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Abstract: An elementary analysis is developed to determine the stability region of certain classes of ordinary differential 

equations with two delays. Our analysis is based on determining stability switches first where an eigenvalue is pure complex, and 

then checking the conditions for stability loss or stability gain. In the cases of both stability losses and stability gains Hopf 

bifurcation occurs giving the possibility of the birth of limit cycles. 
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1. Introduction 

Delay differential equations have many applications in 

quantitative sciences including economics, biology, 

engineering among others. The single delay case is well 

established in the literature (Hayes, 1950, Bellman and Cooke 

1963, Matsumoto and Szidarovszky, 2013a), however the 

presence of a second delay makes the models much more 

complicated. The works of Hale (1979) and Hale and Huang 

(1993) can be considered as major contributions. Matsumoto 

and Szidarovszky (2012) developed a simple analytic method, 

which is limited to examine only some special model variants. 

Gu et al. (2005) developed a geometric approach applicable 

for analyzing a more general class of models. 

In this paper two particular models are examined and the 

two major approaches illustrated. A brief simulation study 

illustrates the theoretical findings. 

2. Model 1 

We first extend a text-book model of monopoly in 

microeconomics, following Matsumoto and Szidarovszky 

(2013b). A single product monopoly sells its product to a 

homogeneous market. Let q denote the output of the firm, 

���� = � − ��  the price function and 	��� = 
�  the cost 

function. Since ��0� = 0 and |
����/
�| = �, we call a the 

maximum price and b the marginal price. It is assumed that 

the firm knows the marginal price but does not know the 

maximum price. In consequence it has only an estimate of it at 

each time period, which is denoted by �����. So the firm 

believes that its profit is 

����� = ������ − ���������� − 
����) (1) 

and its best response is 

����� = �������
�� .                  (2) 

Further, the firm expects the market price to be 

����� = ����� − ������ = �������
� .          (3) 

However, the actual market price is determined by the real 

price function 

����� = � − ������ = ����������
� .          (4) 

Using these price data, the firm updates its estimate. If the 

firm revises the estimate in such a way that the growth rate of 

the estimate is proportional to the difference between the 

expected and actual prices, the adjustment or learning process 

can be modeled by the differential equation 

������/��
����� = ������� − ������         (5) 

where � > 0 is the speed of adjustment. Substituting (3) and 

(4) reduces this to a differential equation with respect to �� as 

������
����� = ��� − ������ 
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or multiplying both sides by �����  generates the logistic 

model 

������
�� = �������� − ������          (6) 

which is a nonlinear differential equation. 

If the firm uses two past price information, then the 

differential equation turns to be the delay differential equation 

������
�� = �������� −  !���� − "� − #!���� − $��    (7) 

where  ′ > 0 and #′ > 0 are positive constants while δ 

and η denote the delays in the price information. It is clear that 

unique stationary state of this equation is a. By introducing 

the new variable, &��� = ����� − �, equation (7) is written 

as 

 ( ) ( ) ( ) = 0x t Ax t Bx tδ η+ − + −&         (8) 

where A =�� ′ and B =��#′  are positive constants. We 

will first examine the asymptotical stability of the delay 

differential equation 

The characteristic equation can be obtained by looking for 

the solution in the exponential form tueλ . By substitution, 

( ) ( ) = 0t t tu e Aue Bueλ λ δ λ ηλ − −+ +  

or 

= 0.Ae Beλδ ληλ − −+ +                (9) 

Introduce the new variables 

1 2

= ,1 = , =

= ( ) and = ( )

A B

A B A B A B

A B A B

λω ω λ

γ δ γ η

−
+ + +

+ +

 

to reduce equation (9) to the following: 

1 2(1 ) = 0.e e
λγ λγλ ω ω− −+ + −        (10) 

Because of symmetry we can assume that 1/ 2.ω ≥  In 

order to find the stability region in the 1 2( , )γ γ  plane we will 

first characterize the cases when an eigenvalue is pure 

complex, that is, when = iλ υ . We can assume that > 0,υ  

since if λ  is an eigenvalue, its complex conjugate is also an 

eigenvalue. Substituting = iλ υ  into equation (10) we have  

1 2(1 ) = 0.
i i

i e e
υγ υγυ ω ω− −+ + −  

If there is no delay, then 1 2= = 0γ γ  and equation (10) 

becomes 

1 = 0λ +  

with a negative eigenvalue = 1,λ −  so the system is 

asymptotically stable. 

In the special case of 1 = 0,γ  the equation becomes 

2(1 ) = 0.
i

i e
υγυ ω ω −+ + −  

The real and imaginary parts imply that  

2

2

(1 )cos( ) = 0

(1 )sin( ) = 0.

ω ω υγ

υ ω υγ

+ −

− −
 

We can assume first > 1/ 2,ω  so from the first equation 

2cos( ) = < 1
1

ωυγ
ω

− −
−

 

so no stability switch is possible. If = 1/ 2,ω  then  

2cos( ) = 1υγ −  

implying that 2sin( ) = 0υγ  and so = 0υ  showing that there 

is no pure complex root. Hence for 1 = 0γ  the system is 

asymptotically stable with all 2 0.γ ≥  

Assume now that 1 > 0,γ  2 0γ ≥ . The real and imaginary 

parts give two equations: 

1 2cos( ) (1 ) cos( ) = 0ω υγ ω υγ+ −      (11) 

and  

1 2sin( ) (1 )sin( ) = 0.υ ω υγ ω υγ− − −  (12) 

We consider the case of > 1/ 2ω  first and the symmetric 

case of = 1/ 2ω  will be discussed later. Introduce the 

variables 

1 2= sin( ) and = sin( ),x yυγ υγ  

then (11) implies that  

2 2 2 2(1 ) = (1 ) (1 )x yω ω− − −  

or 

2 2 2 2(1 ) = 1 2 .x yω ω ω− + − −        (13) 

From (12),  

(1 ) = 0x yυ ω ω− − −  

implying that  

 =
1

x
y

υ ω
ω

−
−

.               (14) 

Combining (13) and (14) yields 

2
2 2 2

(1 ) = 1 2
1

x
x

υ ωω ω ω
ω

− − + − − − 
 

from which we can conclude that  
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2 2 1
=

2
x

υ ω
υω

+ −
                   (15) 

and then from (14), 

2
2 1

= .
2 (1 )

y
υ ω

υ ω
− +

−
                (16) 

Equations (15) and (16) provide a parameterized curve in 

the ( 1 2,γ γ ) plane: 

2 2

1 2

2 1 2 1
sin( ) = and sin( ) = .

2 2 (1 )

υ ω υ ωυγ υγ
υω υ ω

+ − − +
−

 (17) 

In order to guarantee feasibility we have to satisfy 

2
2 1

1 1
2

υ ω
υω

+ −− ≤ ≤                   (18) 

and  

2
2 1

1 1.
2 (1 )

υ ω
υ ω
− +− ≤ ≤

−
                 (19) 

Simple calculation shows that with > 1/ 2ω  these 

relations hold if and only if  

2 1 1.ω υ− ≤ ≤  

From (17) we have four cases for 1γ  and 2 ,γ since 

2
1

1

1 2 1
= 2sin

2
k

υ ωγ π
υ υω

−
  + − +   
   

 

or 

2
1

1

1 2 1
= 2 ( = 0,1,2,...)sin

2
k k

υ ωγ π π
υ υω

−
  + − − +   
   

 

and similarly  

2
1

2

1 2 1
= 2sin

2 (1 )
n

υ ωγ π
υ υ ω

−
  − + +   −   

 

or  

2
1

2

1 2 1
= 2 ( = 0,1,2,...).sin

2 (1 )
n n

υ ωγ π π
υ υ ω

−
  − + − +   −   

 

However from (11) we can see that 1cos( )υγ  and 

2cos( )υγ  must have different signs, so we have only two 

possibilities: 

2
1

1

1

2
1

2

1 2 1
= 2sin

2

( , ) :

1 2 1
= 2sin

2 (1 )

k

L k n

n

υ ωγ π
υ υω

υ ωγ π π
υ υ ω

−

−

   + − +        




  − +  − +    −   

 (20) 

and  

2
1

1

2

2
1

2

1 2 1
= 2sin

2

( , ) :

1 2 1
= 2 .sin

2 (1 )

k

L k n

n

υ ωγ π π
υ υω

υ ωγ π
υ υ ω

−

−

   + − − +        




  − +  +    −   

 (21) 

For each [2 1,1]υ ω∈ −  these equations determine the 

values of 1γ  and 2 .γ  At the initial point = 2 1,υ ω −  we 

have 

2 2
2 1 2 1

= 1 and = 1
2 2 (1 )

υ ω υ ω
υω υ ω

+ − − + −
−

 

and if = 1,υ  then  

2 2
2 1 2 1

= 1 and = 1.
2 2 (1 )

υ ω υ ω
υω υ ω

+ − − +
−

 

Therefore the starting point and end point of 1( , )L k n  are 

given as  

1 2

1 1 3
= 2 , = 2

2 1 2 2 1 2

s sk n
π πγ π γ π

ω ω
   + +   − −   

 

and  

1 2= 2 and = 2 .
2 2

e ek n
π πγ π γ π+ +  

Similarly, the starting and end points of 2 ( , )L k n  are as 

follows: 

1 2

1 1
= 2 , = 2

2 1 2 2 1 2

S Sk n
π πγ π γ π

ω ω
   + − +   − −   

 

and  

1 2= 2 and = 2 .
2 2

E Ek n
π πγ π γ π+ +  

With fixed value of ,k  1( , )L k n  and 2 ( , )L k n  have the 

same end point, however the starting point of 1( , )L k n  is the 

same as that of 2 ( , 1).L k n +  Therefore the segments 

1( , )L k n  and 2 ( , )L k n  with fixed k  form a continuous 

curve with = 0,1, 2,...n . They are shown in Figure 1 for 
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= 0k . The curves 1(0, )L n  are shown in red color and curves

2 (0, )L n  are given in blue. 

 

 

Figure 1. Partition curve in the ((), (�) plane with fixing � = 0 

Consider first the segment 1( , ).L k n  Since 

( )2 2 1 / (2 (1 ))υ ω υ ω− + −  is strictly increasing in ,υ  2γ  is 

strictly decreasing in .υ  By differentiation  

( )1
1 22

1

1
= tan( ) .

L

γ υγ υγ
υ υ

∂
− +

∂           (22) 

Consider next segment 2 ( , ),L k n  similarly to (22) we can 

show that  

1
1 22

2

1
= ( tan( ))

L

γ υγ υγ
υ υ

∂
− +

∂  

which is the same as in 1( , )L k n , since from (21), 

1cos( ) < 0.υγ  Similarly  

( )2
2 12

2

1
= tan( )

L

γ υγ υγ
υ υ

∂
− +

∂         (23) 

where we used again equation (11). 

We will next examine the directions of the stability 

switches on the different segments of the curves 1( , )L k n  and 

2 ( , )L k n . We fix the value of 2γ  and select 1γ  as the 

bifurcation parameter, so the eigenvalues are functions of 

1 1: = ( ).γ λ λ γ  By differentiating the characteristic equation 

(10) implicitly with respect to 1γ we have  

1 2
1 2

1 1 1

( ) (1 ) = 0
d d d

e e
d d d

λγ λγλ λ λω γ λ ω γ
γ γ γ

− −  
+ − − + − − 

 
 

implying that  

1

1 21
1 2

= .
1 (1 )

d e

d e e

λγ

λγ λγ
λ λω
γ ωγ ω γ

−

− −− − −
 (24) 

From the characteristic equation we have  

2 1(1 ) = ,e e
λγ λγω λ ω− −− − −  

so 

1

11
2 2 1

= .
1 ( )

d e

d e

λγ

λγ
λ λω
γ λγ ω γ γ

−

−+ + −
 

If = ,iλ υ  then  

1 1

1 2 2 1 1 1

(cos( ) sin( ))
=

1 ( )(cos( ) sin( ))

i id

d i i

υω υγ υγλ
γ υγ ω γ γ υγ υγ

−
+ + − −

 

and the real part of this expression has the same sign as  

[ ]

1 2 1 1

1 2 2 1 1

1 2 1

sin( )[1 ( ) cos( )]

cos( )[ ( )sin( )]

= sin( ) cos( ) .

υω υγ ω γ γ υγ
υω υγ υγ ω γ γ υγ

υω υγ υγ υγ

+ − +
− −

+
 

Hence 
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1 2 1
1

0if and only if sin( ) cos( ) 0.
d

Re
d

λ υγ υγ υγ
γ

 
≤ + ≤ 

 
 

Consider first the case of crossing any segment 1( , )L k n  

from the left. Here 1 (0, / 2]υγ π∈ , so both 1sin( )υγ  and 

1cos( )υγ  are positive. Hence stability is lost everywhere on 

any segment of 1( , ).L k n  Consider the case when crossing 

the segments of 2 ( , )L k n  from the left. Stability is lost when 

2γ  increases in υ and stability is gained when 2γ  

decreases in .υ At all intersections with 1( , )L k n  and 

2 ( , )L k n  Hopf bifurcation occurs giving the possibility of the 

birth of limit cycles. 

We can also show that at any intersection with 1( , )L k n  or 

2 ( , )L k n  the pure complex root is single. Otherwise = iλ υ  

would satisfy both equations 

1 2(1 ) = 0e e
λγ λγλ ω ω− −+ + −  

and  

1 2
1 21 (1 ) = 0,e e

λγ λγωγ ω γ− −− − −  

from which we have  

2 11 2

1 2 1 2

1 1
= and = .

( ) ( )(1 )
e e

λγ λγλγ λγ
γ γ ω γ γ ω

− −+ − −
− − −

 

By substituting = iλ υ  and comparing the real and 

imaginary parts yield 

1 2 1 2 1 2sin( ) cos( ) = sin( ) cos( ) = 0.υγ υγ υγ υγ υγ υγ+ +  

Therefore this intersection is at an extremum in υ  of a 

segment 1( , )L k n  and also at an extremum of a segment 

2 ( , )L k n  which is impossible. 

Assume next that = 1/ 2.ω  Then equations (11) and (12) 

imply that 

( )

1 2

1 2

cos( ) cos( ) = 0

1
sin( ) sin( ) = 0

2

υγ υγ

υ υγ υγ

+

− +
 

and the curves 1( , )L k n  and 2 ( , )L k n  are simplified as 

follows:  

( )

( )

1
1

1

1
2

1
= ( ) 2sin

( , ) :

1
= ( ) 2sin

k

L k n

n

γ υ π
υ

γ π υ π
υ

−

−

 +



 − +


 (25) 

and  

( )

( )

1
1

2

1
2

1
= ( ) 2sin

( , ) :

1
= ( ) 2 .sin

k

L k n

n

γ π υ π
υ

γ υ π
υ

−

−

 − +



 +


 (26) 

The stability switching curves are shown in Figure 2 in 

which the stability region is the gray area. 

 

Figure 2. Partition curve in the ((), (�) plane with ω=1/2  
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3. Model 2 

In this section we consider a simple dynamic system in 

macroeconomics, following Matsumoto and Szidarovszky

(2015). Based on Philips (1954), we construct the following 

dynamics model,	 
	��� = ./�� − $� 
0��� = 1�/2 (t-"�� 

/��� = 3 	
�

4

1
5 6

���78 9�:��:

Here C, I and Y denote consumption, investment and 

national income, η>0 and δ>0 are the consumption delay and 

investment delay. The first equation is the consumption 

function, the second equation is the induced investment where 

the acceleration principle is assumed with

1!!�/� ; 0. E(τ)=C(τ)+I(τ) is the total expenditu

last equation indicates that national income lags behind the 

expenditure and this delay is of exponential form. 

Differentiating the last equation with respect to 

substituting delayed consumption and investment into the 

resultant expression presents a differential equation with two 

fixed delays, 

5 �<����� � = >�<���?��� @ A /��� � ./�� � $

This is the dynamic model we will analyze. Notice that 

/� � 0  with �/����/�� � 0  is the unique stationary 

equilibrium. To consider its local stability, equation (

linearly approximated, 

5 �/����� A /��� � B �/�� � "��� � ./�
where C � 1!�0�. With the notation 

� � 1
5 , � �

B
5 , 
 �

.
5 	and	& �

it becomes  

( ) ( ) ( ) ( ) = 0.x t ax t bx t cx tδ η+ − − − −& &

Here , , > 0a b c  and < 1, < .b c a  Similarly to the 

previous model it is easy to prove that the system is stable 

without delays and also with a single delay, when either 

= 0δ , = 0η  or = .δ η The corresponding characteristic 

equation is obtained by substituting an exponential solution, 

( ) = tx t e uλ , 

= 0.a b e ceδλ ηλλ λ − −+ − −             

Dividing its both sides by a λ+ and introducing the new 

functions,  

1 2( ) = and ( ) =
b c

a a
a a

λλ λ
λ λ

− −
+ +
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In this section we consider a simple dynamic system in 

, following Matsumoto and Szidarovszky 

Philips (1954), we construct the following 

� ��:. 

denote consumption, investment and 

are the consumption delay and 

investment delay. The first equation is the consumption 

function, the second equation is the induced investment where 

the acceleration principle is assumed with 1!�/�>0  and 

is the total expenditure and  the 

last equation indicates that national income lags behind the 

expenditure and this delay is of exponential form. 

Differentiating the last equation with respect to t and 

substituting delayed consumption and investment into the 

n presents a differential equation with two 

$� � 0.	 (27) 

This is the dynamic model we will analyze. Notice that 

is the unique stationary 

equilibrium. To consider its local stability, equation (27) is 

�� � $� � 0, 

� / 

( ) ( ) ( ) ( ) = 0.x t ax t bx t cx tδ η+ − − − −  (28) 

< 1, < .b c a Similarly to the 

previous model it is easy to prove that the system is stable 

without delays and also with a single delay, when either 

The corresponding characteristic 

equation is obtained by substituting an exponential solution, 

= 0.             (29) 

and introducing the new 

( ) = and ( ) =
b c

a aλ λ
− −

+ +
 

simplify equation (29), 

1 2( ) = 1 ( ) ( ) = 0.a a e a eδλ ηλλ λ λ− −+ +

The terms of this function are shown in Figure 3.

Figure 3. Triangle formed by 1, 

Suppose that = iλ ω  with ω

2

1 2 2 2 2
( ) =

b ab
a i i

a a

ω ωω
ω ω

− −
+ +

and 

2 2 2 2 2
( ) = .

ac c
a i i

a a
ω

ω ω
− +

+ +

Their absolute values are 

1 2
2 2 2 2

( ) = and ( ) =
b c

a i a i
a a

ωω ω
ω ω+ +

and their arguments are 

1 1
1 2arg( ( )) = and arg( ( )) = .tan tan

a
a i a iω π ω π

ω
− −   + −   
   

The triangle can be above the real line and also under the 

real line. In the two cases the following relations hold for 

angles 1θ  and 2θ : 

( )1 1arg ( ) = 2a i nω δω θ π π− ± +

and 

( )2 2arg ( ) = 2a i mω ηω θ π π− +

In a triangle consisting of three line segments, the length of 

the sum of any two adjacent line segments is not shorter than 

the length of the remaining line segment,

Dynamic Economic Systems with Two Time Delays 

1 2( ) = 1 ( ) ( ) = 0.a a e a eδλ ηλλ λ λ− −+ +  (30) 

The terms of this function are shown in Figure 3. 

 

Triangle formed by 1, |�)�HI�| and |���HI�| 

> 0,ω  then  

2

2 2 2 2

b ab
a i i

a a

ω ω
ω ω

− −
+ +

          (31) 

2 2 2 2
( ) = .

ac c
a i i

a a

ω
ω ω

− +
+ +

         (32) 

1 2
2 2 2 2

( ) = and ( ) =
b c

a i a i
a a

ω ω
ω ω+ +

 

1 1
1 2arg( ( )) = and arg( ( )) = .tan tana i a i

a

ωω π ω π− −   + −   
   

 

The triangle can be above the real line and also under the 

real line. In the two cases the following relations hold for 

1 1arg ( ) = 2a i nω δω θ π π− ± +          (33) 

2 2arg ( ) = 2a i mω ηω θ π π− +m .       (34) 

In a triangle consisting of three line segments, the length of 

the sum of any two adjacent line segments is not shorter than 

the length of the remaining line segment, 
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1 2

1 2

1 ( ) ( ) ,

( ) 1 ( ) ,

a i a i

a i a i

ω ω

ω ω

≤ +

≤ +
 

and 

2 1( ) 1 ( ) .a i a iω ω≤ +  

Substituting the absolute values renders these three 

conditions to the following two conditions, 

2 2 2 2( ) = (1 ) 2 0f b bc a cω ω ω− − + − ≤

and 

2 2 2 2( ) = (1 ) 2 0.g b bc a cω ω ω− + + − ≥

Both ( )f ω  and ( )g ω  have the same discriminant, 

2 2 2= 4[ (1 )].D c a b− −  

In the following we draw attention to the case of 

otherwise ( ) > 0f ω  for all ω  implying no stability switch. 

Solving ( ) = 0g ω  gives the solutions 

2 2 2 2 2 2

1 22 2

(1 ) (1 )
= and =

1 1

bc c a b bc c a b

b b
ω ω

− − − − − + − −
− −

and so does solving ( ) = 0f ω , 

2 2 2 2 2 2

3 42 2

(1 ) (1 )
= and = .

1 1

bc c a b bc c a b

b b
ω ω

− − − + − −
− −

Since both 1ω  and 2ω are negative and both 

4ω are positive, the two conditions, 

( ) 0g ω ≥ , are satisfied when ω  is in interval 

The internal angles, 1θ  and 2 ,θ of the triangle in Figure 3 

can be calculated by the law of cosine as 

2 2 2 2
1

1
2 2

(1 )
( ) = cos

2

a b c

b a

ωθ ω
ω ω

−
 + + −
 
 + 

and 

2 2 2 2
1

2
2 2

(1 )
( ) = .cos

2

a b c

c a

ωθ ω
ω

−
 + − +
 
 + 

Solving equations (33) and (34) for δ  and 

11
( , ) = (2 1) ( )tan

a
k kδ ω π π θ ω

ω ω
± −   + + − ±  

  

and 
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1 ( ) ( ) ,

( ) 1 ( ) ,

 

( ) 1 ( ) .  

Substituting the absolute values renders these three 

  

2 2 2 2( ) = (1 ) 2 0f b bc a c− − + − ≤  

2 2 2 2( ) = (1 ) 2 0.g b bc a c− + + − ≥  

have the same discriminant,  

= 4[ (1 )].  

In the following we draw attention to the case of > 0D , 

implying no stability switch. 

2 2 2 2 2 2

2 2

(1 ) (1 )

1 1

bc c a b bc c a b

b b

− − − − − + − −
− −

 

2 2 2 2 2 2

2 2

(1 ) (1 )
= and = .

1 1

bc c a b bc c a b

b b

− − − + − −
− −

 

are negative and both 3ω  and 

are positive, the two conditions, ( ) 0f ω ≤  and 

is in interval 3 4[ , ].ω ω  

of the triangle in Figure 3 

2 2 2 2a b c 
 
 
 

 (35) 

2 2 2 2

2 2

(1 )
( ) = .

a b cω

ω

 + − +
 
 + 

 (36) 

and η yields 

1( , ) = (2 1) ( )k kδ ω π π θ ω + + − ± 
 

 

11
( , ) = (2 1) ( ) ,tank n

a

ωη ω π π θ ω
ω

−  − + + −  
  

m

so we have again two stability switching curves with fixed 

values of k  and n ,   

1( , ) = { ( , ), ( , )}L k n k nδ ω η ω+ −

and 

2 ( , ) = { ( , ), ( , )}.L k n k nδ ω η ω− +

They are shown in Figure 4 for the case of 

have the same initial point S

point E  as ω  increases from 

0=η η by increasing the value of 

A  and regained at point B . These curves are shifted to the 

right by increasing the value of 

value of n . 

Figure 4. Partition curve with 

4. Simulations 

In the first case, Figure 5(A) shows the six cigar

domains obtained for = 0,1, 2,3,4,5k

lower parts are colored in yellow. We fix 

δ  from 1  to 4  along the dotted horizontal line. The 

system is stable until 1= ,δ δ
regained at 2=δ δ  and system remains stable until 

where stability is lost, and regained again at 

on. So stability is lost at points 

stability is regained at points 

bifurcation diagram shown in Figure 5(B) well demonstrates 
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2( , ) = (2 1) ( ) ,k n
a

η ω π π θ ω  − + + −  
  

m  

so we have again two stability switching curves with fixed 

( , ) = { ( , ), ( , )}L k n k nδ ω η ω+ −  

( , ) = { ( , ), ( , )}.L k n k nδ ω η ω− +  

own in Figure 4 for the case of = = 1k n . They 

S  and arrive at the same end 

increases from 3ω  to 4ω . With fixed 

by increasing the value of δ , stability is lost at point 

B . These curves are shifted to the 

ight by increasing the value of k  and up by increasing the 

 

Partition curve with � � 1 and J � 1 

In the first case, Figure 5(A) shows the six cigar-shaped 

= 0,1, 2,3,4,5  and = 1n  and their 

lower parts are colored in yellow. We fix = 1η  and increase 

along the dotted horizontal line. The 

1= ,  when stability is lost. It is 

and system remains stable until 3=δ δ  

where stability is lost, and regained again at 4= ,δ δ  and so 

on. So stability is lost at points 1 3 5, ,δ δ δ  and 7δ  and 

stability is regained at points 2 ,δ  4δ  and 6 .δ  The 

bifurcation diagram shown in Figure 5(B) well demonstrates 



84 Akio Matsumoto and Ferenc Szidarovszky:  Dynamic Economic Systems with Two Time Delays 

 

these observations.  

 

Figure 5. Stability switches with $ � 1 

 

Figure 6. Stability switches with $ = 2 

In the second simulation we illustrate the curves 1( , )L k n  

and 2 ( , )L k n  for = 0,1,...,8k  and = 1, 2,3, 4n  in Figure 

6(A). The yellow domains are surrounded by 1( ,1)L k  and 

2 ( ,1)L k , which are the same as in Figure 5(A). The green 

regions are surrounded by 1( , 2)L k  and 2 ( , 2)L k , and the 

orange and blue regions by 1( ,3)L k  and 2 ( ,3)L k  and by 

1( , 4)L k  and 2 ( , 4),L k  respectively. The value of = 2η  is 

now selected. The dotted horizontal line crosses the stability 

switching curves many times, but not all intersections are 

stability switches. For example, between 1δ  and 2δ  the 

system is unstable regardless of several intersections between 

them. At 2=δ δ  stability is regained, and lost again at 

3=δ δ . The bifurcation diagram shown in Figure 6(B) well 

illustrates these findings. 

Let ( , )δ η  be any point in the positive quadrant and not on 
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the stability switching curves and consider the line segment 

connecting points (0, )η  and ( , ).δ η  Let L  be the number 

of intersections of this segment with the stability switching 

curves with stability loss and G  the number of intersections 

with stability gain. The system is stable for ( , )δ η  if ,G L≥  

otherwise unstable. 

5. Conclusions 

Two particular economic models were examined. Both are 

first order ordinary differential equations with two delays. The 

stability switching curves were first determined where an 

eigenvalue is pure complex, and then the stability and 

instability regions were demonstrated. In the first case an 

elementary analytic approach was used, and in the second 

case a geometric approach was shown. This approach could 

be also used for solving the first model as well, however the 

more simple analytic approach cannot be used for the second 

model without major changes. 
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