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Abstract: This paper investigates the complexity involved in the quantitative measurement of Economic Capital and 

proposes simulation methods as a practical solution for obtaining the loss distribution of a portfolio of obligors.  The paper 

examines a one factor model to generate loss distribution which establishes the necessary ingredients to measure the credit 

risk quantities in a loan portfolio. The general elements of credit risk modeling are outlined and then a specific model that 

employs a Monte Carlo simulation is developed. An example is provided that calculates the risk quantities in a loan 

portfolio from which the Economic Capital in a credit risk portfolio is obtained. 
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1. Introduction 

Economic Capital (EC), the amount of capital required to 

absorb unexpected losses in the coming year at a portfolio’s 

manager’s level of confidence, is the risk benchmark for 

organisations that have to manage portfolios of credit-risk 

assets of loans and bonds. EC usually gives a measure of 

the amount required to cover a bank’s losses with a certain 

probability or confidence level. Economic capital analysis 

typically involves an identification of the risks from certain 

activities or exposures, an attempt to measure and quantify 

those risks, and an attribution or allocation of capital to 

those risks. The EC has now increasingly become an 

accepted input into decision-making at various levels 

within banking organisations.  

Despite the growing popularity of EC there are still a lot 

of people and organisations that find it hard to understand 

the economic capital concept and compute it. Many people 

are intimidated by the mathematics that underlies the EC 

models, and there seems to be a lack of literature that 

bridges the gap between daily credit risk management and 

complex capital modeling.   

The concept of Economic Capital dictates that banks 

should hold some capital as cushion against unexpected 

losses. Some banks may use internally developed models to 

calculate their ECs. However, banks may also use 

commercial software to assist them in their EC calculations. 

A typical example of such software for credit risk is the 

Portfolio Manager by Moody's KMV, Strategic Analytics, 

Credit risk+ by Credit Suisse and CreditMetrics by JP 

Morgan. Value-at-risk (VaR) models are also typical EC 

frameworks for market and other risks.  

Currently, Basel II accord proposes Economic Capital for 

AAA banks in the region of 99.9%. We shall employ a 

Monte Carlo simulation procedure to produce a loss 

distribution capable of determining the EC at such 

confidence levels. This will make it possible for financial 

institutions using the default approach to determine 

precisely the amount of capital needed to cushion them 

against future unexpected losses and improve greatly the 

bank’s capital adequacy requirements as stipulated in 

BASEL II. 

Our approach of determining EC will be based on a 

single-risk factor calculation methodology that allows easy 

analytical solutions, rather than full-blown multi-factor 

models. At its essence, the model will generate a 

distribution of portfolio credit losses, which can be 

decomposed into Expected Loss (EL) and Unexpected Loss 

(UL) components. Conceptually, EL is akin to the mean 

loss rate of a portfolio and represents the loss that a bank 

can reasonably anticipate will occur over a given time 

horizon. EL is simply an aggregated measure of the PD of 

each obligor in the portfolio multiplied by its LGD, since 

the bank can expect to lose an amount equivalent to the 

likelihood of each obligor defaulting adjusted by the 

proportion of the exposure that will not be recovered upon 

that default. Capital charges are then designed to cover 

Unexpected Losses (UL). However, defining the UL of a 

portfolio as the risk capital saved for cases of financial 

distress is not the best choice, because there might be a 
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significant likelihood that losses will exceed the portfolio’s 

expected loss by more than one standard deviation of the 

portfolio loss. Therefore one seeks other ways to quantify 

risk capital, hereby taking a target level of statistical 

confidence into account. 

The determination of EC using the proposed 

methodology allows the quantification of risk capital at 

various confidence levels. 

For a prescribed level of confidence α the EC is defined 

as the α - quantile of the portfolio loss PFL minus the 

EL of the portfolio, 

PFLqEC −= αα  

where αq is the α -quantile of PFL . For example, if the 

level of confidence is set to α = 99.98%, then the risk 

capital αEC will (on average) be sufficient to cover 

unexpected losses in 9,998 out of 10,000 years, hereby 

assuming a planning horizon of one year. The reason for 

reducing the quantile q by the EL is due to the 

decomposition of the total risk capital (i.e., the quantile) 

into a first part covering expected losses and a second part 

meant as a cushion against unexpected losses. 

In effect, all risk quantities of the credit portfolio and 

therefore the economic capital can be identified by means 

of the loss distribution of the portfolio. This is an important 

observation, because it shows that in cases where the 

distribution of the portfolio loss can only be determined in 

an empirical way one can use empirical statistical quantities 

as a proxy for the respective “true” risk quantities. 

In practice, there are essentially two ways to generate a 

loss distribution. The first method is based on Monte Carlo 

simulation; the second is based on a so-called analytical 

approximation. In a Monte Carlo simulation, losses are 

simulated and tabulated in form of a histogram in order to 

obtain an empirical loss distribution of the underlying 

portfolio. Approaching the loss distribution of a large 

portfolio by Monte Carlo simulation always requires a 

sound factor model. The classical statistical reason for the 

existence of factor models is the wish to explain the 

variance of a variable in terms of underlying factors.  

Despite the fact that in credit risk we also wish to explain 

the variability of a firm’s economic success in terms of 

global underlying influences, the necessity for factor 

models comes from two major reasons. First of all, the 

correlation between single loss variables should be made 

interpretable in terms of economic variables, such that large 

losses can be explained in a sound manner. For example, a 

large portfolio loss might be due to the downturn of an 

industry common to many counterparties in the portfolio. 

Along this line, a factor model can also be used as a tool for 

scenario analysis. For example, by setting an industry 

factor to a particular fixed value and then starting the 

Monte Carlo simulation again, one can study the impact of 

a down or upturn of the respective industry. 

Often, one-factor models admit a decomposition of the 

portfolio loss variable into a monotonic function of the 

factor and a residual. The former part of the decomposition 

is called systematic risk whereas the latter part is called 

specific or idiosyncratic risk. Kalkbrener (2007) showed 

that the Deutsche Bank uses factor models in the 

determination of its EC measures. The IRB approach of 

Basel II regulatory framework is also based on credit risk 

modeling concepts that are broadly consistent with credit 

economic capital models used increasingly by financial 

institutions to measure portfolio-level risk and to manage 

and allocate capital across the enterprise.  

Sometimes, the portfolio loss variable converges in some 

sense to a monotonic function of the factor. This 

observation can be used as point of departure for analytic 

approximations of important statistics of the portfolio like 

quantiles of the portfolio loss variable (value-at-risk, VaR). 

Gordy (2003) was the first to suggest this approach which 

he called granularity adjustment for the one-factor model 

credit portfolio that underlies the Basel II regulatory capital 

rules which came into force in 2007 (see BCBS, 2004). 

Martin and Wilde (2002) observed that the results by 

Gouri´eroux et al. (2000) make feasible an easier and more 

systematic way to derive the adjustments. The purpose of 

the granularity adjustment is to recognise that a bank with 

exposures characterised by coarse granularity, implying a 

large residual of undiversified idiosyncratic risk (i.e. single-

borrower risk concentrations), should require additional 

capital. Similarly, a bank with exposures characterised by 

finer than typical or average granularity should demand a 

smaller than average capital requirement. 
The second reason for the need of factor models is a 

reduction of the computational effort. For example, for a 

portfolio of 100,000 transactions, 2×100,000×99,000 

correlations have to be calculated. In contrast, modeling the 

correlations in the portfolio by means of a factor model 

with 100 indices reduces the number of involved 

correlations by a factor of 1,000,000.  

The other approach to the determination of portfolio loss 

distribution is by analytical approximation method. 

Roughly speaking, the analytical approximation maps an 

actual portfolio with unknown loss distribution to an 

equivalent portfolio with known loss distribution. The loss 

distribution of the equivalent portfolio is then taken as a 

substitute for the “true” loss distribution of the original 

portfolio. We shall concentrate on the determination of loss 

distribution using the first approach, which is by Monte 

Carlo simulation. 

The study will thus; 

� Establish the frame work to compute loss distribution 

for a portfolio of obligors  

� Compute the Economic Capital from the loss 

distribution of a portfolio of obligors 

� Obtain the risk quantities such as Expected Loss and 

Unexpected Loss of the portfolio 

2. Economic Capital Modeling 

We shall begin to construct the Economic Capital 

framework by developing the structures that constitute the 

economic capital. Before going into the details of this 

construction we shall first look at factor models. 
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2.1. Credit Risk Models 

In last few years, several models of credit risk have been 

developed. The four main types of industry models can be 

classified into Asset Value Models, Macroeconomic Models, 

Actuarial Models and Intensity Models.  We shall basically 

focus on factor models, a form of Asset Value Models 

(AVMs), more specifically, the one factor model.  

Factor models are well established multivariate statistics, 

applied in credit risk models for identifying drivers of 

correlated defaults and for reducing the computational 

effort regarding the calculation of correlated losses. The 

asset value process models developed mainly by Moody's 

KMV and Credit Metrics focus on default-only mode. 

These models are of Bernoulli type deciding about default 

or survival of a firm by comparing the firm’s asset value at 

a certain horizon with some critical threshold. Factor 

models falls into this class of asset value process models. In 

factor models, it is assumed that the asset value process is 

dependent on some underlying factors reflecting industrial 

and regional influences, thereby driving the economic 

future of the firm. Factor model focuses on the asset value 

returns ir of the counterparties ),.......3,2,1( mi = at the 

planning horizon admitting a representation  

iiiir εβ +Φ=                          (1) 

Where 
iΦ
 
is called the composite factor of firm i. The 

variable iε represents the residual part of ir . Essentially iε   

is the error one makes in substituting ir  
by

ii Φβ . 

2.2. The One Factor Model 

The one factor model assumes that a single factor 

common to all counterparties influences the economic 

fortunes of the counterparties and that the asset correlation 

between obligors is uniform. We shall look at a model 

consisting of a portfolio of individual assets which are 

influenced mainly by a single factor - the state of the 

economy.  

The one factor model is completely described by 

specializing Equation (1) to the case of only one single 

factor common to all counterparties hereby assuming that 

the asset correlation between obligors is uniform. More 

explicitly, this means that the composite factor Φ of all 

obligors is equal to one single factor, usually denoted 

by )1,0(~ NY . Hence, Equation (1) is substituted by 

iZYr )1( ρρ −+= ,   ).........1( mi =         (2) 

where
iZρ−1 , with )1,0(~ NZ , takes over the role 

of residual iε and ρ is the uniform asset correlation 

between the  asset value log-returns )1,0(~ Nr . In one 

factor models, it is assumed that the residuals iZ constitute 

an independent family, also independent of the factorY .  

2.3. Unexpected Loss 

The standard deviation of Expected Loss measures the 

credit risk of loan transaction. The standard deviation of 

Expected Loss is typically called the Unexpected Loss 

abbreviated by UL.  

2.3.1. Unexpected Loss of a Single Credit Risk 

Transaction 

The unexpected Loss of a credit risk transaction is a 

function of the PD, LGD, and EAD and their variances. PD, 

LGD and EAD are independent random variables. 

UL=
222222222

222222222222

LGDEADPDEADPDPDLGD

LGDEADEADPDLGD

LGDEAD

PDPDLGDLGDEADEADPD

σσσσσσσ
σσσσσ

+++

+++
            (3) 

All the functions are independent and we will assume 

that the probability of default has a Bernoulli distribution, 

so that we can substitute PD
2σ by (

2PDPD − ).  

The Loss Given Default has a Beta distribution, which 

allows us to replace LGD
2σ by 

4

)1( LGD
LGD

−× , and 

EAD is assumed to be deterministic, so that 02 =EADσ . 

This leads to the equation: 

Unexpected Loss= 4/)1()1([
2

LGDLGDPDPDPDLGDEAD −××+−×××                 (4) 

 

 

 

 

 

2.3.2. Unexpected Loss of a Portfolio 

Due to diversification (we can spread our investment 

over various positions in different industry sectors and 

regions), the unexpected loss of the portfolio is given by:  
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Unexpected Loss of a Portfolio = ∑ ∑ ××== ,,,...,1,...,1 jijinini ULUL ρ                           (5) 

Where ji,σ represents the default correlation between 

obligor i  and obligor j in a portfolio of n obligors. For a 

portfolio of two obligors where 2=n , the unexpected 

loss of the two credit risk transaction is a function of the 

unexpected loss of each transaction and the correlation 

between them. 

 

Portfolio Unexpected Loss = 
2,121

2

2

2

1 2 σULULULULULPL ++=                                      (6) 

where 2,1σ is the default correlation between obligor 1 and 

obligor 2. The default correlation gives an indication of the 

tendency of the two loans to default at the same point in 

time. We are now left to determine the default correlation 

between obligor 1 and obligor 2, i.e. finding 2,1σ . We shall 

proceed from here to determine the general default 

correlation ji,σ between obligor i  and obligor j .  

2.4. Default Correlation of Two Loans 

The default correlation gives an indication of the 

tendency of the two loans to default at the same point in 

time. The default correlation between two obligors is a 

function of their iPD  and the jJPD . The default 

correlation is determined by the equation: 

ji,σ  = 
)1)(1( jii

ji

PDPDPD

PDPDJPD

−−×

×−
             (7) 

where JDP is the joint probability of default of obligor i  

and obligor j . iPD  and jPD are the probability of 

default of obligor i  and obligor j . To determine the 

default correlation of the two obligors we first need to 

calculate the Asset Value Correlation (AVC) of the two 

obligors and then use this information to derive the Joint 

Default Probability of the two obligors which will allow us 

to determine the default correlation. 

2.5. The Asset Value Correlation (AVC) 

The asset value correlation of the obligors is obtained by: 

Asset return obligor 1  

( ) ( ) 11
2

1
2

1 1 ε∗−+∗= RYRr              (8) 

The Asset return of obligor 2 is a function of the 

systematic factor and a specific factor to obligor 2.  

Asset return obligor 2 

( ) ( )
22

2
2

2

2 1 ε∗−+∗= RYRr   (9) 

From Equations 8 and 9, it is clear that the common 

factor that drives the changes in the asset values of both 

obligors is Y (the composite factor), which represents the 

change in the state of the economy. Thus, the asset 

correlation between obligor 1 and obligor 2 is solely 

influenced by the systematic factor common to both obligor 

1 and obligor 2. 

2.6. The Joint Probability of Default (JPD) 

The Joint Probability of Default is the default thresholds 

of the obligors behaviour which are functions of the value 

of each obligor’s liabilities. If the asset value of an obligor 

falls below the obligor’s default threshold, the obligor 

defaults. The Joint Probability of Default is a function of 

the PD’s of the obligors and their asset correlation. 

),,( , jiji ncorrelatioassetPDPDJDPJDP =    (10) 

The Joint Probability of Default is established by 

determining the volume under the asset value distribution 

up to the default threshold of the two obligors. 

Mathematically, the JPD  is a double integral which we 

approximate by a Visual Basic program in Excel.  

2.7. Economic Capital Requirements of a Loan Portfolio 

The Unexpected Loss as determined by Equation 5 

represents credit risk at two standard deviation of loss. The 

portfolio unexpected loss thus provides confidence level of 

around 90%. This falls short of the confidence levels that 

are used in current practice to determine economic capital, 

which typically ranges between 99.5% and 99.98%. 

Suppose we use a confidence level of 99%, this implies that 

our tolerance for actual losses exceeding our economic 

capital is 1%. It is important to note that though we have 

suggested 99% to illustrate the economic capital concept, in 

practice, institutions usually calculate economic capital 

using confidence level that reflects their desired credit 

rating. 

Graph of a Typical Loss Distribution Curve 

Figure 1 shows the levels of Expected Loss, Unexpected 

Loss and the Economic Capital in a graph of a typical loss 

distribution.
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Figure 1. Loss Distribution Curve 

3. Monte Carlo Simulations 

Due to the shortcomings of the Unexpected Loss in 

determining how much capital to hold against future loses, 

we determine the EC by using Monte Carlo simulation. The 

main advantage of using Monte Carlo simulation is that it 

accurately captures the correlations inherent in the portfolio 

instead of relying on a whole bunch of assumptions. 

Moreover, Monte Carlo simulation takes into account all 

the different risk characteristics of the loans in the portfolio. 

In contrast to closed-form solutions that involve solving 

theoretical formulas and equations, Monte Carlo 

simulations is an alternative way to obtain the aggregate 

loss distribution in which an algorithm is cleverly 

implemented in a computer and it does the job.  

The Monte Carlo Simulation of credit risk using the one 

factor can be split into five main steps:  

1. Specify the Probabilities of Default (PDs) of the 

portfolio. 

2. Specify LGD which is given by  

             ×100 (1- Recovery Rate) 

3. Specify EAD, the Exposure at Default Unexpected 

loss of the portfolio is given by ∑ ×× )( LGDPDEAD  

4. Specify the asset value correlations of individual 

credit events. 

5. Based on steps 1-4, obtain the portfolio loss via Monte 

Carlo simulations. 

Probability of default can be obtained using any of these 

three approaches: 

� Structural models  

� Logit scores 

� Historical default rates per rating category 

The LGDs can be obtained by using historical average of 

LGDs or multivariate prediction model. In the asset value 

approach, we simulate asset values by generating random 

values and finding the inverse. The random values 

generated (0, 1) are not normally distributed but the inverse 

(inverseRand( )) is standard normally distributed. If the 

asset values are normally distributed then  

Default Point = )(1 PD−Φ  

where Ф denotes the cumulative standard normal 

distribution function.  

Let id  denote the default point such that if the 

borrower’s asset value falls below the default point (which 

is a function of the borrower’s liability), the borrower 

defaults, otherwise borrower survives. 

Default; ii dA ≤⇔  

No Default;  ii dA >⇔ .  

We now run the Monte Carlo simulation for a portfolio 

of hundred (100) obligors. We perform the simulations 

using the steps 1-4.  

For one scenario, we set EAD at £10,000,000,000. If we 

assume a recovery rate of 40% then, LGD = 60%. PD is set 

at 20% given a Default Point = -0.842. The default 

correlation is also set to ρ = 0.51. It is possible to vary the 

PD and ρ . In such a case, a different scenario is generated. 

This procedure can be repeated to generate infinite number 

of scenarios. We now perform the simulations using the 

procedure. The results are summarised in the loss frequency 

table in Appendix A. The loss distribution is as shown in 

Figure 2. 

Contents of Appendix A can now be summarised thus: 

� The columns 1 & 2 from the left-hand-side shows the 

specifications of EAD, PD, Default point, LGD 

and ρ . Also, Expected Loss and total number of 

simulations performed. 

� Column 3 from the Left-Hand-Side shows the 

Cumulative Portfolio Losses which are in multiples of 

£6,000,000 (LGD is 60% so if EAD is £10,000,000, 

then each default will lead to the loss of 60% x 

£10,000,000 = £6,000,000).  

� Column 4 shows the Frequency or Probability of the 

losses.  

� Column 5 shows the portfolio loss under each 

scenario of the macroeconomic condition or a given 

macro factor.  

� Column 6 shows the simulated macro factor (which is 

the state of the economy at each point in time). 

The remaining columns show the obligors situation         

under the default condition: 
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Figure 2. Loss Distribution from Monte Carlo Simulation  

Depending on a lending institution’s rating or risk 

appetite, it world set the confidence interval for its EC. We 

give here the EC required for three institutions whose EC 

covers up to 95%, 99% and 99.9% confidence interval. 

Table 2. Ranking Table of Loss Amount 

Confidence 

Interval 
 Rank Loss Amount 

95.0% 5.0 % of 1000 =50 Top 50 £282,000,000 

99.0% 1.0 % of 1000 = 10 Top 10 £414,000,000 

99.9% 0.1% of 1000 = 1 Top 1 £450,000,000 

Table 3. Capital Requirements at Different Confidence Levels 

Confidence 

Level 
Value at Risk 

Expected 

Loss 

Economic 

Capital 

95.0% £282,000,000 £120,000,000 £162,000,000 

99.0% £414,000,000 £120,000,000 £294,000,000 

99.5% £450,000,000 £120,000,000 £330,000,00 

For example, for a 95% confidence level, the amount of 

loss corresponding to the 95% confidence interval is 5% of 

1,000 (loss scenarios generated =1,000) when ordered from 

largest to lowest. So we aggregate 50 losses from the top of 

the loss. That is the 50
th

 largest loss when ordered from 

largest to lowest. Table 2 provides the computations and 

Table 3 provides the (rank) or losses at different confidence 

levels of 95%, 99% and 99.9%. 

4. Conclusions 

As we have seen, loss simulation results are simple to 

obtain and interpret.  Percentiles at different confidence 

levels are also possible to obtain using this approach.  In 

addition, the methods also provide estimates up to 99.9 

percentile which is what is required by institutions with 

high rating. This level of accuracy is usually difficult to 

obtain by traditional methods. Thus, the simulation 

approach advanced here provide us with is a very 

convenient tool to generate aggregate loss distribution and 

obtain all the risk quantities in a credit portfolio which is of 

critical importance for risk managers and regulators alike. 

We believe the model we have proposed here would solve 

the Economic Capital problem and help banks and lending 

institutions in their daily risk management. The model does 

not require extensive mathematical rigor. In fact, one needs 

only to understand how to obtain the Monte Carlo 

simulations in order to obtain the loss distributions.  
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Appendix A. Table of Values of Loss Frequency  

EAD 10,000,000,000 
 

Loan Loss Amount 
Frequenc

y  
Portfolio Losses 

 

Macro 

factor  

Def 

1 

Def 

2 

Def 

3 

PD 20% 
 

0 0 1.40% 
 

270,000,000 
 

-1.242 
 

1 0 1 

Default point -0.842 
 

1 6,000,000 2.30% 
 

348,000,000 
 

-2.126 
 

1 0 1 

 

 

 

 
2 12,000,000 2.90% 

 
6,000,000 

 
2.119 

 
0 0 0 

 
20 

 
3 18,000,000 2.80% 

 
120,000,000 

 
-0.112 

 
0 0 1 

   
4 24,000,000 4.30% 

 
138,000,000 

 
-0.46 

 
0 0 1 

Recovery rate 40% 
 

5 30,000,000 3.40% 
 

228,000,000 
 

-0.912 
 

0 0 0 

LGD 60% 
 

6 36,000,000 3.10% 
 

84,000,000 
 

0.446 
 

0 0 0 

 0.51 
 

7 42,000,000 3.60% 
 

66,000,000 
 

0.551 
 

0 0 0 

 

 

 

 
8 48,000,000 2.80% 

 
198,000,000 

 
-0.709 

 
0 1 0 

 
51 

 
9 54,000,000 2.50% 

 
72,000,000 

 
0.099 

 
0 0 1 

   
10 60,000,000 2.50% 

 
90,000,000 

 
0.176 

 
0 0 0 

Expected loss 120,000,000 
 

11 66,000,000 3.40% 
 

42,000,000 
 

0.395 
 

0 1 0 

Simulations 119,598,000 
 

12 72,000,000 3.50% 
 

102,000,000 
 

-0.153 
 

0 1 0 

   
13 78,000,000 2.90% 

 
42,000,000 

 
0.731 

 
0 0 0 

   
14 84,000,000 3.70% 

 
210,000,000 

 
-1.002 

 
0 0 1 
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