned that desert 

reflection alone was approximately at 0.83 ≤ AAI < 0.89, 

desert reflection with DUST was at 0.89 ≤ AAI ≤ 0.9, and 

DUST scattering alone was at AAI ≥ 0.9. However, more data 

besides the ones from Sahara are necessary to draw this 

conclusion in detail. Nevertheless, we conclude that BBA, and 

DUST are detected at AAI ≥ 0.83, and AAI ≥ 0.9, respectively. 

This conclusion coincided with the GLI case treated in the 

previous work [1]. The values of DDI for BBA were 

approximately lower than 1.1 at low AOTs and apparently 

were decreasing with the AOT until AOT=3. It was concluded 

that the BBA acquired DDI values lower than 1.1. It was found 

that almost all the DUST (99%) acquired DDI values ≥ 1.1 

denoted by the dotted arrow in Figure 3. Simply speaking, the 

values of DDI were greater than 1.1 for Dust. We concluded 

that DDI=1.1 was the threshold value to distinguish between 

BBA and DUST. 

 

Figure 3. The same as Figure 2 but for DDI. 

As a result, an aerosol type discrimination chart has been 

obtained in the 2-dimensional coordinates of the AAI and DDI 

as shown in Figure 4, based on three channels, 0.38, 0.41, and 

1.63µm of GCOM-C/SGLI measurements. The dark yellow, 

red, and cyan colors represent DUST, BBA, and other types of 

aerosols, respectively. 

 

Figure 4. Aerosol type discrimination chart in 2-dimensional space derived 

from SGLI measurements. The horizontal and vertical axes denote the AAI 

and DDI values, respectively. 

2.2. Verification and Validation of the Aerosol Type 

Distinction 

Aerosol type classification algorithms derived in the 

previous section from SGLI/level-2 global data of radiance are 

practically examined in the case of a large forest fire in North 

West Coast around Canada-United State border that happened 

on September 18, 2020. The image on the left in Figure 5 

presents the color composite image enlarged around the area 

in question and the figure on the right is the geometrical map. 

The white rectangle in this map indicates the approximate 

satellite image position on the left side. It is found from Figure 

5 that the color composite image clearly shows that the forest 

fire occurred in the mountains along the west coast, caused 

heavy smoke, i.e. biomass burning aerosols (BBA) colored by 

smoky gray, and spread eastward. 

 

Figure 5. Color composite image consisting of GCOM-C/SGLI measurements 

over North West Coast around Canada-United State border on September 18, 

2020 is shown on the left side. For reference, the geometrical map, cited from 

Google, is on the right side, with the white rectangle approximately 

corresponding to the satellite image on the left. 

Figure 6 presents the distribution of AAI and DDI over the 

same area as the image on the left in Figure 5, and each 

histogram within the white rectangle on each upper image. 

Figure 6 indicates that the heavy smoke area coincided with 

the area with high AAI ≥ 0.83 and low DDI ≤ 1.1 as denoted 

by the dashed arrow lines with numerical values. These values 

coincide with the aerosol type classification charts shown in 
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Figure 4 derived in the previous subsection. From this, it can 

be stated that the proposed algorithms for aerosol type 

classification have been validated by the smoke scene 

presented in Figure 5, which illustrated that our discrimination 

chart is effective for BBA type aerosols. 

 

Figure 6. Distribution map and histogram for all detection items for BBA in 

the same scenario shown in the left in Figure 4. Note that histograms are 

distributed within the white frame rectangle in each image. The values were 

derived from GCOM-C/SGLI/L2 measurements on September 18, 2020. 

The verification was only one application of our algorithm 

for aerosol type classification based on SGLI products to the 

region where the aerosol type was known as a biomass 

burning aerosol (BBA) due to the forest fire. The sensitivity 

test of the separation technique should be carried out over 

regions where neither of these aerosol types are likely to be 

present. The AOT values provided by ground measurements 

of NASA/AERONET are examined in comparison to AAI 

and/or DDI by SGLI. It is noted that GCOM-C/SGLI takes 

approximately two days for the entire coverage of the Earth 

and has a four-day recurrence period in the mid-latitude 

region. The SGLI therefore, has a limited number of 

encounters with a certain AERONET site during the two 

years from 2018 to 2019. Although the total amount of data is 

inadequate for statistical processing of the relationship 

between SGLI data and the values of AOT at some 

AERONET sites, its correlation can be used for verification 

of BBA and DUST distinction chart presented in Figure 4. 

Figure 7 presents SGLI/AAI and DDI dependency on the 

NASA/AOT (0.50 µm) and the cumulative frequency at 

selected AERONET sites shown in the top map (refer to 

https://aeronet.gsfc.nasa.gov/). The upper and lower groups 

in Figure 7 correspond to BBA and DUST, respectively. The 

values of AOT were provided from AERONET-V3-L1.5. The 

measurements were selected at the AERONET sites of 

Alta_Floresta, CUIABA-MIRANDA, Itajuba, Ji_Parana_SE, 

Rio_Branco, SANTA_CRUZ_UTEPSA, and Sao_Paulo in 

the Amazon region, Bujumbura in South Africa, and Irkutsk 

and Yakutsk in Siberia from July 1 to Oct. 31 in 2018 and 

2019 for BBA denoted by red circles in AERONET site map. 

DUST measurements at the Tamanrasset site in the Sahara 

(circles by dark yellow) were selected from May 1, 2018 to 

Dec. 31, 2019. The time difference between both 

measurements of AERONET/AOT and SGLI is within ± 15 

min. At a glance the validation in a case of BBA seems to be 

limited to thick AOT. Therefore the cumulative frequency 

graph was presented only the case of AOT ≥ 1.0. However, 

comparing the behavior of AAI and DDI with respect to AOT 

in the case of BBA presented in Figures 2 and 3 with that in 

Figure 7, there is no contradiction between the two. It is 

possible to mention that our discrimination chart of Figure 4 is 

effective for AERONET measurements. 

 

Figure 7. Evaluation of AAI and DDI by SGLI versus AOT by 

NASA/AERONET. The top map denotes the geographical position of 

AERONET sites (https://aeronet.gsfc.nasa.gov/). The upper and lower groups 

correspond to BBA and DUST, respectively. The upper and lower in each 

group represent dependency of AAI and DDI on the AOT (0.5 µm) and 

accumulated frequency, respectively. 
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3. Detection of Aerosols Above Clouds 

3.1. Detection of Clouds 

The difficulty pertaining to detecting clouds in terms of our 

AAI and DDI is challenged. The AAI and DDI values were 

examined for water and ice cloud flag pixels in Figure 8, 

where the cloud flag and cloud optical thickness (COT 

(0.50µm)) were derived from SGLI/Level-2 products from 

May 1, 2018 to August 23, 2019. 

 

Figure 8. AAI and DDI from SGLI/Level-2 cloud flag pixels from May 1, 2018 

to August 23, 2019 for water cloud and ice cloud in the upper and lower 

groups, respectively. The top histogram is the AAI and DDI vs COT(0.5) from 

SGLI/Level-2, and the middle and bottom histograms represent the domain of 

COT(0.5) at [0, 20] and COT(0.5) ≥ 20, respectively, in each group. 

The COT behavior was rather different between the water 

and ice clouds. Usually, each ice cloud item converged faster 

with the COT than that of the water clouds. Additionally, 

mixed regions of clouds and aerosols are frequently found in 

SGLI/Level-2 products. To further explore this issue, the 

clouds need to be handled more precisely. The structure and 

physics of clouds are complicated, hence, it is impossible to 

detect them, especially optically thin cirrus clouds. Although 

much research on cloud detection has already been done, we 

will also tackle this issue next. When the fine feature of 

clouds is ignored, color indices for the AAI and DDI for 

clouds showed stable behavior in the region with a COT 

(0.50 µm) ≥ 20. The pixels with COT(0.5) ≥ 20 of water 

cloud approximately correspond to 23% and those of ice 

clouds to 8% as represented at top figure in each group of 

Figure 8. In other words, the optical thickness of the ice 

cloud is usually less than that of the water cloud. The thick 

water clouds at COT(0.5) ≥ 20 are sufficient to cover the 

underlying aerosols or the Earth’s surface. Roughly speaking, 

the values of AAI approach 1.07 and the acquired values of 

DDI are less than 0.85 for optically thick clouds. 

In comparison of the results in Figure 8 with the aerosol 

classification in Figure 4, the AAI is not available for the 

distinction of thick clouds from absorbing aerosols. The DDI 

for DUST is evidently higher than that of the thick cloud. This 

fact suggests that DUST above the clouds is detectable using 

DDI. Some practical examples based on SGLI measurements 

are examined to evaluate upcoming issues such as the 

detection of aerosols over clouds. 

3.2. Dust Above Water Clouds 

In this section, interesting examples of DUST aerosols 

above clouds are presented. As interpreted in the previous 

subsection, DUST aerosols took values of the index DDI ≥ 1.1 

at every interval of AOT (refer to Figure 3). On the other hand, 

the index DDI ≤ 0.85 for thick clouds (refer to Figure 8). 

These results suggest that DUST above clouds is detectable 

using DDI. It is a really pity to know from Figures 2, 4 and 8 

that the index AAI is not useful to detect absorbing aerosols 

over clouds as already mentioned above. Then, pixels with 

DDI values higher than 1.1 existing above the water cloud 

seem to be candidates for DUST particles above clouds. 

Figure 9 presents the SGLI measurements over the ocean in 

the southeast front area of the Arabia peninsula observed on 

August 2, 2018. Figure 9a denotes the geometrical map, 

Figures 9b and c represent the distribution of the COT (0.5) of 

water clouds and DDI within the white frame rectangle in the 

Figure 9a map, respectively. It is clear that DDI higher than 

1.1 pixels exists above the water cloud. The thick cloud 

obviously takes low DDI values less than 0.85 (see Figure 8). 

It has been drawn from Figures 3 and 4 that the pixels with 

DDI ≥ 1.1 are definitely DUST. That is, Figure 9c is the scene 

of DUST aerosols above thick water clouds. The DUST 

particles probably come from Rub Al Khali Desert on the 

Arabia peninsula. 
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Figure 9. Images over the ocean in the southeast front area of the Arabian 

Peninsula, Figures a, b, c present geometrical map, water cloud and DDI 

distributions observed by SGLI on August 2, 2018, respectively. 

The fact suggested by Figure 9 as DUST advection from the 

desert on the Arabia peninsula is demonstrated in Figure 10 

referred from NASA/World View 

(https://worldview.earthdata.nasa.gov) based on 

Terra/MODIS [43]. In Figure 10, the upper five figures 

represent color composite images and the ones at the bottom 

represent COT distribution superposed on each color image. It 

is found from Figure 10 that the sand storm advection was 

clearly arranged in time series from Rub Al Khali desert on the 

Arabian Peninsula on July 29 over the Arabian Sea to the 

southeastern front area of the peninsula on August 2, 2018. 

The satellite transit times from Terra and GCOM-C are 

slightly different from each other. The cloud movements 

observed by both satellites do not necessarily match though, it 

should be noted that Figure 9c suggests an interesting scene of 

DUST above water clouds. Although the analysis of this 

complicated case is a future issue, the detection of Dust 

aerosols above clouds using DDI only is quite interesting. 

 

Figure 10. NASA/World View (https://worldview.earthdata.nasa.gov) based 

on Terra/MODIS. The upper five figures present color composite images from 

July 29, 2018 to August 2, 2018, the lower three represent COT superposed on 

each color image from July 31 to August 2, 2018. 

Some other cases for the detection of DUST above water 

clouds are introduced in Figure 11. These figures are the same 

as Figures 9 and 10 but for other areas on other days as 

follows: 

1. Eastern area of Gobi Desert (namely inner Mongolia) on 

May 16, 2019, 

2. Taklimakan Desert on May 19, 2019, 

3. Western coast of Sahara Desert on August 26, 2019. 

 

Figure 11. Similar to Figures 9 and 10 but for Gobi Desert on May 16, 2019, 

Taklimakan Desert on May 19, 2019, and West coast of Sahara Desert on 

August 26, 2019 in the left, middle and right columns, respectively. Figures 11 

a, b, c and d represent geometrical maps, COTs of water cloud and DDIs 

derived from SGLI and color composite images superposed on each color 

image referred from NASA/World View based on Terra/MODIS, respectively. 

3.3. BBA Above Water Clouds 

The aerosols above clouds are not necessarily Dust types. 

BBA or other type aerosols or mixture of various type aerosols 

is considerable. The index DDI alone is powerless to deal with 

these difficult issues. Unfortunately, the index AAI cannot be 

used. At any rate, we have to devise another tools for 

challenge of an inevitable task as detection of BBA above 

water clouds. Hence, polarization information is examined. 

The SGLI has two polarization channels with fine resolution 

of 1 km in the red (0.67µm) and near-IR (0.86µm) 

wavelengths (strictly speaking, 0.6735 µm and 0.8685 µm, 

refer to Figure 1). Observing the target together with radiance 

and polarization is essential. This is the advantage of SGLI. 

Here, we take this advantage with respect to detection of BBA 

type aerosols above clouds. The polarized radiance (Pol (λ)) at 

a wavelength λ is defined with Stokes parameters (I, Q, U, V) 

as follows: 

2 2( ) .Pol Q Uλ = +               (3) 

A plus or minus sign of Pol (λ) follows Q. The degree of 

polarization (Pol. Deg.(λ)) is defined as 

Pol. Deg.(λ) = Pol (λ) / I (λ).           (4) 

Figure 12 represents the cumulative frequency and the 

averaged value (m) and the standard deviation (σ) for each 

case, namely Figures 12a, b and c present BBA, DUST and 

water clouds, respectively. It is clear from Figure 12 that Pol. 

Deg. (0.67) in the case of BBA is higher than 10%, but DUST 

and optically thick water clouds take the values of Pol. Deg. 

(0.67) less than 10%. This fact suggests Pol. Deg. (0.67) is an 

indicator to detect BBA above water clouds. 
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Figure 12. Cumulative frequency (%) of degree of polarization at a 

wavelength of 0.67µm (Pol. Deg.(0.67)). Figures 12a, b and c represent the 

case of BBA, DUST and water clouds, respectively. The values of m and σ 

denote mean value and standard deviation, respectively, derived from the 

histogram of pixel numbers in each case. 

Figure 13 presents the satellite images over the southeastern 

South America on 1, 2 and 3 August in 2019. Figures a, b, c and 

d represent geometrical maps, COTs of water cloud and Pol. 

Deg. (0.67) derived from SGLI, and color composite image 

referred from NASA/World View based on Terra/MODIS, 

respectively. It can be said Figure 13 illustrates the interesting 

phenomenon of BBA above water clouds. Biomass burning 

plumes have often happened in this area of the southeastern 

South America particularly in August and September [44]. 

 

Figure 13. The same as Figure 11 but for BBA above clouds over 

southeastern South America on 1, 2 and 3 in August in 2019. Figures 12a, b, c 

and d represent geometrical maps, COTs of water cloud and Pol. Deg. (0.67) 

derived from SGLI, and color composite image referred from NASA/World 

View based on Terra/MODIS, respectively. 

Further considerations were required regarding the 

effective utilization of polarization information limited to 

detection of BBA above water clouds. Simple questions of 

whether polarized radiance, its color ratio or polarization 

degree are suitable for this issue were considered more 

carefully. Note that SGLI polarization measurements are 

restricted to one directional observation not 

multi-directional one like POLDER. Anyway it is of 

interesting that the detection of BBA aerosols above water 

clouds using polarization degree at a wavelength 0.67µm 

only has made. 

3.4. Case Studies of Global Distribution of Aerosols by Type 

It is self-evident that several kinds of aerosols exist above 

ice or water clouds of various optical thickness in nature. In 

the previous subsections, detection of aerosols above clouds 

(AAC) were quantitatively dealt with just for the case of BBA 

type aerosol or DUST one above optically thick 

(COT(0.5)≥20) water clouds over land. In that sense, such an 

issue as effective detection of AAC in general has been left 

and should be continued working for comprehension the 

impacts of aerosols upon clouds and/or climate. However, 

practical examples of global distribution of the limited aerosol 

types as BBA or DUST above water cloud provide us with 

some suggestions regarding the advection of aerosols and an 

indicator of the lower limit of the direct AAC radiative forcing 

in the global radiation budget [27]. 

As examples, Figure 14 presents the global distribution 

of atmospheric composition, namely aerosols by type 

discriminated in Figure 4, clouds from SGLI/L2 products, 

and DUST or BBA aerosols above optically thick 

(COT(0.5)≥20) water clouds detected according to the 

procedure described in subsection 3.2 or 3.3, respectively, 

over land. The coloring of aerosol type is the same as Figure 

4, and the optically thick water cloud (COT(0.5)≥20) is 

denoted by dark gray and other clouds in light gray in 

Figure 14. The table under the global map shows the 

percentage of pixels of each atmospheric composition 

within ±60 degrees latitude over land measured by SGLI. 

Naturally, the value depends on the observation date, but it 

can be roughly said that 60% or more are clear sky and 40% 

or less are covered by clouds including 3% or less optically 

thick (COT(0.5)≥20) water clouds. From the results in 

Figure 14, it’s clear to see that our assumptions as thick 

water clouds are too limited to deal with the aerosols above 

clouds. That’s why Dust above cloud case is very few. The 

lower left figures in each map present an enlarged figure 

corresponding to the small black frame square in the global 

map and its color composite image for a demonstration of 

AAC. An example of top figure presents Dust aerosols 

above clouds, and middle and bottom demonstrate 

examples present the cases of BBA above clouds. 

Throughout three maps, it’s the season when wildfire 

occurred and lots of DUST particles were seen within the so 

called dust belt (5-40°N). 
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Figure 14. Global distribution of atmospheric composition. The coloring of 

aerosol type is the same as Figure 4, and the optically thick water cloud 

(COT(0.5)≥20) is denoted by dark gray and other clouds in light gray. 

Recently, the combination of active and passive satellite 

sensor [45] or high- temporal- resolution by geostationary 

satellite [46] have provided useful products on aerosols above 

clouds. We will also continue to challenge this issue based on 

utilization SGLI polarization information and combination 

with other satellite data. 

4. Summary 

In this work, the aerosol type classification algorithms 

proposed in the previous work [1]
 
were applied to a recent 

Japanese mission GCOM-C/SGLI. The advantages of near-UV 

data at 0.38µm and 0.41µm wavelength channels collected 

using the ADEOS-2/GLI launched in 2002 were examined 

alongside those of GCOM-C/SGLI in 2017. The absorbing 

aerosol index; AAI=R (0.41) / R (0.38) defined in Eq. (1); for 

the detection of absorbing aerosols as BBA or DUST, as well as 

the dust detection index; DDI = R (1.63) / R (0.38) in Eq. (2): 

for discriminating BBA from DUST were practically applied 

for SGLI measurements. Several procedures have been 

proposed to detect absorbing aerosols. Comparatively, our AAI 

and DDI took a simple form that says only the ratio of 

two-channel satellite data, which made their application to any 

other satellite data easier. The discrimination chart for aerosol 

types created based on results obtained after processing a 

sufficient number of SGLI measurements was presented in 

Figure 4, and practically verified in the case of a large forest fire 

in North West Coast around Canada-United State border that 

happened on September 18, 2020. From the verification results, 

the correctness of chart was proved. 

Moreover, the detection of optically thick clouds was 

evaluated using similar algorithms. It was found that much 

more spectral information was required for efficient 

detection/separation of water/ice clouds. On the other hand, 

fortunately DDI index, and Pol. Deg. (0.67) were available to 

detect DUST, or BBA type aerosols above optically thick 

water clouds, respectively. Further considerations were 

required regarding the detection of unlimited aerosols above 

clouds. That is an inevitable next subjects along with aerosol 

retrieval in the combined system of aerosol above cloud. 

The classification of aerosol types is available because an 

understanding of aerosol types facilitates subsequent aerosol 

retrieval denoted. Present scheme of aerosol type distinction 

is limited to the intrinsic BBA or DUST alone, against the 

facts. In this work, we have classified sulfate-based aerosols 

or all mixed cases as "others", but in reality the "others" 

category is the most common. In the case of aerosol retrieval, 

finding the BBA/DUST helps the subsequent retrieval of size 

or refractive index of the surrounding BBA/DUST like 

aerosols by slightly changing the properties of the 

BBA/DUST. This process is very efficient for all aerosol 

retrieval. These findings demonstrate that the present work is 

available for aerosol retrieval in severe aerosol events using 

vector radiation simulations [47, 48]. This study further 

emphasizes the importance of rapid detection of severe 

aerosol events [49]. 

This work, using a sufficient number of new real 

GCOM-C/SGLI data will be available for other future 

missions. Further studies should consider the following: 

1. Comparison and combination with multi-satellite data. 

2. Effective cloud detection. 

3. Detection of aerosols above clouds in general. 

4. Characterization of aerosols/clouds in the combination 

system of aerosol above cloud. 
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