
 
International Journal of Economics, Finance and Management Sciences 
2021; 9(1): 16-28 
http://www.sciencepublishinggroup.com/j/ijefm 
doi: 10.11648/j.ijefm.20210901.13 
ISSN: 2326-9553 (Print); ISSN: 2326-9561 (Online)  

 

New Measures of Financial Risk, Motivated by 
Pharmaceutical Research 

Anne-Marie Oreskovich
*
, John Gittins 

Department of Statistics, University of Oxford, Oxford, United Kingdom 

Email address: 
 

*Corresponding author 

To cite this article: 
Anne-Marie Oreskovich, John Gittins. New Measures of Financial Risk, Motivated by Pharmaceutical Research. International Journal of 

Economics, Finance and Management Sciences. Vol. 9, No. 1, 2021, pp. 16-28. doi: 10.11648/j.ijefm.20210901.13 

Received: March 15, 2019; Accepted: May 5, 2019; Published: February 10, 2021 

 

Abstract: The paper begins by reviewing the available procedures for measuring value and risk in pharmaceutical research 

projects. These include Net Present Value (NPV) and its variance, Real Options Valuation (ROV), the Capital Asset Pricing 

Model (CAPM), Value at Risk (VaR) and Utility. None of these measures focuses specifically on risk as it is perceived by the 

research manager, except arguably for Utility, which has the serious disadvantage of being by definition a subjective measure. 

This paper proposes two additional risk measures to go some way towards plugging the gap in what is available. Their 

advantages are that they: focus on maximum exposure to adverse outcomes, a metric most decision makers have in mind when 

they wish to evaluate risk; are objective rather than subjective, in contrast to utilities; are easier to specify and more transparent 

than utilities, since they are in cash terms; are project specific unlike CAPM; satisfy the technical test of coherence, unlike 

VaR, so it is not possible that diversifying a portfolio could increase the measured risk. The new measures are shown to 

measure different things from the variance of NPV, which is in some ways similar, and a start is made on exploring what their 

values are for different patterns of cash flow.  
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1. Introduction 

In the wake of the recent financial crisis, it is clear that 

efficient and comprehensive financial risk management is of 

paramount importance across business sectors. Motivated to 

explore current methods of measuring financial risk in this 

inclement risk management landscape, the research began with a 

survey of how financial risk and decision analysis are currently 

handled in one of the most uncertain and dynamic sectors of 

business, the pharmaceutical industry.  

This particular industry provided an ideal backdrop for us to 

begin a risk management investigation, as it has long been 

defined by explosive growth, long drug development timelines, 

and massive uncertainty. The combined R&D and market 

introduction time for a significant product extends over a period 

of around 12 or 13 years from the first synthesis of a new active 

substance (“NAS”) to the time it is marketed [1]. The average 

R&D cost for each successful drug is estimated to be 

approximately $1.5 billion [2]. Of all new drugs, only a scant 

7% are profitable [3]. And hence, by their very nature, 

pharmaceutical drug development projects are inherently risky. 

Each new chemical entity developed represents a long payback 

period, many uncertainties, and an extremely low success ratio. 

It is therefore critical that research and development managers 

and other pharmaceutical executives have a way to mitigate this 

risk. 

In the course of the research, several pharmaceutical company 

decision makers were consulted. A common complaint was that 

project selection was often handled haphazardly, with little 

quantitative input to the decisions. Many people felt that most 

project decisions were governed by instinct, business awareness, 

and a sense of intrinsically important areas that the company 

“should be” researching. There seemed to be a lack of a highly 

organized decision-making framework with quantifiable criteria 

for initial project selection, and then for continuation or 

termination, and success or failure. Such a framework limits the 

current struggle with project prioritization, which results in time 

wasted in advancing low-potential candidates for development 

and an abundance of under-resourced projects. There is 

documentation about the research into this area and an 
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investigation into what the current literature says about risk 

management in earlier work [4]. 

Motivated to try to fix this problem for executives and 

management both in the pharma industry and in other business 

sectors, the investigation and analysis began with a look at some 

canonical risk measures with the pharmaceutical industry as a 

background. Sections 2 and 3 discuss currently used measures of 

value and of risk. Section 4 describes the two new risk measures, 

and makes the case for their use, probably alongside some of the 

existing measures of value. Section 5 presents a simple example, 

illustrating the use of the risk measures. Sections 6 and 7 present 

a theoretical analysis of some of their properties. Sections 8 and 

9 are a Conclusion and Bibliography. 

2. Investment Criteria: Net Present Value 

(“NPV”) and Real Options Valuation 

(“ROV”) 

There are many investment criteria that are used both in the 

pharmaceutical industry, and across many other business sectors. 

In this section and the next, the main quantitative criteria in 

current use are examined, and then in Section 4 the two new risk 

measures are introduced and demonstrated to be a substantial 

contribution to the area. To begin, two standard ways of 

evaluating decision scenarios are introduced. 

2.1. NPV 

The NPV of an investment by a company is the sum over 

time of the resulting cash flows, both positive and negative. 

Future costs and rewards are discounted at a rate equal to the 

company’s weighted average cost of capital (“WACC”) [5]. The 

commonly referenced NPV rule says that if the NPV is positive, 

the project or investment should be undertaken, and not 

otherwise. 

2.2. ROV 

Dixit and Pindyck [6] pointed out the limitations of the NPV 

rule as it was then typically applied, and proposed a more 

complete analysis based on ROV theory. ROV is the application 

of financial options theory to non-financial (real) assets. In this 

approach, the standard NPV rule is extended to allow for taking 

decisions at future time points, and in particular for the 

possibility that irreversible investments may be delayed and 

perhaps pursued at a later date.  

Bode-Greuel [7] introduces a similar measure, which she calls 

augmented NPV, again as an extension to NPV. ROV as 

augmented NPV means that NPV is applied dynamically, taking 

into account that pharma R&D is structured with key time points 

or decision nodes, at which senior management and other 

decision makers decide whether to continue with a project or to 

abandon it. Dixit and Pindyck [6] call this the Dynamic 

Programming version of ROV. Decision trees are used to 

analyze possible outcomes, obstacles, and subsequent 

managerial options. Risk is captured in probability estimates that 

are arrived at by using judgment or industry expertise, or by 

using average attrition rates and industry benchmarks. This 

methodology is very close to decision analysis, with a particular 

emphasis on the importance of options which may arise.  

2.3. Capital Asset Pricing Model (“CAPM”) 

The CAPM, see for example Brealey, Myers, and Marcus [8], 

is used to ascertain the rate of return on an investment that is 

required by a particular market sector, and hence may be used as 

a means of estimating WACC. 

For the stock market as a whole the long run rate of return is 

higher than it is for government bonds, which are assumed to be 

risk free. The difference between the two rates is called the 

market risk premium. It is the additional average return that an 

investor can expect to receive to compensate for the volatility of 

stock market prices. Market sectors differ in the extent to which 

equity prices vary with fluctuations of the stock market as a 

whole. This dependence is measured by the parameter β, which 

is the ratio of the volatility of stock market prices within the 

sector to average overall volatility. According to CAPM the risk 

premium required for investment in a given market sector is β 

times the market risk premium. There are of course risks 

associated with individual companies apart from fluctuations of 

the overall market index, but these are believed to be avoidable 

by holding a suitably diversified portfolio of shares. Thus 

CAPM provides a risk-related rationale for choosing the 

discount rate to be used in NPV calculations, but only for the 

risks associated with overall stock market fluctuations.  

3. Measuring and Accounting for Risk 

A description is now given for two canonical ways of 

evaluating risk, the variance of net present value, and value at 

risk, together with utility theory, which is a well-known way of 

assessing decision scenarios so as to take account of risk.  

3.1. Variance of Net Present Value (“Var(NPV)”)  

Var(NPV) is a widely used measure of risk or possible 

financial exposure. Markowitz [9] was an early and influential 

advocate. Ross [10] gives a detailed account. A Markowitz 

Efficient Investment Portfolio is one for which further 

diversification will not lower the portfolio's risk for a given 

return expectation (thus no additional expected return can be 

gained without increasing the risk of the portfolio). The 

Markowitz Efficient Frontier is the set of all portfolios that will 

give the highest expected return for each given level of risk or 

the lowest risk for a given level of expected return.  

3.2. Value at Risk (“VaR”) 

VaR is defined as the value such that the probability of losing 

more than that amount is a specified probability. For example, if 

an investment has a 6-month 3% VaR of $1,500,000, then there 

is a 3% chance that the investment will sustain a loss of more 

than $1,500,000 over 6 months. A more formal definition is as 

follows [11]:  

If X is a financial position, then VaR of X at level λ is defined 

as the amount that must be added to X such that  
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�[� + ���ƛ < 0] ≤ ƛ ≤ �[� + ���ƛ ≤ 0]          (1) 

There are multiple variations on VaR that are also often used. 

Two common examples are the following: 

3.2.1. Average Value-at-Risk (“AVaR”) 

This is also often called expected shortfall (“ES”): a measure 

derived from VaR that is more sensitive to the shape of the 

distribution in the tail. More formally, the AVaR of a random 

variable X is defined as the tail expectation (with quantile level 

qλ) [11]:  


���ƛ��� = �[−�|� ≤ �ƛ]                     (2) 

3.2.2. Tail Value at Risk (“TVaR”) 

This is also often called tail conditional expectation: a 

measure derived from VaR that evaluates the expectation only in 

the tail of the distribution. More formally, TVaR at confidence 

level p of a random variable X with continuous distribution FX is 

defined as the expected loss of X conditional upon X 

exceeding its pth percentile [12]: 

�������� = �[�|� > �������]                  (3) 

The reader will note that there is a sign difference in the two 

definitions just given. These are the standard ways of notating 

these quantities. Here, this inconsistency is simply highlighted, 

without an attempt to correct this standard usage. 

VaR is a nearly universal risk measure across many business 

sectors in addition to the pharma industry.  

3.2.3. Lack of Coherence of VaR 

Wozabal et al [13,18] note that VaR is non-convex, since for 

two portfolios X and Y with random values, it could be the case 

that  

����� + �� > ������ + ������                  (4) 

So that 

��� ���� + �
��� = �

������ + �� > �
�  ������ + ������! = ��� ����� + ��� �����	                             (5) 

More generally, a function f on a convex set S in Rn is convex 

if for any a and b in S and for any t in [0,1],  

#�$� + �1 − $�&� ≤ $#��� + �1 − $�#�&�              (6) 

As Wozabal notes, this non-convexity of VaR means that the 

diversification of a portfolio can actually increase the risk as 

measured by VaR. This is an undesirable incongruity. It means 

that VaR is not a coherent measure of risk as defined by Artzner 

[14]. As Baker [15] notes, this lack of coherence of VaR can 

lead to questionable investment decisions, which is why the ES 

is becoming increasingly recommended as a better choice of risk 

measure.  

3.3. Utility 

Utility is a measure of the attractiveness of an outcome. It 

refers to the total satisfaction received by someone when 

choosing a particular good or service; the higher the utility, the 

more desirable the consequence. Pharma decision managers 

may assign a utility value to a project to assess its worthiness of 

development. Utilities have an expectation property which says 

that the utility of an uncertain prospect is the expectation of the 

utilities of each of the possible outcomes. For small sums of 

money this is true with utility equal to monetary value, but a 

different scale is required when large sums of money are 

involved, allowing risk aversion to be taken into account. Risk 

aversion, and therefore utility, varies from person to person. The 

theory has proved useful to explain some rational choices that 

contradict the expected monetary value criterion.  

4. Proposed New Risk Measures 

None of the approaches that have been discussed thus far 

appear to represent a wholly satisfactory procedure for 

quantifying risk, and now two new measures of risk are 

proposed. Both measure the maximum financial exposure for a 

given project or investment program, maximizing over all 

possible time points. They may be used in conjunction with 

NPV or augmented NPV valuation procedures.  

The first risk measure, called Cash Flow Exposure (“CFE”), 

is defined as the negative of the minimum over all possible time 

points of the total net cash flow, up to and including a given time 

point. This is in other words the maximum over time of the 

current loss or financial exposure of the investment or project in 

question.  

The second risk measure, called Prospective Cash Flow 

Exposure, (“PCFE”), is the same, except with the expected 

future costs less rewards added in. 

Together these risk measures are called the Gittins-Oreskovich 

(“GO”) risk measures. 

Both have probability distributions over possible future 

scenarios. The best single-valued measure of risk is in each case 

the expectation of maximum financial exposure, and hence of 

interest is E (CFE) and E (PCFE), or ECFE and EPCFE, as they 

shall be denoted. 

The GO risk measures are now introduced more formally: 

1) The notation for the minimum of a random variable X is as 

follows,  

min��� = min��: ��� ≤ �� > 0�                 (7) 

and for a random process X (t), 

min $���$�� = min���$0�, ��$1�, ��$2�, …�����    (8) 

Where t0, t1, t2, …,T are the values taken by the time variable 

t. Similar definitions hold for max (X) and maxt (X(t)). 

Assume that all sets of real numbers under consideration have 

a maximum and a minimum. 

2) The net retrospective value at time t, NRV (t), is the net 

total value of the cash flows up to and including time t.  

3) The first risk measure CFE is defined to be - mint (NRV 

(t)). 
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4) The net future value at time t, NFV (t), is the net total value 

of all cash flows after time t. 

5) For any stochastic process X (t), EX (t) is the expectation 

of X (t). Two examples of this are the following:  

1. The expected net future value, ENFV(t), is the expected 

net value of all cash flows from time t onwards.  

2. The expected net present value at time t, ENPV(t), is 

defined as ENPV (t) = NRV (t) + ENFV (t). 

6) The second risk measure PCFE is defined to be - mint 

(ENPV (t)).  

7) The t-dependent values in definitions 2-6 above are all 

conditional on the history of the project up to time t, and are 

discounted to time t values. 

8) The two summary measures of financial exposure are the 

distributions of CFE and PCFE. 

Some notes regarding the above definitions: 

NPV refers to the actual and, in general, random outcome 

with no expectation included. It is assumed, for the moment, that 

every project in question (and hence every accompanying 

realization) has both a finite and a discrete timescale. NPV has a 

probability distribution of values calculated for each possible 

realization of the decision problem. Note that NPV = e- 

γTNRV(T) for T = max(t).  

The GO risk measures offer five main advantages over other 

ways of accounting for risk:  

1. Firstly, they focus on the maximum exposure, a metric most 

decision makers have in mind when they wish to evaluate 

risk. This is a crucial advantage over all other risk measures. 

They are measuring risk as it impacts the company executive. 

This is in contrast to NPV, ROV, and VaR, which focus on the 

interests of the share-holder.  

2. They are more objective than utilities. Utilities may be chosen 

to reflect the decision maker’s preferences. They are therefore 

decision-maker focused, but also vary from one decision 

maker to another.  

3. They are easier to specify and more transparent than utilities, 

since they are in cash terms whereas utilities are not. It is not 

obvious how to apply utilities to each of the realizations over 

time which may occur.  

4. They are project-specific, in contrast to the CAPM method, 

which provides information only about a particular market 

sector, and not about a specific project.  

5. They are coherent, in the Artzner [14] sense of the word, 

unlike VaR. 

Artzner et al’s definition of coherence refers to the future 

values of portfolios of securities. In this case, the comparisons 

are between the cash flow sequences following different 

investment strategies. Some fairly obvious rejigging of 

definitions is needed for this difference of setting, and it then 

follows rapidly that ECFE and EPCFE are coherent measures of 

risk.  

Examples of applications of the GO measures are now 

provided, followed by an investigation of some of their 

properties. 

5. Examples 

An example is provided, and then a modification of that 

example, of how the GO risk measures can be used to approach 

an investment decision problem. This sample problem has been 

adapted from an example given by Dixit and Pindyck [6].  

5.1. Example 

Consider a pharmaceutical company that is trying to decide 

whether to invest in a drug synthesis lab. The investment is 

completely irreversible—the lab can only be used to make 

pharmaceutical drugs, and should the market for these chemicals 

disappear, the company will have lost the entirety of its 

monetary investment. For simplicity, it is assumed that the lab 

can be built instantaneously, for $1,600,000, and that it will 

produce one unit of drug required for one course of treatment in 

a new pharmaceutical drug trial. It is also assumed that the lab 

will produce this one unit per year forever, with no operating 

cost. Currently the selling price of this drug compound is 

$200,000, but after one year, the price will change. With 

probability 0.5, it will rise to $300,000, and with equal 

probability, it will fall to $100,000. The price will remain at this 

new level forever. A discount rate of 10% for future cash flows 

is assumed.  

To begin with, suppose that one invests now (at time t = 0). 

Calculating ENPV (which is NPV in the usual notation), and 

noting that the expected future price of the drug compound is 

always  

�0.5� × �$300,000� + �0.5� × �$100,000� = $200,000 (9) 

This gives the following:  

�3�� = −$1,600,000 +	5 �$�66,666�
��.��7

8
79� = −$1,600,000 + $2,000,000 = $400,000                           (10) 

For comparison, now apply the GO risk measures to this 

simple problem. Using the first risk measure CFE for the case 

that the price goes up to $300,000 after one year (recall that this 

measure is generated by calculating the net aggregate cash flow 

to date at each point in time) results in the following set of 

values for NRV(t):  

$ = 0:	 − $1,600,000                        (11) 

$ = 1:	 − $1,760,000 + $200,000 = −$1,560,000                                                             (12) 

$ = 2:	�1.1� × �−$1,560,000� + $300,000 = −$1,416,000                                                (13) 

$ = 3:	�1.1� × �−$1,416,000� + $300,000 = −$1,257,600                                                   (14) 



20 Anne-Marie Oreskovich and John Gittins:  New Measures of Financial Risk, Motivated by Pharmaceutical Research  
 

$ = 4:	�1.1� × �−$1,257,600� + $300,000 = −$1,083,360, �=>	?@	@=.                                   (15) 

The minimum value of NRV(t) is - $1,600,000, and hence 

CFE is $1,600,000.  

Similarly, for the case that the price goes down to $100,000 

after one year, the set of values for NRV(t) are the following:  

$ = 0:	 − $1,600,000                         (16) 

$ = 1:	 − $1,560,000                         (17) 

$ = 2:	 − $1,616,000                         (18) 

$ = 3:	 − $1,677,600                            (19) 

$ = 4:	 − $1,745,360, �=>	?@	@=                (20) 

In this second case, the values become more negative with 

each time point after t =1, and the downside risk is therefore in 

principle unlimited. If this scenario were to occur in practice, the 

simple solution would be to take the realizations as far out time-

wise as would be reasonable or necessary for that particular 

decision problem. For example, if a pharma exec requested to 

know the maximum exposure for this problem, given a time 

horizon of 10 years, one would simply do the calculations for 

each time point up to and including t = 10, and in this case 

conclude that the maximum exposure CFE is $2,320,450, and 

occurs at t = 10.  

After all cases are considered (in this case there are just two, 

i.e. the price either goes up or it goes down), a cumulative 

probability distribution for this investment policy (which in this 

case is to invest immediately, at t = 0) is generated. Noting that 

each of these cases occurs with probability 0.5, the probability 

distribution in this simple example consists of $1,600,000 and 

$2,320,450, each with probability 0.5. (Obviously these 

probability distributions will rapidly become more complex as 

more intricate and realistic examples are considered.) It is also 

noted that in this example,  

�A�� = 	 �0.5� × �$1,600,000� + �0.5� × �$2,320,450� = $1,960,225.                                (21) 

whereas - ENPV = -$400,000, and hence ECFE > - ENPV.  

Now the second risk measure PCFE is applied to this same 

example for comparison. The reader will recall that this measure 

is generated by summing the costs and income at each time 

point, as in the first risk measure, but then adding to this all 

expected future costs and income, discounted back to that 

particular time point. For the same investment strategy (invest 

immediately), and for the case where the price goes up after one 

year to $300,000, the following values of ENPV(t) occur:  

$ = 0:−$1,600,000 + $�66,666
�.� + 5 �$�66,666�

��.��7
8
79� = −$1,600,000 + $2,000,000 = $400,000                         (22) 

$ = 1:−$1,760,000 + $200,000 + 5 �$C66,666�
��.��7

8
79� = −$1,560,000 + $3,000,000 = $1,440,000                  (23) 

$ = 2:	�1.1� × �$1,440,000� = $1,584,000             (24) 

$ = 3:	�1.1�2 × �$1,440,000� = $1,742,400          (25) 

$ = 4:	�1.1�3 × �$1,440,000� = $1,916,640          (26) 

As the reader can see, in this case the maximum risk or 

exposure PCFE (highest value of – ENPV(t)) is - $400,000, 

which occurs at time t = 0.  

Similarly for the case where the price instead drops to 

$100,000 after 1 year, there are the following values of 

ENPV(t): 

$ = 0:−$1,600,000 + $�66,666
�.� + 5 �$�66,666�

��.��7
8
79� = $400,000                                               (27) 

$ = 1:−$1,760,000 + $200,000 + 5 �$�66,666�
��.��7

8
79� = −$1,560,000 + $1,000,000 = −$560,000                    (28) 

$ = 2:	�1.1� × �−$560,000� = −$616,000            (29) 

$ = 3:	�1.1�2 × �−$560,000� = −$677,600          (30) 

$ = 4:	�1.1�3 × �−$560,000� = −$745,360          (31) 

As one can see, the values become more negative with each 

time point and the downside risk is therefore in principle 

unlimited. As mentioned above, if this scenario were to occur in 

practice, the simple solution would be to take the realizations as 

far out time-wise as would be reasonable or necessary for that 

particular decision problem, so given a time horizon of 10 years 

for example, it follows that 

�1.1�10_1 × �−$560,000� = �1.1�9 × �−$560,000� − $1,320,450                                       (32) 

Hence CFE here is $1,320,450. As before, since each of these cases occurs with probability 0.5, the probability distribution of 

PCFE in this simple example therefore consists of - $400,000 and $1,320,450, both with probability 0.5.  

So EPCFE is  
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�0.5� × �−$400,000� + �0.5� × �$1,320,450� = $460,225                                                  (33) 

which is again a greater possible loss than - ENPV = - 

$400,000. 

5.2. Modification of the Example 

Next a slightly more complex example is presented in order to 

illustrate the GO risk measures more fully. Consider the same 

problem, but now with the investment strategy that one only 

invests in the project if, after one year, the price goes up to 

$300,000. Applying the first risk measure to this scenario, the 

value is 0 if the price goes down to $100,000, and if the price 

goes up to $300,000, the values are as follows:  

$ = 0:	0	�EF	ℎ�HF	=@$	IF$	J=HF?$F>�               (34) 

$ = 1:	 − $1,600,000                              (35) 

$ = 2:	 − $1,760,000 + $300,000 = −$1,460,000     (36) 

$ = 3:	�1.1� × �−$1,460,000� + $300,000 = −$1,606,000 + $300,000 = −$1,306,000                           (37) 

$ = 4:	�1.1� × �−$1,306,000� + $300,000 = −$1,136,600, �=>	?@	@=                                              (38) 

As can be seen, in this case the minimum value of NRV(t) is - $1,600,000, which occurs at time t = 1, and hence CFE is 

$1,600,000. As above, both cases occur with probability 0.5. In this case, the following results. 

�A�� = 	 �0.5� × �0� + �0.5� × �$1,600,000� = $800,000                                         (39) 

Now applying the second risk measure to this same example for comparison, again there is the value 0 if the price goes down, and 

if the price goes up, the values are as follows:  

$ = 0:	0 + K�0.5� × � �
�.�� × L−$1,600,000 + 5 �$C66,666�

��.��7
8
79� MN = �0.5� × � �

�.�� × �−$1,600,000 + $3,000,000� = $ =
$636,363                                                                                               (40) 

1:−$1,600,000 + 5 �$C66,666�
��.��7

8
79� = −$1,600,000 + $3,000,000 = $1,400,000                     (41) 

$ = 2: �1.1� × L−$1,600,000 + 5 �$C66,666�
��.��7

8
79� M = �1.1� × �$1,400,000� = $1,540,000                            (42) 

$ = 3: �1.1�2 × L−$1,600,000 + 5 �$C66,666�
��.��7

8
79� M = �1.1�2 × �$1,400,000� = $1,694,000                        (43) 

$ = 4: �1.1�3 × L−$1,600,000 + 5 �$C66,666�
��.��7

8
79� M = �1.1�3 × �$1,400,000� = $1,863,400, �=>	?@	@=             (44) 

In this case the maximum exposure CFE is - $636,363, which occurs at time t = 0, and as above both cases occur with probability 

0.5. So then  

��A�� = 	 �0.5� × �0� + �0.5� × �−$636,363� = −$318,182                                            (45) 

The strategy of waiting to invest for one year and then only 

investing if the price goes up appears to be the most effective 

strategy. The NPV rule applied in this instance would 

recommend that one invests immediately because the expected 

NPV would be $400,000 (as shown in the beginning of this 

section), which is a positive number (and the NPV rule states 

that if the expected NPV is positive, you should invest 

immediately). However, waiting for a year to see whether the 

price goes up or down yields a higher expected NPV: 

3�� = �0.5� × � �
�.�� × �−$1,600,000 +5 �$C66,666�

��.��7
8
79� � = $636,363                                        (46) 

This strategy also yields a higher ECFE and PCFE, as seen 

above. This is not surprising and indeed confirms what might be 

expected: that in this case the value of waiting for further 

information before making an investment limits the potential 

risk and is therefore a wise choice. Note too that both ECFE and 

EPCFE are greater than -ENPV1 in these two examples.  

                                                             

1 Note however that in some cases ECFE < -ENPV. This can happen because all the 

discounting in the calculation of ENPV is to time 0, and this is not true for ECFE. 
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6. Properties of the New Risk Measures 

The following theorem records some important properties of the GO risk measures. 

Theorem 1 

�J�	A�� ≥ −Fɤ�3��	�JJ�	�A�� ≥ −Fɤ�3��                                                              (47) 

Proof. 

�J�	A�� = 	−min $�3���$�� ≥ −3����� = −Fɤ�3��                                                    (48) 

�JJ�	�A�� = 	−min $��3���$�� = 	 	−min $�3���$� + 	�3���$�� 	≥ −3����� = −Fɤ�3��                       (49) 

Corollary. If there is no discounting (i.e. γ = 0) then max(PCFE) = - min(NPV). 

Proof. 

From (ii), it follows that 

max��A��� ≥ −min�3���                                                                      (50) 

To complete the proof the reverse inequality must be proved.  

Let R(t) denote the realization of the project up to time t. Thus, for a given R(t), 

3���$� + �3���$�|	��$� ≥ 3���$� + 	min3���$�|��$�                                              (51) 

= 	min	�3���$� + 3���$�|��$��                                                                  (52) 

= 	min	�Fɤ�3��|��$��                                                                            (53) 

= min 3��S��$�!                                                                                   (54) 

(Since γ = 0) 

≥ min	�3���                                                                                     (55) 

The last min being unconditional upon R(t). 

This gives the following: 

�A�� = 	 	−min $�3���$� + 	�3���$� |	��$�� ≤ 	−min $�3���$� + min	3���$� S	��$�! ≤ −min�3���           (56) 

This is the required reverse inequality and completes the 

proof of the corollary. 

From part (ii) of the theorem it follows that EPCFE ≥ - 

E(eγTNPV), so that if γ = 0 then EPCFE ≥ - ENPV. This 

inequality holds with equality in the case of a deterministic 

sequence of costs and rewards, in which case NPV takes a 

unique predictable value. Therefore EPCFE + ENPV, with γ set 

equal to 0, may be regarded as a measure of the risk specifically 

associated with uncertainty. This is as distinct from the risk 

inherent in the value of ENPV, the average value of NPV, which 

also influences CFE and PCFE. Another measure of the risk 

attributable to uncertainty is sqrt(VarNPV), the standard 

deviation of NPV. From the definition of EPCFE it follows that 

EPCFE + ENPV, with γ = 0, is much closer in meaning to risk 

as it is commonly understood than is sqrt(VarNPV). Both 

measures are equal to zero in the absence of uncertainty, but as 

will be shown, they are not generally equal, and so actually do 

measure different aspects of risk. 

To see this it is sufficient to consider an investment project for 

which there are just two time points: 0, or before the project 

begins; and 1, when the project is finished. Call such a project an 

‘all in one go’ or AI1G project, and suppose γ = 0.  

Now 

�A�� = 	−min[�3��,3���1� = 3��] = max	[0, −3��]                                             (57) 

Note that also 

A�� = 	max[−3���0�, −3���1�] = max	[0, −3��] (58) 

So that CFE = PCFE for an AI1G project with γ = 0. 

Writing F for the distribution function of the random variable 

X = NPV, it follows that 

��A�� = −T �>����6
�8                        (59) 

Now suppose that NPV has a probability distribution of the 

form  

P(X = m) = P(X = - m) = p, P(X = 0) = 1 – 2p         (60) 

Thus EX = 0, VarX = 2pm2, and EPCFE = pm, so that if p = 

1/2m2, then VarX =1 and EPCFE = 1/2m, and EPCFE takes all 

values in the interval (0, 0.5] as m varies between ∞ and 1, while 

ENPV = EX and VarNPV = VarX remain fixed at 0 and 1 
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respectively. 

7. Further Properties of the New Risk 

Measures 

Throughout this section it is assumed that γ = 0. 

It has been shown that EPCFE + ENPV like sqrt(VarNPV) is 

a measure of the risk attributable to uncertainty, but that the two 

measures are not equivalent to each other. The extent of the 

variation which can occur in EPCFE while ENPV and VarNPV 

take the fixed values of 0 and 1 is now explored, starting with 

the case of an AI1G project as discussed in the previous section. 

7.1. All-In-One-Go (“AI1G”)  

Putting m = 1 and p = 0.5 gives, as shown above, an AI1G 

project with ENPV = 0, VarNPV = 1, and EPCFE = 0.5. The 

next theorem shows that this is the largest value of EPCFE (= 

ECFE) for an AI1G project with ENPV = 0 and VarNPV = 1. 

The proof considers alternative distributions over a finite 

number of values. It seems likely that it could be extended to 

arbitrary alternative distributions by considering a sequence of 

approximations to an arbitrary limit distribution, each 

distribution in the sequence being over a finite number of values.  

Theorem 2. 

For a random variable W∈R with a discrete distribution 

over a finite number of values, the maximum value of E (max [0, 

W]) subject to the constraints EW = 0 and VarW = 1, is 0.5, and 

occurs when P (W = 1) = P (W = - 1) = 0.5.  

Before a general proof of Theorem 2 is given, a proof is 

offered for a restricted case. This is because the proof is easier to 

follow than the general proof, and it is therefore desirable to 

build up the reader’s confidence by considering this case first. 

M shall be written for E(max[0,W]).  

This first proof will involve showing that the proposed 

solution gives the maximum value of M for the class C of 

random variables. The class C of random variables W∈R are 

those of the form  

��U = �V� = �V , J = 1,2,3,4; �� = 1, �� = −1, 1 ≠ �C > 0,−1 ≠ �Y < 0 

	��	 + 	�� + 	�C	 + 	�Y	 = 1                         (61) 

Lemma 1. Theorem 2 holds for Class C. 

Proof:  

The constraints EW = 0 and VarW = 1 may be written as  

	��	 − 	�� + 	�C	�C + 	�Y	�Y = 0 

�� +	�� +	�C�3� + �Y�4� = 1               (62) 

Also 	��	 + 	�� + 	�C	 + 	�Y	 = 	1 

So ��3� − 1��C + ��4� − 1��Y = 0 

And �C = −��4� − 1��Y/��3� − 1�. 
Thus 	��	 + 	�� = 1 − �C − 	�Y	 = 1 − �Y	�1 − ���4� −1�/��3� − 1���. 
Also 	��	 − 	�� = −	�C	�C − 	�Y	�Y 	= −�Y	��4 −�3���4� − 1�/��3� − 1���. 
Hence 	�2��	 − 1�/	�Y = �Y − 	1 −	��3 − 1����4� −1�/��3� − 1�� 	= ��Y	 − 1��1 − ��Y + 	1�/��3 + 1�� =��Y − 1����3 − �4�/��3 + 1��. 

Note now that 

2[ = 2�	���� + 	�C�C� = ��Y − 1� �\C�\Y\C]� � 	�Y + 1 − 2	�Y	�Y = 1 − ^��Y + 1� �\C]\Y\C]� �_ 	�Y                   (63) 

Since W∈C and ��3� − 1��C + ��4� − 1��Y = 0 

It follows that if 	�Y	 > 0, then 	�C	 > 1 <=>	 	�Y	 > −1, so 
that 

��Y + 	1���3 + �4� > 0                      (64) 

It follows that M ≤ 0.5 with equality iff p4 = p3 = 0, and the 

lemma is proved.  

Next the notion of a boundary point is introduced, which will 

be used in the statement and proof of Theorem 2. A boundary 

point is a point in the state-space at which at least one of the 

inequality constraints (≤ or ≥) is satisfied with equality. A simple 

example is provided by the unit interval 0 ≤ x ≤ 1. The points x 

= 0 and x = 1 are boundary points. 

The Lagrange Multiplier Theorem is now introduced. This 

account can be found in Sawyer [16]. The Theorem has been 

slightly reworded to suit the purposes of this analysis. 

Suppose it is desired to maximize (or minimize) on Rn a 

function f (X),  

Where � = �	��	, 	��,…,	�7	� (1.1a)  

Subject to p equality constraints `���� = a�, `���� =a�, … , `b��� = ab (1.1b) 

And q inequality constraints ℎ���� ≤ >�, ℎ���� ≤

>�, … , ℎc��� ≤ >c  (1.1c) 

The Lagrange Multiplier (LMT). 

Assuming appropriate smoothness conditions, at a point in R
n
 

which is a maximum of f subject to the constraints and is not a 

boundary point, there are parameter values ƛ1, ƛ2, … ƛp such that  

d/d	�V	�#��� +	e 	ƛf 	`f	����b
f9� = 0, 1 ≤ 	J ≤ =    (65) 

The following well-known theorem will also be needed. 

The Extreme Value Theorem (“EVT”). 

Continuous functions defined on closed bounded regions of R
n
 

are bounded and attain their maximum and minimum values.  

Proof of Theorem 2. 

As above, M shall be written for E (max [0, W]). 

Let S = (m, n, X, Y, P, Q) denote an arbitrary discrete and 

finite solution of the constraints, where � = ���, ��, … , �g�, � = �I�, I�, … , I7�, � =���, ��, … , �g�, h = ���, ��, … , �7�, 
for 

�V > 0, �V = ��U = �V� > 0, �J = 1,2, … ,i�; 
IV > 0, �V = ��U = −IV� > 0, �J = 1,2, … , =�; 
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� = 	5 	�V ,	
g

V9�
� = 	5 	�V ,	

7

V9�
� + � ≤ 	1; 

1 − � − � = ��U = 0�                          (66) 

(In other words, S is an arbitrary discrete and finite 

distribution for the random variable W which satisfies the 

constraints). 

The constraint equations are: 

	��U� = 	��	��		 + 	���� + ⋯+ 	�g	�g − �	��I� + 	��	I� + ⋯+ 	�7	I7� = 	`��i, =, �, �, �, h� = 0                    (67) 

��k�U� = ���1� + ���2� +⋯+ �g�i� + ��I1� + ��I2� +⋯+ �7I=� 	= 	`��i, =, �, �, �, h� = 1            (68) 

Let V(S) be the solution space formed from S by keeping m, 

n, P, and Q fixed and allowing X and Y to vary, with xi ≥ 0, 

(i=1,2,…,m) and yi ≥ 0, (i=1,2,…,n). Let T = (m,n,X’,Y’, P,Q) 

be a point in V(S) at which M is maximized. Note that it follows 

from the EVT that T exists. Call the maximum value M(T). 

Without loss of generality let X’ = (x1
’, x2

’, …, xm’
’, 0, 0,…,0) 

and Y’ = (y1
’, y2

’, …, yn’
’, 0, 0,…,0) where 1 ≤ (m’,n’) ≤ (m,n), 

xi
’ > 0 (i=1,2,…,m’), and yi > 0 (i=1,2,…,n’). Thus T ɛ V’(S) ⊂ 

V(S), where V’(S) consists of points of the form 

(m’,n’,X’,Y’,P’,Q’), X’ and P’ are truncated versions of X and P 

with just m’ elements, Y’ and Q’ are truncated versions of Y and 

Q with just n’ elements, m’, n’, P’ and Q’ are fixed, and X’ and 

Y’ are allowed to vary. 

Note that M(T) is maximal in V’(S). Also, T is not a boundary 

point of V’(S). This is because the boundary points of V’(S) are 

defined to be those points at which at least one of the inequality 

constraints (≤ or ≥) is satisfied with equality, while T has xi
’ > 0 

(i=1,2,…,m’), and yi > 0 (i=1,2,…,n’). It thus follows from the 

LMT that the Lagrangian partial differential equations hold for 

X’ and Y’ at T.  

Lemma 2. At the point T, xi
’
= xj

’
 ∀i, j, and yi

’
= yj

’
 ∀i, j. 

Proof.  

The Lagrangian partial differential equations for X’ and Y’ at 

T are as follows.  

d/d	�V	′�[��� + 	ƛ�	`�	��� + 	ƛ�	`�	���� 	= 0, 1 ≤ 	J ≤ io                                                      (69) 

d/d	IV	′�[��� + 	ƛ�	`�	��� + 	ƛ�	`�	���� 	= 0, 1 ≤ 	J ≤ =o                                                      (70) 

for suitably chosen parameters ƛ1 and ƛ2. 

Substituting for g1(T) and g2(T) these equations become 

d/d	�V	o [	��	′��o + 	��′��o 		 +⋯+ 	�gp ′�gpo 		+	ƛ����	′��o +	��′��o 		 + ⋯+ 	�gp ′�gpo 		 − �	��	′I�o + 	��	′I�o +⋯+
	�7p′I7po ��+	ƛ����	′��o� + 	��′��o�		 + ⋯+ 	�gp′�gpo� 		 + 	��	′I�o� + 	��	′I�o� + ⋯+ 	�7p′I7po�!�] = 0 (71) 

d/d	IV	o [	��	′��o + 	��′��o 		 + ⋯+ 	�gp′�gpo 		+	ƛ����	′��o +	��′��o 		 + ⋯+ 	�gp ′�gpo 		 − �	��	′I�o + 	��	′I�o +⋯+
	�7p′I7po ��+	ƛ����	′��o� + 	��′��o�		 + ⋯+ 	�gp′�gpo� 		 + 	��	′I�o� + 	��	′I�o� + ⋯+ 	�7p′I7po�!�] = 0	(72) 

These equations reduce to  

	�V	′ + 	ƛ��V	′ + 2	ƛ��V	′�Vo = 0, 1 ≤ 	J ≤ io (73) 

−	ƛ��f	′ + 2	ƛ��f	′Ifo = 0, 1 ≤ 	J ≤ =o (74) 

Since p i‘ ≠ 0 ∀i, it follows from equations (i) that at T, xi
’= xj

’ ∀i, j. Since q i‘ ≠ 0 ∀	 i it also follows from equations (ii) that at T, 

yi
’= yj

’ ∀i, j, and the lemma is proved. □ 

Call the common values x and y, so that at T, xi‘ = x, 1 ≤ i ≤ 

m’, and yi‘ = y, 0, 1 ≤ i ≤ n’. Thus T ɛ V’’(S), where V”(S) 

consists of solutions of the form (1,1,x,y,p,q), writing x,y,p and q 

in place of the vectors x(1,1,…,1), etc, and where p > 0, q > 0 

and p+q ≤ 1. 

To complete the proof of the theorem the following lemma is 

needed. 

Lemma 3. M is maximized for constraint solution points of the 

form (1,1,x,y,p,q), at the point U = (1,1,1,1,1/2,1/2), with M(U) 

= ½.  

Proof. 

The task is to choose x,y,p,and q so as to maximize 

E[max(W,0)] subject to the constraints E (W) = 0, V (W) = 1, 

which may be written as maximize px subject to: 

�� − �I = 0; ��� + �I� = 1; � + � ≤ 1       (75) 

Or equivalently subject to 

��(� + I) = 1; �(1 + \
q) ≤ 1             (76) 

Eliminating q. These conditions are equivalent to 

��(� + I) = 1; �I ≥ 1                      (77) 

Or simply to  

��(� + 1/�) ≤ 1                       (78) 

eliminating y, where 0 ≤ p ≤ 1 and x > 0. 

To maximize px, it must be the case that px(x + 1/x) = 1, so 

that px = x/(1+x2), which is maximized when x =1, so that p = 

½. Also, working backwards, xy = 1, and therefore y =1, and q = 

½ from the original constraint equations. Thus for a maximum U 

= (1,1,1,1, ½,½) as required and M(U) = px = ½ completing the 

proof of the lemma. □  

For any discrete and finite solution point S, M(S) ≤ M(T) ≤ 

M(U) = ½. Now recall that the point S represents an arbitrary 

discrete and finite random variable satisfying the constraints, 

and that U is the same for all S. This completes the proof of the 

theorem. □  

It follows that for an AI1G project with ENPV = 0 and 

VarNPV = 1 the maximum value of EPCFE is 0.5, and occurs 

when P(NPV = 1) = P(NPV = - 1) = 0.5. This follows on 

substituting - NPV for W.  

And in fact Theorem 2 can be proved not just for a real-
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valued discrete finite random variable which satisfies the given 

conditions, but for any real-valued random variable which 

satisfies the constraints. For this proof, Professor Colin 

McDiarmid is thanked. 

Generalized Version of Theorem 2. 

For any random variable W∈R, the maximum value of 

E(max[0,W]) subject to the constraints EW = 0 and VarW = 1, 

is 0.5, and occurs when P(W = 1) = P(W = - 1) = 0.5. 

Proof. 

As in the previous proof, begin with a simple case. Consider a 

random variable W that has a two point distribution as follows:  

P(W = a) = pa > 0;  

P(W = -b) = pb > 0; 

a,b > 0;  

pa + pb ≤ 1  

EW = 0: paa = pbb; 

EW2 ≤ 1: paa
2 + pbb

2 ≤ 1. 

It will be shown that given these constraints, E[max (0, W)] = 

paa ≤ ½. 

Begin with a change of variables: 

Set z = paa > 0. Choose z > 0, a,b > 0.  

The next step is to maximize z, subject to  

z(a + b) ≤ 1 (from the EW2 ≤ 1 constraint)  

and z(1/a + 1/b) ≤ 1 (from the pa + pb ≤ 1 constraint). 

i.e. z ≤ min{1/(a+b), ab/(a+b)}. 

The aim is to maximize z, and hence a,b > 0 should be chosen 

to maximize min{1/(a+b), ab/(a+b)}.  

Lemma 4. maxa,b>0 min [{1,ab}/(a+b)] = ½ and occurs only 

when a = b = 1. 

Proof. 

max a,b>0 min [{1,ab}/(a+b)]  

= max c>0, a∈(0,c) min [{1,a(c-a)}/c] 

= maxc>0 min [{1, maxa∈(0,c) [a(c-a)]}/c] 

= maxc>0 min [{1, c2/4}/c] 

= maxc>0 min [1/c, c/4] 

Now max c>0 min [1/c, c/4] = ½ and occurs only when c = 2. 

This follows immediately by inspection of the graphs for 1/c and 

c/4. Thus at a maximum we have c = 2, and a must be chosen to 

give maxa∈(0,2) min ½ {1,a(2-a)} = ½ min{1, maxa[a(2-a)]}, 

which is ½ and occurs only when a = b = 1. □ 

Now the general case needs to be reduced to the case that was 

just proved. W is used to denote the random variable, with EW = 

0, EW2 ≤ 1, E[W | W > 0] = µ, and E[W | W ≤ 0] = ƛ.  

Let Z = ƛI(W ≤ 0) + µI(W>0).  

So EZ = EW = 0 

EZ2 = ƛ2P(W ≤ 0) + µ2P(W>0) ≤ EW2 = E[W2|W ≤ 0]P(W ≤ 

0) + E[W2|W > 0]P(W > 0) (67) 

This last inequality holds with equality only if W|W ≤ 0 and 

W|W > 0 are constants. Call this condition (*). (Here we are 

making use of the general result that for any real-valued random 

variable Z whose variance exists, Var(Z) = E(Z2) – (E(Z))2 ≥ 0, 

and = 0 only if Z is a constant.)  

Also E[max(W,0)] = E[max(Z,0)] = µP(W>0). It follows that 

given any W for which EW = 0, EW2 = 1, and (*) does not hold, 

there is a W’ with EW’ = 0, EW’2 = 1, E[max(W’,0)] > 

E[max(W,0)], and for which (*) does hold.  

To see this note that if (*) does not hold, then EZ2 < EW2 = 1, 

so that EZ2 < 1. In the above, one needs to let W’ = 

Z/sqrt(E(Z2)), so that E[max(W’,0)] = 

[1/sqrt(E(Z2))]E[max(W,0)]. If (*) does not hold, then 

[1/sqrt(E(Z2))] > 1, and hence E[max(W’,0)] > E[max(W,0)]. 

From the first part of the proof, it further follows that W = +/- 

1 with probabilities (½, ½) gives the unique maximum of 

E[max(W,0)], and the theorem is proved.  

7.2. All in n Goes (“AInG”) 

Now several variations to the AI1G case that was considered 

above will be discussed. The discussion will begin with three 

normal random variable cases, and then progress to Bernoulli 

random variable cases.  

Similar notation as above will be used, except that since more 

than one “go’s” are now being considered, there will be not just 

a random variable (and reward), but now successive rewards for 

stages i = 1, 2,…, etc. These rewards will be represented by 

letters such as X, Y, and Z for random rewards, and x,y, and z for 

particular values. This nomenclature works (without subscripts) 

as long as there are not too many stages. For the case of n stages 

discussed below, subscripts are introduced. 

7.2.1. Normally Distributed Rewards 

1. One standard normal reward (AI1G) 

Recall that for the case of AI1G, for a random NPV = X, 

��A�� = −s �>�(�)6
�8

 

The probability density function for a normal random variable 

X with mean µ and standard deviation σ is  

t 1
u(2v)� �w x F��(−½((� − z)/u)

�). 
If X ~ N(0,1), then  

��A�� = −( 1
(2v)� �w )	s �F��(−��2 )>�

6
�8

= ( 1
(2v)� �w )	s >(F��(−��2 ))

6
�8

= t 1
(2v)� �w x {F�� t−

��
2 x| − ∞

0 = t 1
(2v)� �w x

≅ 1
2.5066 ≅ 0.3989. 

Note that here, as in the following cases that will be 

considered, PCFE = CFE, since ENFV = 0 at all event nodes. 

(And hence EPCFE = ECFE.)  

2. Two independent normally distributed rewards 

Now suppose X and Y are independently distributed random 

variables with X, Y ~ N(0, ½) (this ensures that ENPV = 0 and 

VarNPV = 1). PCFE = - min[0, X, X + Y]. 

There are three cases to consider: 0 is the minimum, X is the 

minimum, and X + Y is the minimum.  

Case 1: If 0 is the minimum, then both X and X + Y are ≥ 0.  
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Case 2: If X is the minimum, then X ≤ 0, and X + Y ≥ X 

which means Y ≥ 0.  

Case 3: If X + Y is the minimum, then X + Y ≤ 0, and X + Y 

≤ X which means Y ≤ 0.  

The contribution of each case to EPCFE will now be 

computed (and the contributions summed):  

Case 1: 0 

Case 2: In this case, X ≤ 0 and hence we must integrate 

xdF(x) from -∞ to 0. Also Y ≥ 0 and the probability of this is ½. 

Hence  

−½s �>�(�)6
�8

= −½( 1
(2v ∗ ½)� �w )	s �6

�8
F��(−��)>� = −½t 1

v� �w x �½F��(−�
�)� − ∞

0
 

= � �
Y�� �w � as the contribution to EPCFE for this case. 

Case 3: In this case, there are two subcases to consider: X, Y 

≤ 0, and X ≥ 0, Y ≤ -X. 

X, Y ≤ 0:  

This subcase gives  

−s s (� + I)>�(�)>�(I)6
�8

6
�8

 

(since the integration must be taken over all negative values 

for both variables). X and Y have the same distribution, so this is 

equivalent to 

−s s 2�>�(�)>�(I) =6
�8

6
�8

−s �>�(�)6
�8

= 1
2v� �w . 

X ≥ 0, Y ≤ -X:  

This subcase gives  

−s s (� + I)>�(�)>�(I)�\
�8

8
6

 

(Since the integration must be taken over all positive values of 

X and all values for which Y ≤ - X).  

Then 

−s s (� + I)>�(�)>�(I)�\
�8

8
6

 

Where  

>�(�) = t 1
v� �w x F��(−�

�)>� 

=−T ��ɸ(− �2�)� �w � + L �
�(�)� �w M �−F��(−I�)�−∞

�\�>�(�)8
6  

= −s ��ɸ(−(2�)½) − t 1
2(v)� �w x �F��(−�

�)��>�(�)8
6

 

= −s ��ɸ(−(2�)½) − t 1
2(v)� �w x �F��(−�

�)�� t 1
v� �w x F��(−�

�)>�8
6

 

To evaluate this remaining integral, the two pieces of the integral will be considered separately. To evaluate the first piece 

−T �ɸ(−(2�)½)(� �
�� �w � F��(−��)>�)8

6  

Note that  

−T 2�ɸ(−2½	�)(F��(−��)>�8
6 =−T ɸ(−2½	�)>(F��(−��))8

6  

=−�ɸ(−2½	�)F��(−��)�0∞ − T 2½ɸ(−2½	�)F��(−��)>�8
6  

= ½− ( 2½
(2v)� �w )	s

8
6

F��(−2��)>� 

= ½	 − 2½/4 = ½	(1 − 2½/2). 
To evaluate the second piece 

−T −½	(v)� �w �F��(−��)� � �
�� �w � F��(−��)>�8

6  

Note also that L �
(����)� �w MT F��(−��/2u2)>�8

6  = ½, so 

letting σ2 = ¼ gives  

s F��(−2��)>� = (2v)½/4.8
6

 

Putting these two pieces together then gives  

−s ��ɸ(−(2�)½) −½	(v)� �w �F��(−��)� t 1
v� �w x F��(−�

�)�>�8
6

 

= t −1
4v� �w (1 − 2½/2)x + t

1
4(2v)� �w x = L �

Y�� �w (�½��)Mas the contribution to EPCFE of this case. 

These contributions all sum to the following total:  

EPCFE ≅ 0.4816.  
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3. n independent identically distributed rewards 

The notation used above for X and Y is changed here, and 

instead subscripts are introduced. Suppose Z1, Z2, …, Zn are 

independently distributed random variables with Z1, Z2, …, Zn ~ 

N(0,1/n) (again to ensure that ENPV = 0 and VarNPV = 1).  

�A�� = −min	�0, ��, �� + ��, … , �� + �� + ⋯+ �7� (79) 

In the limit as n approaches ∞, PCFE = min0≤t≤1 Z(t), where 

Z(t) is standard Brownian motion. Writing X = PCFE yields 

1 − ����� = ���A�� ≥ �� = ��i��6����	��$� > �� 
= 2

�2v�� �w 	s8
�

F�� t−I�
2 x >I	�� > 0� = 2ɸ�−	�� 

Where the second to last equality is a standard identity for 

Brownian motion; see for example Ross [17]. 

The general result that for a continuous positive random 

variable Z,  

���� = s8
6

�1 − ������>� 

gives the following:  

��A�� = s8
6

2ɸ�−	��>� = 2½
�v� � = 0.7979. 

This is because 

s8
6

ɸ�−	��>� = [ɸ�−	���]0
∞

+ 1
�2v�� �w s F�� t−��

2 x8
6

�>� 

using integration by parts. And this is equal to 

−1
�2v�� �w {F�� t−��

2 x| 0
∞ = 1

�2v�� �w . 
Therefore EPCFE = 0.3989, 0.4816, and 0.7979 for the cases 

of 1, 2, and an infinite number of normally distributed rewards, 

respectively. This is probably because as the number of stages 

increases, the scope for large values of PCFE to occur by chance 

widens as well. 

7.2.2. Bernoulli Case 

The analysis is extended now to include the possibility that 

the rewards have a Bernoulli distribution, instead of the normal 

distribution considered above. AInG cases (for n = 1, 2, 3, 4, and 

5) are considered. Since as above incremental rewards with 

mean 0 are being used, here PCFE = CFE and hence EPCFE = 

ECFE.  

1. One stage.  

For some r ∈R, let X be a random reward with P(X = r) = 

P(X = - r) = ½, E(X) = 0, and Var(X) = 1. Thus Var(X) = r2, so r 

= 1.  

�A�� = −min[0, �] = −�0	J#	� = 1;	−1	J#	� = −1� (69) 

Thus EPCFE = E(PCFE) = ½ (- 0) + ½(1) = ½. (Note that it is 

still true that ENPV = 0 and VarNPV = 1.)  

2. Two stages. 

For some r∈R, let X and Y be independently and identically 

distributed random variables with P(X = r) = P(X = - r) = ½, 

E(X+Y) = 0, and Var(X+Y) = 1. Thus Var(X+Y) = 2Var(X) = 

2r2, so r = 2-1/2. Also PCFE = CFE because ENFV = 0 at all 

event nodes. 

Therefore 

�A�� = −min[0, �, � + �] 
= −�0	J#	� = � = t 1

2� �w x ;	t −1
2� �w x 	J#	� = t−1

2� �w x 	�=>	� = t 1
2� �w x ; 0	J#	� = t 1

2� �w x 	�=>	� = t−1
2� �w x ; 2 t −1

2� �w x 	J#	� = �
= t−1

2� �w x�. 

Thus EPCFE = E(PCFE) = ¼(- 0) + ¼(2-1/2) + ¼(- 0)+ ¼(2*2-

1/2) = ¾(2-1/2) = 0.5303.  

3. Three stages. 

Let X, Y, and Z be independently identically distributed 

random variables with P(X = r) = P(X = - r) = ½. Now 

Var(X+Y+Z) = 1 = 3Var(X) = 3r2, so r = 3-1/2. PCFE = - min[0, 

X, X+Y, X+Y+Z]. A quick sketch of an event tree shows that 

there are 8 possible pathways through the tree. For example, let 

+ + + signify the path for which X = Y = Z = r. For this path, 

PCFE = - min[0, X, X+Y, X+Y+Z] = - min[0, r, r + r, r + r + r] = 

0. The values for PCFE and associated probabilities are as 

follows: 0 with probability 3/8; r with probability 3/8; 2r with 

probability 1/8; 3r with probability 1/8. Hence EPCFE = 8(r/8) = 

3-1/2 = 0.5774. 

4. Four stages. 

A similar analysis gives EPCFE =19(r/16) = 19(4-1/2)/16 = 

0.5938. 

5. Five stages. 

A similar analysis gives EPCFE = 44(r/32) = 44(5-1/2)/32 = 

0.6149. 

The increase in EPCFE with an increase in the number of 

stages that was observed for normally distributed rewards holds 

here as well. The Central Limit Theorem (“CLT”) states that the 

mean of a large number of independent and identically 

distributed random variables, each with finite mean and 

variance, is approximately normally distributed. It follows that 

this case also tends to standard Brownian motion as the number 

of stages tends to infinity, with EPCFE = 0.7979.  

8. Conclusion 

Two new financial risk measures are proposed (the GO 
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measures). They are based on cash flow exposure and are 

particularly suitable for resource allocation decisions within a 

company. Theoretical analysis shows that they describe 

significant aspects of decision scenarios which are not covered 

by the established alternatives. Numerical examples show how 

they would work in practice.  

An important objective now is to explore further the types of 

project which perform well in terms of these measures, and 

those which perform badly, to improve the intuitive 

understanding. Further investigation is also required of how best 

to incorporate GO calculations into project management 

software, either by writing new software or by adding to the 

functionality of existing products.  

The strategies for risk reduction currently in use vary 

considerably in their effectiveness, with some companies 

employing effective risk mitigation strategies, and some in great 

need of procedures for risk realignment. Hopefully the GO 

measures will be of interest in pharmaceutical research and more 

widely.  
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