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Abstract: Volatility forecasting is important both theoretically and in practice, varying by forecasting methods and financial 

markets. In this article, we explore this topic in the Taiwanese markets, using the encompassing regression models. We use the 

volatility of the Taiwan Stock Index (TAIEX) and its futures in the encompassing regression model to respectively make 

asynchronous forecasts of realized volatility (RV) and implied volatility (IV). Besides trading frequency, we find that transaction 

matching time is a key factor for obtaining steady RV values. Also, we find that the TAIEX index RV has a long memory. Moreover, 

we discover that, to obtain a stationary RV with a stable, long memory parameter, the optimal sampling intervals for the intraday 

return were nine (9) and thirty (30) minutes. In addition, we uncover that the spot volatility is more predictive of RV than the futures 

volatility. In the forecasting of IV, the volatility of futures has more information content, which can help improve overall forecast 

performance, especially when employing the ARFIMA+Jump model in the non-bear market and the ARFIMA+Jump/Leverage 

model in the bear market. The empirical result implies that the underlying asset of the TAIEX options (TXO) is approximately the 

index futures rather than the spot index, owing mainly to the demands for hedging and arbitrage from the TXO holders. 

Keywords: Bayesian ARFIMA, Encompassing Regression, Forecasting, Implied Volatility, Realized Volatility, Taiwan 

 

1. Introduction 

There has been sustained interest in volatility forecasting in 

the finance literature, as illustrated by some recent studies [7, 

40, 50]. The literature on volatility forecasting can be roughly 

grouped into two branches, one about realized volatility (RV) 

and another about implied volatility (IV). Realized volatility 

forecasting is conducted through historical volatility (HV) and 

implied volatility, such as those studies carried out by Canina 

and Figlewski, Christensen and Prabhala, and Jiang and Tian 

[13, 19, 33]. These studies maintain that IV or perhaps HV 

could be an unbiased estimator of RV under the 

efficient-market hypothesis and can be used as the predictor 

variable for RV. Canina and Figlewski and Christensen and 

Prabhala find that implied volatility has virtually no 

correlation with future return volatility and does not appear to 

incorporate information contained in historical return 

volatility [13, 19]. However, Jiang and Tian [33] provide 

support for the informational efficiency of the option 

markets. 

Implied volatility forecasting is accomplished through the RV, 

HV or IV for at-the-money options, as done by Chan, Jha, and 

Kalimipalli [15]. The main contribution of above studies is that 

those models can forecast IV in real investment simulations. They 

compare real investment performance of different forecasting 

models. However, they do not compare the information content of 

volatility in the spot market with that in the futures market in the 

same time period. The current study intends to fill this void. 

According to the efficient-market hypothesis, futures price 

should lead spot price when new information arrives, because 

futures market provides a function of price discovery. 

Empirically, many studies have documented that futures 

market incorporates new information more efficiently than 

spot market and, thus, futures returns overall tend to lead more 

often than lag spot index returns. For example, Kawaller, 
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Koch, and Koch find that the S&P 500 index futures lead spot 

index by about 45 minutes [35]. Stoll and Whaley also 

discover that return on S&P 500 and MMI index futures lead 

spot by about 5 minutes [49]. Chan and Fleming, Ostdiek and 

Whaley report similar findings [14, 24]. 

In Taiwan the first TAIEX (Taiwan Stock Exchange 

Capitalization Weighted Stock Index Taiwan stock index) 

futures contract was launched by Taiwan Futures Exchange 

(TAIFEX) on July 21, 1998. The empirical studies about price 

relationship between spot and futures prices on TAIEX are 

mixed. Some of the evidence indicates that price discovery is still 

dominated by cash market while other evidence shows that the 

returns of TAIEX futures lead those of cash market. For example, 

Lin, Chen, Hwang and Lin investigate the interaction of return 

and volatility between the TAIEX futures and the TAIEX spot 

markets [39]. They found that the price discovery process is 

dominated by the TAIEX spot market in terms of return and 

volatility. Hsieh investigates information transmission [29] 

between the TAIEX futures and the underlying spot index in 

terms of return. He finds that futures market dominants the spot 

market in price discovery. Jang and He, employing a regression 

model, investigate the intraday price relationships between the 

spot, futures and options markets for the TAIEX [32]. They find 

that the TAIEX futures returns lead the TAIEX returns by about 

20 minutes. Overall, index futures tend to lead more often than 

lag the cash index in price discovery. 

It seems that much of the literature does not discuss the 

leading effect of volatility with information content in futures 

market. If futures volatility with superior information leads 

spot volatility, futures volatility should possess superior 

forecasting ability than spot volatility, due mainly to the price 

discovery function in the futures market. In this paper, the 

TAIEX, the TAIEX futures (TX), and the TAIEX options 

(TXO) are used to calculate different volatilities to be 

incorporated into the encompassing regression model to 

forecast the RV and IV. Such an approach could contribute to 

the literature by comparing the information content of 

cash-based volatility with that of futures-based volatility. 

Such an effort is interesting for a number of reasons. First, 

futures volatility is added as a predictor variable with 

incremental information to forecast IV. Second, forecast values 

are used for all predictor variables in the encompassing model 

to generate an asynchronous regression model so that the model 

would be realistic enough to be close to the real world. Finally, 

a simulation of the multiple of the smallest matching time for 

transaction is conducted to obtain stable intra-day data for RV 

calculation by using long-memory parameter and coefficient 

values synchronously estimated by Bayesian ARFIMA 

approach., which could reduce the bias created by the two-step 

maximum likelihood estimate (MLE) method. 

We decide to adopt the encompassing regression model in 

light of the evolving literature. Many studies that examine 

volatility models have cited the methods and results of 

Lamoureux and Lastrapes, who tracked 10 individual stock 

options to test several volatility models, as a benchmark for 

comparison in order to verify the accuracy of their empirical 

results [38]. They criticize that their option data is outdated, their 

sample size is insufficient, and their methodology is incomplete. 

These deficiencies are responsible for the bias and inefficiency of 

the empirical results of Lamoureux and Lastrapes [38]. Canina 

and Figlewski find that the IV from the S&P100 index options is 

a poor forecast for the subsequent RV of the underlying index 

[13]. They apply an encompassing regression analysis and find 

that IV has virtually no correlation with future RV and thus does 

not incorporate information contained in historical volatility. 

Likewise, our use of options data follows the literature. 

However, according to Rubinstein, the US option market has 

undergone a structural change since 1987 [47]. He contends that 

only high liquidity options possess valuable information. Several 

related studies consistently discover that the implied volatility of 

high liquidity options has better information content. Mayhew 

suggests using nearly at-the-money option to estimate implied 

volatility for pricing option with identical maturity [41]. The 

empirical method shows that the at-the-money implied volatility 

is an important variable. After reviewing 93 papers on volatility, 

Poon and Granger conclude that implied volatility with more 

relevant information has the best forecasting ability and 

high-liquidity at-the-money option has the least error [45]. 

Accordingly, our research sample comprises of only nearly 

at-the-money option contracts. 

Our empirical results and findings are as follows. Trading 

frequency and transaction matching time are conducive to a 

stable RV. The multiple of 45 seconds (6, 9, 15, and 30 minutes) 

transaction matching time helps calculating Taiwan stock index 

RV with stability. We observe a stable long memory parameter 

in 9 and 30-minutes RV values. Spot HV has higher RV 

forecasting ability than futures HV. Furthermore, we find that 

futures volatility has higher forecasting ability for IV. Therefore, 

the futures market leads the spot market in Taiwan. Our 

empirical results imply that the underlying asset for implied 

TXO is approximately TX, not TAIEX. It is due to the hedging 

and arbitraging needs from option holders. Finally, through 

trading simulations of a delta-neutral straddle portfolio using 

various IV forecasts, we observe not only long memory but also 

jump tendency in the return of TAIEX. 

The remainder of the paper is organized as follows. Section 2 

describes data and methodology. Section 3 introduces the 

estimation methods of volatility forecasts. Section 4 discusses the 

main results and checks their robustness. Section 5 concludes. 

2. Data and Methodology 

2.1. Data 

Our samples include Taiwan Stock Exchange Capitalization 

Weighted Stock Index (TAIEX), TAIEX futures (TX) and 

TAIEX options (TXO) traded on the Taiwan security market 

over the period December 24, 2001 to May 20, 2008. The daily 

and intraday data are provided by Taiwan Economic Journal 

(TEJ) database, TAIFEX and TWSE (Taiwan Stock Exchange). 

We restrict our data to pre-May 20, 2008 as TAIEX plunged 

significantly after the Presidential election. During the months 

after the Presidential election, the stock market collapsed on 

May 21, 2008. To test the effectiveness of the forecasting 
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models, we use an out-of-sample period from December 19, 

2007 to May 20, 2008. Figure 1 presents TAIEX and its return 

during the sample period. The patterns of TAIEX in Figure 1 

(period before the vertical dashed line) shows that our sample 

period contains both bull and bear markets. Furthermore, the 

pattern (period after the vertical dashed line) of TAIEX shows 

a sharp decrease following the Presidential election. As such, 

we use another post-election out-of-sample period, May 21, 

2008 to October 9, 2008, for robustness test. 

 

Note: The post-Presidential election period is after the vertical dashed line. 

Figure 1. Index level and return of TAIEX from December 24, 2001 to October 9, 2008. 

We use nearby contracts owing to the low turnover of the 

distant contracts. Additionally, many prior studies suggest that 

the last few days before the expiration of the futures contracts 

reveal unusual trading activities and higher volatility. Contracts 

are thus rolled over to the next nearby contract on the 7th day 

before expiration to mitigate the expiration effects. Thus, our 

samples of futures and options contracts will be nearby contracts 

with a maturity period of 8 to 30 days. In addition, if the implied 

volatility is negative or greater than 100%, the contract is 

eliminated. Finally, we proxy for the risk-free interest rate using 

1-month time deposit rate from the First Bank of Taiwan. 

The stocks are traded on the Taiwan Stock Exchange during 

trading hours from 9:00 am to 1:30 pm, Monday to Friday. 

However, the trading hours for the TAIEX futures and options 

extend from 8:45 am to 1:45 pm. We thus truncate the first and 

last 15 minutes of the data on futures trading to match the 

trading hours for the futures and stocks. 

We compute moneyness following Bakshi, Cao, and Chen 

[8]. Owing to the non-tradability of the TAIEX and the 

non-synchronous problems, we employ the TAIEX futures 

index in computing moneyness (M): 

TX
Moneyness

K
=               (1) 

where TX is daily closing price with a nearby contract (if no 

closing price on the day, we replace the closing price with 

settlement price), K is the strike price. Contracts with an 

absolute value of M from 0.97 to 1.03 are the placed into the 

at-the-money (ATM) categories. Options with absolute 

moneyness below 0.02 or above 0.98 are excluded due to the 

distortion caused by price discreteness. 

2.2. Models 

Studies on volatility relationships have generally emerged 

from the perception that estimated volatility is an 

informationally efficient predictor. A particularly simple and 

intuitive approach for testing this conjecture is to run the Mincer 

and Zarnowitz predictive regressions [42]. This methodology is 

still by far the dominant approach in the literature addressing the 

efficiency and bias issue of volatility forecasts. The setting for 

Mincer and Zarnowitz’s model accommodates traditional 

univariate predictive regressions as well as extended 

encompassing regressions [42]. The generic notation for the 

regressor and regressands emphasizes the fact that the exposition 

applies across alternative transformations of volatility measures 

and forecasts, such as basic variances, standard deviations or 

volatilities and log-volatilities, which each may have desirable 

empirical or theoretical properties. 

The encompassing regression analysis can well explain 

dependent variables from the information content contained in 

independent variables. In a study of the forecasting ability of 

volatility models, it is quite obvious that selecting independent 

variables with strong forecasting ability is an important task. 

Clemen points out that a mixture of at least two types of volatility 

forecasts can have better forecasting performance for RV than a 

single type of volatility [20]. Following prior research (e.g., 
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Canina and Figlewski, and Christensen and Prabhala,), we 

employ encompassing regressions to examine the ability to 

forecast RV and IV [13, 19]. In encompassing regression model, 

realized and implied volatilities are regressed against three 

volatility forecasts respectively in order to distinguish which one 

has the highest explanatory power.1 In addition, the information 

contents of spot volatility and futures volatility are compared. 

Dumas, Fleming, and Whaley utilize deterministic 

volatility function (DVF) to estimate the relationship of 

implied volatility and five endogenous variables [21]. The 

model has a very high explanatory power implying that the 

volatility formed by DVF has indeed incremental information. 

In view of the criticism raised by Lamoureux and Lastrapes 

and Canina and Figlewski with regards to the informational 

superiority of IV, we extend the model to include the DVF 

implied volatility (DVFIV) [38, 13]. 
First, we combine HV, IV, and DVFIV as three proxy 

volatility variables to forecast RV, (
RV

tσ ), the realized 

volatility. The model (RV model) is expressed as follows: 

e e

  t 1   t 1

e

  t 1

RV HV IV.ATM

t 0 1 t  | 2 t  | 

DVFIV

3 t  | t

Ln( ) Ln( ) Ln( )

Ln( )

− −

−

Ω Ω

Ω

σ = β + β σ + β σ

+ β σ + ε
   (2) 

where β’s and ε are respectively the regression coefficients and 

error term, 
 e

  t 1

HV

t  | −Ωσ , 
 e

  t 1

IVATM

t  | −Ωσ  and 
 e

  t 1

DVFIV

t  | −Ωσ  are 

respectively the day-t predictors of historical volatility (HV), 
ATM implied volatility (IV) and implied volatility computed by 
the deterministic volatility models (DVFIV), conditional on 
information at day t-1. The superscript e stands for expected 
value. Equation (2) contains multiple forecasts and is, thus, often 
called an “encompassing regression”2. We use both spot index 
and index futures separately to estimate historical volatility and to 
ascertain that both HV estimates could be unbiased estimators of 
RV. Furthermore, we forecast IV using HV and RV obtained 
from spot index and index futures. Thus, we set up the following 
encompassing regression (IV-RV) model: 

e e

  t 1   t 1

e e

  t 1   t 1

IV TX HV TX RV

t 0 1 t  | 2 t  | 

TXF HV TXF RV

3 t  | 4 t  | t

Ln( ) Ln( ) Ln( )

Ln( ) Ln( )

− −

− −

− −
Ω Ω

− −
Ω Ω

σ = β +β σ + β σ

+ β σ +β σ + ε
 (3) 

where 
IV

tσ is implied volatility. 
TX HV

t

−σ and 
TX RV

t

−σ  are 

respectively historical volatility and realized volatility of 

TAIEX. 
TX HV

t

−σ  and 
TX RV

t

−σ  are respectively historical 

volatility and realized volatility of TX. Following Christensen 
and Prabhala’s hypotheses test in a univariate model, there are 
some hypotheses to be tested in our encompassing regression 
models [19]. The first is about the efficiency of the volatility 

                                                             

1 This is the main advantage of the model while a potential shortcoming is that 

when the number of independent variables increases, the model’s testing power 

may decline. 

2  This model is discussed in Fair and Shiller, and used by Lamoureux and 

Lastrapes, Jorion, Christensen and Prabhala, Campa and Chang, Jiang and Tian, 

etc.[22, 38, 34, 19, 12, 33].  

forecast. We test whether the volatility forecast subsumes all 
the information contained in realized or implied volatilities. In 
an affirmative case the slope coefficient of volatility forecast 
should be equal to zero. Moreover, as a joint test of information 
content and efficiency we test in equation (2) and (3) if the 
slope coefficients of all volatility are equal to zero and one 
respectively. Following Jiang and Tian, we ignore the intercept 
in the latter null hypothesis, and if our null hypothesis is 
verified, we interpret the volatility forecast as unbiased after a 
constant adjustment [33]. Differing from other papers that use 
spot and options to forecast volatility, we apply not only spot 
and option variables but also futures variable. 

In our encompassing regression model, we expect to use 

spot volatility or futures volatility as an informational proxy 

variable to forecast IV. In the meantime, we could identify 

options traders’ information source. The novelty vis-á-vis the 

previous literature is that forecasted values are used for 

explanatory variables in the encompassing regression model. 

Therefore, we have to forecast explanatory proxy variables 

before executing encompassing regressions. 

The concept of forecasting realized and implied volatilities 

can be expressed as follows: 

�
  1 | tttσ σ −Ω⇐              (4) 

σt is the forecasted volatility at time t, and ɵ
  t-1t | Ωσ is the 

volatility forecasted at time t using all information (Ω) collected 
at time t-1. Our volatility forecasts will include information 
content coming from one-day-ahead (t-1), five-day-ahead (t-5) 
and 20-day-ahead (t-20). We then average across these 
estimated volatilities to obtain the volatility forecasts at time t. 

Encompassing regression tests need to address several 

methodological issues such as possible measurement errors, 

telescoping errors, orthogonal errors, and biases (Fleming, 

Christensen and Prabhala, and Neely) [23, 19, 43]. Because our 

samples come from higher liquidity nearby futures and options 

contracts, the measurement errors should be low. Moreover, we 

estimate the coefficient of the encompassing regressions using 

the generalized method of moments (GMM) approach, which 

can minimize potential telescoping overlapping data problems. 

At the same time, any remaining measurement errors could lead 

to a descending bias in the encompassing regression. 

Following many prior studies on volatility forecasts, we 

employ the following three metrics to compare the pricing 

performance of alternative volatility models: MSE (mean 

squared error), MAE (mean absolute error) and MAPE (mean 

absolute percentage error). 

2.3. Trading Strategies and Simulation 

Since the TAIEX is a non-traded asset, we use out-of-sample 
data to simulate pricing error for the value of forecasted IV in 
order to compare the forecasting ability of IV forecast model. 
Therefore, we use Equation (3) as the forecasting model. 
Furthermore, a trading strategy using options in portfolio could 
be formulated. Then we could observe whether the volatility 
forecast model could profit from abnormal returns. We use 
competing out-of-sample volatility forecasts to trade in nearly 
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at-the-money delta-neutral straddles. In a trading rule, the 
theoretical strike price in a delta-neutral straddle can be solved as 

1 1( ) [ ( ) 1]N d N d+ − . Furthermore, we determine that traded 

straddle combination whose strike price is closest to the 
theoretical strike price. Therefore, we form delta neutral ATM 
straddles each day in out-of-sample period, price them based on 
alternate volatility forecasts and then buy (sell) them on each day 
depending on whether they are underpriced (overpriced). When 
the straddle is a long (short) position, we assume that we can 
borrow (lend) funds at a risk-free rate. We apply the bid-ask 
spread as a filter for all the trades. Then we trade only when the 
absolute-value difference between the model and market price 
exceeds the average bid-ask spread on day t-1. Moreover, we also 
apply NT$80/contract trading cost3. In measuring the risk-return 
tradeoff for option trading, we only consider robust Sharpe ratios, 
taking into account the underlying non-normal distributions. 

3. Estimation Methods of Volatility 

Forecasts 

3.1. Historical Volatility (
HVσ ) 

To estimate historical volatility, we apply the well-known 

formula of Parkinson (1980) to daily high and low stock prices 

as follows: 

2

1

1 1
 =  

4 (2)

n
HV t
t

t t

H
Ln day

n Ln L
σ

=

  
×  

  
∑       (5) 

where tH  and tL  are the highest and lowest index level for 

day t, respectively. The n and day are the number of observed 
days and business days, respectively. Following Gemmill and 
Chiras and Manaster, we take the historical 20-trading-day 
average as the historical volatility to mitigate the estimation 
noise [25, 16]. 

According to the prior literature on volatility forecast, HV 

has rather poor forecasting ability. To enhance the ability of 

HV forecasts, we compute the predictor of historical volatility 

using the ARMA (p, q) model, as defined below: 

( )( ) ( )p t q tB Z B aφ µ θ− =             (6) 

where 1( ) 1 p

p p
B B Bφ φ φ= − −⋅⋅⋅⋅− , and 

1( ) 1 q

q q
B B Bθ θ θ= − −⋅⋅⋅⋅− , 

B is backward shift operator. The p and q order of ARMA 

model can be determined by sample autocorrelation function 

(ACF), sample partial autocorrelation function (PACF) and 

sample extended autocorrelation function (EACF). 

Furthermore, we can obtain the predictor of HV forecasts by 

the property ARMA model. 

3.2. Implied Volatility (
IVσ ) 

                                                             

3 Refer to FCM’s (Futures Commission Merchant) Income Statement of Taiwan, 

- 2008. 

We estimate the implied volatility through the 

Newton-Raphson method on the Black-Scholes (BS) model 

[10]. The Newton-Raphson method makes a guess for volatility, 

and then re-adjusts value by Vega. It uses the tangent to 

approximate the value, making use of the comparative bi-secant 

method, with faster convergence speed. Furthermore, 

depending on moneyness, we average one-day-ahead (t-1), 

five-day-ahead (t-5) and 20-day-ahead (t-20) ATM implied 

volatility as the ATM implied volatility forecasts for day t. 

Instead of using the BS model to estimate IV, Dumas, 

Fleming, and Whaley develop a deterministic volatility 

function (DVF) option valuation model that has the potential 

of fitting the observed cross section of option price exactly 

[21]. Following Dumas, Fleming, and Whaley, we use the 

equation below: 

2

2

0 1 2

53 4

)( ( ) ( )

( )

IV

t t t

t t t t t

TXF TXF
Ln

K K

TXF
T T T

K

σ α α α

α α α ε

= + +

+ + + ⋅ +
   (7) 

where α and ε are the regression coefficients and error term, 
respectively [21]. Following Whaley and Lamoureux and 
Lastrapes, the daily IV for each option class is obtained by 
minimizing the mean squared error between the market 
(PriceMarket) and theoretical price (PriceBSmodel) of the BS model 
for all N number of observed option i on day t [51, 38]:  

( )
, ,

2

, , ,

1

1
Price Price , , , ,

t i t i

N
Market BSmodel IV

t t i t t i t i

i

Min F K r T
Nα

σ
=

   −  
  
∑ . (8)  

By minimizing the mean squared error, we can obtain a vector 

of parameter estimates, { }0 1 2 3 4 5, , , , ,α α α α α α α= . 

Furthermore, suppose that we have an option trading on day t 
with a given moneyness M and maturity of T-t days, we can 
condition day t-k parameter vector α, and forecast IV on day t 
for T-k day horizon. As done usually in IV forecasts, we 
average across the one-day-ahead (t-1), five-day-ahead (t-5) 
and 20-day-ahead (t-20) volatility estimates as day-t DVF 
volatility forecasts. 

3.3. Realized Volatility (
RVσ ) 

Thanks to Canina and Figlewski discussion on unrelatedness 

between IV and future RV, many scholars use high frequency 

intraday data to calculate realized volatility in order to prove the 

forecasting ability of estimated volatility from historical data 

[13]. Furthermore, comparative study of various calculated 

volatilities will illuminate more information content from future 

volatility. Andersen and Bollerslev discover that high frequency 

data can construct more precise ex-post volatility estimates [2]. 

Andersen, Bollerslev, Diebold, and Labys (ABDL hereafter) 

argue that intraday returns provide better estimates of RV and 

5-minute sampling is optimal, considering the impact of market 

microstructure factors on measures based on high-frequency 

data [4]. Similarly, Blair, Poon, and Taylor and Aït-Sahalia, 

Mykland and Zhang argue that if the microstructure noise is 

unaccounted for, the optimal sampling frequency is finite [11, 
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1]. 

In ABDL, daily realized volatility of high-frequency data is 

defined by: 

2, 2
n

RV

t j

j

rσ =∑               (9) 

where rj is the rate of return in interval j on day t and n is the 

number of intervals in a day. For 9-minute sampling frequency, n 

equals 30 in the Taiwan stock market. ABDL shows that five 

minute interval can obtain much better realized volatility. 

However, their underlying asset is foreign exchange which is 

different from ours. According to the matching stipulate of the 

Taiwan Stock Exchange, their buy and sell matching time takes 

place at least every 45 seconds. Therefore, we think the best 

decision interval for RV is 45 seconds. We will use multiples of 

45 seconds to simulate stable realize volatility estimates. 

The volatility, especially realized volatility, of many 

financial data series exhibits characteristics consistent with 

long memory behavior as discovered in previous studies. 

Although many stochastic processes could potentially exhibit 

the long memory property, the most widely used such process 

is the ARFIMA model [Granger and Joyeux, Granger, and 

Hosking] [28, 27, 30]. Andersen, Bollerslev, Diebold, and 

Labys and Andersen, Bollerslev, Diebold, and Ebens suggest 

that one can obtain better realized volatility through 

long-memory ARFIMA (autoregressive fractionally 

integrated moving average) time series model [4, 5, 6]. 

Koopman, Jungbacker, and Hol also discovers that an 

ARFIMA model can predict RV better than other models [37]. 

Therefore, we use the ARFIMA to describe the path of RVs to 

avoid estimation errors and low forecasting ability. 

In the process of estimating an ARFIMA(p,d,q) model, the 

values of p and q must be determined before the value of d. Prior 

studies indicate that higher order of p and q can lead to high 

standard deviation of coefficients in the model. Some research 

uses ARMA(1,1) or ARMA(1,0) to describe RV with good fit. 

To avoid higher order p and q lowering the test power, we use an 

ARFIMA(1,d,0) 4  as the forecasting model for RV, where a 

stable value of d is obtained through Bayesian estimation. 

Therefore, the ARFIMA (1,d,0) model can be specified as: 

0 1 1(1 ) ( ) ( )d RV RV

t t tB Ln Ln eσ ω ω σ −− = + + ,     (10) 

where B is backward shift operator, 
RV

tσ  is the realized 

volatility, ω and e are the coefficient and error term, 
respectively. The fractional parameter d (between zero and 
one) represents a long memory structure, implying slow 
hyperbolic decay in autocorrelations. 

Black, Christie, Schwert and Seguin and Cheung and Ng 

point out that there is a negative contemporary relationship 

between volatility change and rate of return, which can be 

explained by the leverage effect [9, 17, 48, 18]. Therefore, for 

the leverage effect, we set up a dummy variable I, which is 

                                                             

4 Testing the ACF and PACF of the realized volatility shows that there is a good fit 

at p=1/q=0. 

equal to 1 if the rate of return (rt-1) in the previous period is less 

than zero, and zero otherwise (see Equation 12). Moreover, 

many studies also find that information with jump phenomenon 

will lead to unstable parameter estimation. Anderson, 

Bollerslev, Diebold, and Labys uses non-parametric method of 

the bi-power variation (BV) measure to isolate the jump 

element, which is non-negative, from the intraday data [5]. The 

BV measure can be calculated as follows: 

1/
2 2 2

 , ( )  , 

2

( ) ( 2 / )    t t j t j -1

j

BV r rπ
∆

−
+ ∆ ∆ + ∆ ∆

=

∆ ≡ ∑    (11) 

where ∆ 5 is the sampling frequency. Following the concept 

of 
RV 2

t 1 t 1

t s t 1

( ) BV ( ) (s)+ +
< < +

σ ∆ − ∆ → κ∑ , we can estimate 

Jump by (t)κ . Therefore, the Jump component J is defined 

according to Andersen, Bollerslev and Diebold (2007)6 as: 

=Max [  ,  0 ]RV

t t tJ BVσ −         (12) 

Thus, we specify an ARFIMA model that respectively 

incorporates leverage (ARFIMA+L), jump (ARFIMA+J), and 

both leverage and jump (ARFIMA+L/J) as follows: 

t 1

d RV RV

t 0 1 t 1

RV

2 t 1 r 0 t

ARFIMA L : (1 B) Ln( ) Ln( )

Ln( ) I e
−

−

− <

+ − σ = ω + ω σ

+ω σ × +
,    (13) 

d RV RV

t 0 1 t 1

Jump

t 1 t

ARFIMA J : (1 B) Ln( ) Ln( )

J e

−

−

+ − σ = ω + ω σ

+β +
,    (14) 

t 1

d RV RV

t 0 1 t 1

RV Jump

2 t 1 r 0 t 1 t

ARFIMA LJ : (1 B) Ln( ) Ln( )

Ln( ) I J e
−

−

− < −

+ − σ = ω + ω σ

+ω σ × +β +
,    (15) 

where ω, βJump, e, B, I and r are the coefficient, jump 

coefficient, error term, backward shift operator, dummy 

variable and index return, respectively. Hosking (1981) 

investigates the likely value of long-memory parameter for 

ARFIMA model, and discovers that for -0.5 < d < 0.5 the 

process is stationary and invertible. If -0.5 < d < 0, the process is 

said to exhibit anti-persistence because the autocorrelations are 

negative. If 0<d ≦0.5, the process exhibits long-memory. The 

most prevalent method 7  for estimating the fractional 

differencing parameter is the two-step procedure proposed by 

Geweke and Porter-Hudak (GPH) [26]. The value of d should 

be estimated first and then used as an input variable to estimate 

all parameter values in the model, because it is wrong to treat 

endogenous variables as input variables in the model. Koop, 

Ley, Osiewalski and Steel suggest that using Bayesian method 

to estimate all parameter values simultaneously provides more 

                                                             

5  For example, for realized volatility constructed in the 9-minute intervals, 

eliminating effects from the first and last time period, there are 28 regions, then 
∆＝1/28=0.0357. 

6 “J” is a jump measure estimated using high frequency data according to the 

theory of quadratic variations (see Andersen, Bollerslev and Diebold [3]). 

7 See Geweke and Porter-Hudak and Janacek for details [26, 31]. 
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reliable estimates [36]. Therefore, we use Bayesian method to 

estimate the value of d in the ARFIMA model. 

4. Empirical Results 

4.1. Volatility and Its Forecasts 

While some prior studies [e.g., ABDL (2003), Pong et al. 

(2004)] use a 30-minute interval to estimate realized volatility, 

we use the interval of one minute in the very last year of the 

sample period. The RV value is close to 12%. The RV for the 

non-overlapping 45- second multiples of 6 (RV6), 9 (RV9), 12 

(RV12), and 30 (RV30) minutes interval appears to be quite 

consistent and stable, as in Figure 2. Table 1 lists all summary 

statistics for all realized volatilities. We find that the estimate 

of RV3 (3-minute interval) differs the most between index 

futures and spot index, while the estimate of RV30 differs the 

least and is highly stable. 

 

Figure 2. The TAIEX realized volatility over different sampling frequencies. 

 

Figure 3. The autocorrelation function of realized volatility. 
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Figure 4. The estimated values of parameter d in the ARFIMA (1, d, 0) model for different realized volatilities in various moving periods. 

Table 1. Summary statistics of realized volatility and historical volatility for TAIEX and TX. 

Index Variable RV3 RV6 RV9 RV15 RV30 HV 

TAIEX 

Means (1) 9.37% 12.36% 13.27% 13.10% 11.91% 20.84% 

Volatility 3.82% 5.63% 6.11% 6.15% 5.66% 2.65% 

Maximum 26.06% 40.10% 43.57% 45.77% 50.75% 26.15% 

Minimum 2.25% 2.19% 1.85% 2.22% 1.88% 15.10% 

Median 9.06% 11.05% 11.85% 11.61% 9.60% 20.65% 

Skew 0.5971 1.0539 1.1512 1.2593 1.7316 -0.0325 

Kurt 0.1147 1.2631 1.6276 2.0129 5.2991 -0.6868 

TX 

Means (2) 22.97% 19.62% 18.17% 15.82% 12.50% 24.18% 

Volatility 17.14% 14.55% 13.37% 11.65% 9.26% 4.23% 

MAX 98.95% 99.53% 96.30% 89.54% 75.51% 33.94% 

MIN 4.40% 4.20% 3.86% 0.00% 0.00% 14.63% 

Median 17.06% 14.72% 13.76% 12.31% 10.00% 24.93% 

Skew 1.8382 2.2753 2.2636 2.4699 2.4934 -0.2176 

Kurt 3.4545 6.3858 6.5181 8.1449 9.1175 0.1643 

DIFF(2)-(1) 13.59% 7.26% 4.90% 2.72% 1.59% 3.34% 

 
This table provides summary statistics for realized 

volatility of TAIEX and TX across five sample interval 
period (RV3, RV6, RV9, RV15 and RV30) and historical 
volatility (HV) of TAIEX and TX. 

We find from Figure 3 that the ACF (autocorrelation 

function) for four realized volatilities diminish to zero much 

more slowly than the ARMA process. This is consistent with 

Hosking’s (1981) finding about the long memory property. To 

obtain a stable value of d (the fractional difference), we use an 

ARFIMA(1,d,0) model with in-sample data every half year to 

calculate the moving average of the d value. As shown in 

Figure 4, 12 moving averages of the d values are obtained. The 

moving average of the d values appear to be quite stable from 

number 6 to number 10. The average d value is 0.406 for 6 

minutes; 0.4018 for 9 minutes; 0.345 for 15 minutes; and 

0.2133 for 30 minutes. They are all in the long memory region 

of 0 < d < 0.5. We can thus confirm the long memory property 

for the TAIEX volatility through Bayesian estimation of the d 

values. Comparing d values of the four realized volatilities, we 

also find that RV9 and RV30 volatilities are relatively lower. 

As such, we will continue to use RV9 and RV30 in further 

tests. 

Table 2 gives all statistics for the IV average values. It 

shows higher IV estimates and standard deviations for the 

nearby contracts. These volatilities exhibit much more 

information content with the skewness and kurtosis 

approximating normal distribution, as typically assumed in the 

options literature. 
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Table 2. Summary statistics of implied volatility with different moneyness. 

Maturity 

Moneyness All   ATM   

Variables 
IVσ

 

IV

Callσ
 

IV

Putσ
 

IVσ
 

IV

Callσ
 

IV

Putσ
 

All 

Means 29.47% 29.78% 29.14% 28.91% 28.67% 29.15% 
Volatility 4.12% 4.20% 4.23% 4.28% 4.58% 4.29% 
Maximum 43.34% 43.69% 43.05% 44.61% 44.61% 44.61% 
Minimum 21.84% 21.70% 20.73% 21.48% 19.67% 20.22% 
Median 29.03% 29.90% 28.35% 28.67% 28.92% 28.24% 
Skew 0.9391 0.6571 1.0735 0.7922 0.4393 0.9614 
Kurtosis 1.5318 0.9318 1.8735 1.3347 0.8764 1.6162 

Nearby 

Means 31.01% 30.44% 31.38% 29.10% 28.79% 29.42% 
Volatility 4.75% 5.09% 5.08% 4.35% 4.68% 4.38% 
Maximum 45.73% 45.23% 46.38% 44.61% 44.61% 44.61% 
Minimum 22.14% 20.16% 21.30% 21.48% 20.29% 20.22% 
Median 30.26% 30.37% 30.51% 28.72% 28.92% 28.45% 
Skew 0.8876 0.5492 0.9728 0.7167 0.3629 0.8884 
Kurtosis 1.0046 0.6112 1.0261 0.9934 0.5954 1.1592 

 
This table provides summary statistics for implied 

volatility across two moneyness and two maturities in TXO. 
ATM are options where 0.97 < M < 1.03. Nearby are options 

contract with a maturity period of 8 to 30 days. Options with 
maturity longer than 2 months are excluded because of light 
trading activities. 

Table 3. Summary statistic of forecasting estimators on various volatilities. 

Statistics 
IV

ATM Allσ −  

IV

ATM Callσ −  

IV

ATM Putσ −  

DVF

Allσ
 

DVF

Callσ
 

DVF

Putσ
 

Means 29.04% 28.66% 30.81% 29.99% 29.69% 30.55% 

Volatility 2.39% 3.06% 2.52% 3.16% 4.07% 3.04% 

Maximum 35.88% 37.84% 39.05% 39.75% 42.36% 41.38% 

Minimum 22.74% 21.54% 25.54% 23.49% 15.98% 24.55% 

Median 29.02% 28.86% 30.53% 29.79% 29.86% 30.43% 

Skew 0.0753 0.1183 0.7275 0.3058 -0.2783 0.6093 

Kurtosis -0.0499 0.4737 0.6232 0.1189 1.0188 0.6675 

 

Statistics 
9RV

TAIEXσ
 

30RV

TAIEXσ
 

HV

TAIEXσ
 

9RV

TXσ
 

30RV

TXσ
 

HV

TXσ
 

Means 19.97% 16.24% 20.25% 22.18% 17.36% 23.26% 

Volatility 3.32% 3.57% 1.50% 5.28% 4.48% 2.94% 

Maximum 32.71% 28.74% 23.22% 40.65% 30.39% 29.94% 

Minimum 11.96% 9.15% 16.96% 12.04% 8.05% 16.94% 

Median 19.46% 15.65% 20.02% 21.51% 17.10% 24.31% 

Skew 1.0069 0.6443 -0.1299 1.1041 0.6008 -0.4640 

Kurtosis 2.4335 0.4126 -0.5497 2.1102 0.3746 -0.6084 

 
This table provides summary statistics for estimated values 

of volatility based on volatility forecasts from different 
forecasting methods. These estimated values are observed on 
t-1, t-5, and t-20 days from different forecasting method. 
ATM are options where 0.97 < M < 1.03. All options are with 

a maturity period of 8 to 30 days. Options with maturity 
longer than 2 months are excluded because of light trading 
activities. Estimated RV employs the 9-minute interval (RV9) 
and 30-minute interval (RV30). 

Table 4. Summary statistic of forecasting estimator for RV using ARFIMA (1, d, 0) models. 

Samples Estimator ARFIMA ARFIMA + Leverage ARFIMA + Jump ARFIMA + Leverage + Jump 

TAIEX 

9 Min 

Means 0.2817 0.2825 0.2818 0.2815 

Volatility 2.50% 3.23% 2.53% 1.33% 

Maximum 0.5503 0.6152 0.6906 0.6835 

Minimum 0.0184 0.0085 0.0155 0.0125 

Skew -0.0028 0.3946 -0.0188 0.0946 

Kurtosis -0.8007 -0.0611 -0.7702 -0.0726 

30 Min 

Means 0.2471 0.2478 0.2472 0.2477 

Volatility 3.65% 3.89% 3.94% 2.98% 

Maximum 0.6104 0.6454 0.6108 0.6191 

Minimum 0.5650 0.5536 0.5367 0.5159 

Skew -0.0232 0.3914 -0.7311 -0.4508 

Kurtosis -0.5990 -0.1393 -0.9425 -0.0964 
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Samples Estimator ARFIMA ARFIMA + Leverage ARFIMA + Jump ARFIMA + Leverage + Jump 

TX 

9 Min 

Means 0.2956 0.3057 0.3008 0.3025 

Volatility 5.65% 5.98% 5.48% 5.01% 

Maximum 0.6508 0.6954 0.7011 0.7152 

Minimum 0.0298 0.0350 0.0300 0.0201 

Skew -0.0018 0.3598 -0.0145 0.1146 

Kurtosis -0.9116 -0.0784 -0.8510 -0.0756 

30 Min 

Means 0.2800 0.3000 0.2900 0.2988 

Volatility 5.87% 6.21% 6.45% 6.15% 

Maximum 0.6956 0.7011 0.7135 0.7013 

Minimum 0.0199 0.0100 0.0018 0.0101 

Skew -0.0119 0.4544 -0.1568 0.1987 

Kurtosis -0.9975 -0.0985 -0.9570 -0.0987 

This table provides summary statistics for estimated RV from TAIEX and TX based on various ARFIMA related models. 

Table 3 presents estimated values for various volatilities. 

These average estimated values are observed on t-1, t-5, and 

t-20 days. They are the proxy predictor variables for all 

information known up to day t. We find that the standard 

deviation of forecasted values is less than that of estimated 

value. It is because of previous information on average values 

contained in forecasted values. From the kurtosis and skewness 

coefficients of the forecasted values, we find that most time 

series exhibit normal distribution except RV9’s forecasted 

values for the spot index and index futures, which shows right 

skewness and high kurtosis. Table 4 shows forecasted values of 

realized volatility using a fitted ARFIMA model. We find 

higher RV values, especially higher RV9. The RV series using 

the fitted ARFIMA follows the normal distribution. 

4.2. Encompassing Regression Results 

In an encompassing regression, if the information contained 

in independent variables can completely explain the 

dependent variable, the market is deemed efficient. So, all 

regression coefficients are significant, positive, and less than 

one, and should sum up to one. It means the dependent 

variable is completely explained by the independent variables. 

It also implies that the encompassing regression models are 

good quality volatility forecasting models. Moreover, we can 

observe the information contents in different volatility via 

regression coefficients. 

The majority of the prior studies on volatility forecasting 

concludes that the forecasting ability of historical volatility 

(HV) is inferior to that of implied volatility (IV). Surprisingly, 

Table 5 shows that HV comes first in power of explanation, 

followed by IV, in forecasting RV. It seems that DVFIV does 

not have superior forecasting power for RV. This is in 

agreement with Dumas, Fleming, and Whaley with regards to 

DVFIV as described above [21]. 

Table 5. Encompassing regression tests for realized volatility. 

Dependent β0 β1(TAIEX) β1(TX) β2 β3 F R2 σoption 

RV9 

-0.168 *** 0.498 ***   0.332 *** 0.116 *** 
410.38 *** 0.47 

All 
(-2.73)  (11.57)    (4.53)  (2.86)  

-0.171 ***   0.412 *** 0.339 *** 0.110 *** 
409.11 *** 0.47 

(-3.51)    (12.04)  (4.12)  (2.62)  

-0.113 ** 0.503 ***   0.318 *** 0.260 *** 
436.35 *** 0.49 

Call 
(-1.98)  (12.96)    (6.31)  (3.53)  

-0.106 **   0.495 *** 0.326 *** 0.198 *** 
395.07 *** 0.46 

(-1.88)    (12.71)  (4.55)  (2.69)  

-0.197 *** 0.680 ***   0.205 *** 0.071  
389.15 *** 0.46 

Put 
(-3.14)  (18.77)    (3.46)  (1.09)  

-0.189 ***   0.601 *** 0.197 *** 0.090  
451.87 *** 0.51 

(-2.94)    (19.53)  (4.69)  (1.17)  

RV30 

-0.723 *** 0.358 ***   0.477 *** 0.020  
194.71 *** 0.30 

All 
(-9.40)  (7.09)    (5.19)  (0.21)  

-0.657 ***   0.312 *** 0.485 *** 0.091  
201.55 *** 0.29 

(-9.06)    (6.67)  (4.57)  (0.10)  

-0.622 *** 0.426 ***   0.338 *** 0.141  
200.87 *** 0.30 

Call 
(-8.62)  (8.95)    (5.31)  (1.51)  

-0.604 ***   0.405 *** 0.342 *** 0.101  
171.61 *** 0.24 

(-8.71)    (6.54)  (4.28)  (1.03)  

-0.741 *** 0.544 ***   0.307 *** -0.075  
185.78 *** 0.29 

Put 
(-9.51)  (12.45)    (4.18)  (-0.93)  

-0.669 ***   0.517 *** 0.301 *** 0.021  
222.34 *** 0.32 

(-9.17)    (13.38)  (4.59)  (0.16)  

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

The encompassing regression model is specified as follows 
(RV model):  
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e e e

  t 1   t 1   t 1

RV HV IV.ATM DVFIV

t 0 1 t | 2 t  | 3 t  | tLn( ) Ln( ) Ln( ) Ln( )
− − −Ω Ω Ωσ =β +β σ +β σ +β σ +ε

 

where β, ε and Ωt-1 are the regression coefficients, error term, 

and information collected at time t-1, respectively. 
 e

  t 1

HV

t | −Ωσ , 
 e

  t 1

IVATM

t | −Ωσ  and 
 e

  t 1

DVFIV

t  | −Ωσ  respectively are the day-t predictors of 

historical volatility (HV), ATM implied volatility (IV) and 
implied volatility computed by the deterministic volatility 

models (DVFIV), conditional on information at day t-1. 
RV

tσ  

is realized volatility (RV). The superscript e stands for 
forecast value. Dependent variables (RV) are estimated using 
the 9-minute interval and 30-minute interval. 

Table 6. Encompassing regression tests for implied volatility. 

IV RV β0 β1 β2 β3 β4 F R2 

All 

RV9 

-0.259 *** 0.161 *** 0.155 ***     
461.96 *** 0.39 

(-7.31)  (10.72)  (5.42)      

-0.27 ***     0.375 *** 0.164 *** 
583.47 *** 0.45 

(-8.63)      (14.22)  (7.01)  

-0.393 ***   0.151 ***   0.285 *** 
432.81 *** 0.37 

(-12.35)    (4.91)    (9.33)  

-0.370 *** -0.407 *** 0.149 *** 0.690 *** 0.081 *** 
304.00 *** 0.46 

(-9.99)  (-5.25)  (3.79)  (10.28)  (2.41)  

RV30 

-0.192 *** 0.178 *** 0.156 ***     
475.92 *** 0.40 

(-5.20)  (14.17)  (6.83)      

-0.264 ***     0.421 *** 0.114 *** 
577.96 *** 0.45 

(-8.29)      (18.84)  (6.54)  

-0.411 ***   0.219 ***   0.170 *** 
351.04 *** 0.33 

(-11.63)    (6.95)    (6.21)  

-0.314 *** -0.312 *** 0.127 *** 0.672 *** 0.039  
299.62 *** 0.46 

(-8.48)  (-4.59)  (3.73)  (10.79)  (1.44)  

Call 

RV9 

-0.213 *** 0.103 *** 0.263 ***     
527.55 *** 0.42 

(-5.72)  (8.56)  (8.76)      

-0.305 ***     0.397 *** 0.159 *** 
496.42 *** 0.41 

(-8.72)      (13.46)  (6.09)  

-0.345 ***   0.124 ***   0.209 *** 
384.17 *** 0.37 

(-10.07)    (3.71)    (5.46)  

-0.309 *** -0.196 ** 0.244 *** 0.465 *** -0.062 * 
280.58 *** 0.44 

(-7.58)  (-2.29)  (8.05)  (6.30)  (-1.70)  

RV30 

-0.131 *** 0.188 *** 0.202 ***     
521.73 *** 0.42 

(-3.34)  (13.73)  (8.35)      

-0.304 ***     0.447 *** 0.105 *** 
489.63 *** 0.41 

(-8.52)      (17.88)  (5.37)  

-0.411 ***   0.207 ***   0.167 *** 
305.98 *** 0.34 

(-11.63)    (5.81)    (5.54)  

-0.198 *** 0.022  0.260 *** 0.363 *** -0.057 * 
270.80 *** 0.43 

(-4.84)  (0.29)  (6.91)  (5.27)  (-1.90)  

Put 

RV9 

-0.258 *** 0.123 *** 0.082 **     
323.92 *** 0.31 

(-6.30)  (10.88)  (2.49)      

-0.213 ***     0.378 *** 0.175 *** 
478.37 *** 0.40 

(-6.00)      (12.64)  (6.60)  

-0.385 ***   -0.016    0.443 *** 
348.22 *** 0.32 

(-10.72)    (-0.47)    (12.84)  

-0.381 *** -0.554 *** 0.006  0.865 *** 0.191 *** 
265.88 *** 0.43 

(-9.17)  (-6.37)  (0.15)  (11.51)  (5.09)  

RV30 

-0.197 *** 0.187 *** 0.133 ***     
337.87 *** 0.32 

(-4.63)  (12.57)  (5.05)      

-0.205 ***     0.424 *** 0.125 *** 
475.39 *** 0.40 

(-5.68)      (16.76)  (6.31)  

-0.419 ***   0.098 ***   0.273 *** 
278.88 *** 0.28 

(-10.56)    (2.78)    (8.85)  

-0.362 *** -0.559 *** 0.047  0.918 *** 0.102 *** 
262.13 *** 0.42 

(-8.74)  (-7.35)  (1.24)  (13.18)  (3.36)  

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

The encompassing regression model is specified as follows 
(IV-RV model):  

e e

  t 1   t 1

e e

  t 1   t 1

IV TAIEX.HV TAIEX.RV

t 0 1 t  | 2 t  | 

TX.HV TX.RV

3 t  | 4 t  | t

Ln( ) Ln( ) Ln( )

Ln( ) Ln( )

− −

− −

Ω Ω

Ω Ω

σ = β +β σ +β σ

+β σ +β σ +ε
 

where β, ε and Ωt-1 are the regression coefficients, error term, 

and information collected at time t-1, respectively. 
IV

tσ is 

implied volatility. 
TX HV

t

−σ and 
TX RV

t

−σ  are respectively 

historical volatility and realized volatility of TAIEX. 
TX HV

t

−σ  
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and 
TX RV

t

−σ  are respectively historical volatility and realized 

volatility of TX. The superscript e stands for forecast value. 
RVs are estimated using the 9-minute interval and 30-minute 
interval. All options are with a maturity of 8 to 30 days. 

We believe the high explanatory power of HV derives from 

better HV estimates obtained from the ARMA model. The prior 

literature suggests that futures market leads spot market. Our 

empirical results show that the spot market HV can explain RV 

much better than the futures market HV. This is anticipated 

owing to the fact that we use the same sample to estimate RV and 

spot market HV. IV can explain RV as well as HV when call 

options are lumped together with put options. However, when a 

call option is separated from a put option, IV has lower ability to 

explain RV, while HV possesses higher ability in explaining RV. 

Table 5 implies that HV of spot and futures market is an unbiased 

estimator of RV. It is very important for option traders whether 

HV and RV are unbiased estimators of IV. Table 6 compares spot 

index volatility and index futures volatility in explaining IV. 

However, spot volatility becomes less predictive of IV once 

futures market HV and RV are included. Of all the explanatory 

variables, futures market HV is the best in explaining IV, while 

the coefficient for spot market HV becomes negative. Neither 

spot market RV nor futures market RV can forecast IV better 

than HV, even though the spot market RV performs less 

satisfactorily than futures market RV as an independent variable. 

Table 7. Encompassing regression tests for implied volatility using the IV-ARV model. 

IV ARV variables β0 β1 β2 β3 β4 F R2 

All 

ARV9 
-0.359 *** -0.012  0.188 ** 0.417 *** 0.199 * 

411.25 *** 0.35 
(-5.15)  (-1.27)  (2.45)  (9.58)  (2.00)  

ARV9+J 
-0.339 *** -0.019  0.201 *** 0.356 *** 0.371 ** 

498.19 *** 0.40 
(-5.54)  (-1.12)  (3.99)  (9.12)  (2.54)  

ARV9+L 
-0.398 *** -0.011  0.149 * 0.519 *** 0.175  

300.35 *** 0.31 
(-5.89)  (-1.50)  (1.90)  (9.26)  (1.10)  

ARV9+J/L 
-0.342 *** -0.017  0.104 * 0.490 *** 0.093 * 

351.01 *** 0.35 
(-5.10)  (-1.17)  (1.81)  (9.10)  (1.89)  

ARRV30 
-0.304 *** -0.201 * 0.180 * 0.451 *** 0.101 * 

256.75 *** 0.21 
(-4.41)  (-1.79)  (1.93)  (10.19)  (2.10)  

ARV30+J 
-0.249 *** -0.100  0.198 ** 0.380 *** 0.305 ** 

278.02 *** 0.25 
(-3.94)  (-0.59)  (2.54)  (9.51)  (3.58)  

ARV30+L 
-0.298 *** -0.215 * 0.101 * 0.592 *** 0.109  

200.54 *** 0.19 
(-3.82)  (-2.01)  (1.89)  (10.16)  (0.92)  

ARV30+J/L 
-0.208 *** -0.156  0.128 * 0.490 *** 0.093 * 

208.46 *** 0.20 
(-3.95)  (-1.06)  (1.90)  (10.01)  (1.87)  

Call 

ARV9 
-0.310 *** 0.026  0.350 *** 0.450 *** 0.089  

251.51 *** 0.30 
(-5.10)  (0.01)  (8.05)  (5.31)  (1.00)  

ARV9+J 
-0.311 *** 0.027  0.398 *** 0.455 *** 0.081  

256.57 *** 0.35 
(-5.72)  (0.09)  (8.05)  (5.56)  (1.11)  

ARV9+L 
-0.326 *** -0.030  0.344 *** 0.450 *** 0.029  

249.01 *** 0.28 
(-5.00)  (-0.02)  (8.05)  (5.01)  (0.20)  

ARV9+J/L 
-0.327 *** -0.031  0.351 *** 0.452 *** 0.072  

250.27 *** 0.29 
(-5.01)  (-0.15)  (8.05)  (5.09)  (0.95)  

ARRV30 
-0.195 *** 0.001  0.311 *** 0.370 *** -0.055  

201.12 *** 0.25 
(-3.00)  (0.18)  (7.05)  (5.25)  (1.00)  

ARV30+J 
-0.187 *** 0.015  0.351 *** 0.364 *** -0.060 * 

216.77 *** 0.28 
(-3.18)  (0.12)  (7.11)  (5.10)  (1.94)  

ARV30+L 
-0.192 *** -0.010  0.336 *** 0.350 *** -0.050 * 

200.14 *** 0.16 
(-3.08)  (-0.21)  (7.12)  (4.98)  (2.03)  

ARV30+J/L 
-0.191 *** -0.022  0.349 *** 0.310 *** -0.057 * 

200.46 *** 0.20 
(-3.84)  (-0.29)  (7.81)  (4.55)  (-1.76)  

Put 

ARV9 
-0.391 *** -0.021 * 0.010  0.611 *** 0.290 *** 

391.10 *** 0.41 
(-8.01)  (-3.10)  (1.15)  (10.15)  (6.18)  

ARV9+J 
-0.314 *** -0.023 * 0.015 * 0.602 *** 0.290 *** 

401.28 *** 0.45 
(-9.57)  (-3.56)  (1.79)  (10.69)  (6.91)  

ARV9+L 
-0.364 *** -0.022 * 0.016  0.695 *** 0.201 * 

305.73 *** 0.40 
(-9.91)  (-3.08)  (1.01)  (10.34)  (1.87)  

ARV9+J/L 
-0.335 *** -0.029 * 0.011  0.656 *** 0.274 *** 

361.61 *** 0.42 
(-9.00)  (-3.81)  (1.50)  (10.10)  (5.89)  

ARRV30 
-0.385 *** -0.218 * 0.011  0.754 *** 0.152 ** 

280.13 *** 0.30 
(-8.55)  (-2.05)  (0.01)  (13.18)  (2.10)  

ARV30+J 
-0.302 *** -0.201  0.016  0.700 *** 0.113 ** 

291.07 *** 0.33 
(-8.09)  (-1.04)  (0.29)  (13.18)  (2.26)  

ARV30+L 
-0.345 *** -0.219  0.011  0.810 *** 0.105  

201.22 *** 0.28 
(-8.48)  (-1.49)  (0.78)  (13.18)  (1.49)  

ARV30+J/L 
-0.328 *** -0.203  0.012  0.766 *** 0.110 * 

205.87 *** 0.29 
(-8.66)  (-1.37)  (0.54)  (13.18)  (2.06)  

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 
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The encompassing regression model is specified as follows 

(IV-ARV model):  

e e

  t 1   t 1

e e

  t 1   t 1

IV TAIEX.HV TAIEX.ARV

t 0 1 t  | 2 t  | 

TX.HV TX.ARV

3 t  | 4 t  | t

Ln( ) Ln( ) Ln( )

Ln( ) Ln( )

− −

− −

Ω Ω

Ω Ω

σ = β + β σ + β σ

+ β σ + β σ + ε
 

where β, ε and Ωt-1 are the regression coefficients, error term, 

and information collected at time t-1, respectively. 
IV

tσ  is 

implied volatility. 
TX HV

t

−σ and TX ARV

t

−σ  are respectively 

historical volatility and realized volatility estimated by the 

ARFIMA model of TAIEX. TX HV

t

−σ  and 
TX ARV

t

−σ  are 

respectively historical volatility and realized volatility 
estimated by the ARFIMA model of TX. The superscript e 
stands for forecast value. RVs are estimated using the 
9-minute interval and 30-minute interval. All options are with 
a maturity of 8 to 30 days. 

Since some estimated RV explains IV poorly, we use the 

ARFIMA model to have better RV estimates (labeled as ARV) 

and use those RV estimates in running the encompassing 

regression as specified in Equation (3) (labeled as IV-ARV 

model). As Table 7 shows, ARV can explain IV much better. It 

is very noticeable that the spot ARV explains the call option 

IV quite well, as is true for futures ARV in forecasting the put 

option IV. Of the four volatility variables, futures HV is the 

best in explaining and forecasting power. The spot HV cannot 

forecast IV because it lacks the information contents provided 

by futures volatility. Overall, the RV estimated in the 9-minute 

interval via encompassing regression is superior to that 

estimated in the 30-minute interval. Results in Table 6 lead to 

similar conclusions. Furthermore, comparing the performance 

of different ARFIMA models in the 9-minute interval via 

encompassing regression analysis, we find that RV9 fitted 

with ARFIMA+J model (ARV9+J) has high power of 

explanation for IV. This result implies that Taiwan stock 

market return does follow a jump path.8 

5. Summary 

The paper employs the volatility in the spot and futures 

markets in the encompassing regression model to forecast RV 

and IV respectively. Our study differs most from the literature 

in that we use asynchronous variables in the forecasting model. 

Moreover, these asynchronous predictors are all their forecasted 

values, rendering our forecasts much closer to the real world. 

While RV can be non-stationary with high sample 

frequency (ABDL), a stationary RV also depends on 

trade-matching time. Our empirical evidence suggests that a 

stationary RV of TAIEX index is calculated from 6, 9, 15 and 

30 minutes, which are all multiples of 45 seconds. 

Furthermore, the Bayesian estimates of the long-memory 

parameter confirm that the RVs of the TAIEX index possess 

long memory. Among all estimates of the long-memory 

                                                             

8 Results for forecasting errors and trading simulations have been omitted for 

space, yet available upon request. 

parameter, those from - RV9 and RV30 are more stationary. 

While the prior literature contends that HV is less predictive 

of RV than IV, our results show that HV explains RV the best, 

owing mainly to the fact that we use HV forecasts from an 

ARMA model. Compared with the HV of futures, the HV of 

spot has more information content, which helps to explain RV. 

A relatively surprising finding is that DVF seems to have no 

information advantage over RV. 

By using the volatility of spot and futures simultaneously in 

the encompassing regression model, the volatility of futures is 

significantly positively correlated with the forecast IV, 

suggesting that futures lead spot and that the underlying asset 

of the TXO is approximately TX instead of TAIEX. Given the 

non-tradability of TAIEX, option holders in Taiwan can only 

trade TX for hedging and arbitraging purposes, leading to 

better information content of the futures volatility. 

Nonetheless, the explanatory power of RV variable in the 

model is inferior to HV variable. But if we predict IV with 

ARV, the forecasting ability would enhance significantly 

through ARV of spot (for IV of calls) and ARV of futures (for 

IV of puts). The forecasting performance of the IV-ARV+J 

model in group RV9 is better, indicating the jump tendency in 

Taiwan stock returns. 

Despite the fact that RV is less predictive of IV than ARV in 

the encompassing regression model, in simulated investments, 

the performances of the IV-RV model are superior to the 

IV-ARV+J model in the pre-Presidential election period. 

When we consider transaction costs, rate of return in most 

models becomes negative. Yet, the returns from the IV-ARV+J 

model remain positive and the highest, showing that the 

IV-ARV+J model approaches the real world more closely. 
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