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Abstract: A non-repairable system is considered and the problem of finding its optimal preventive replacement time is 

revisited. In addition to minimizing the expected cost per unit time in a cycle, we also consider its variance as the measure of 

the risk of the optimal decision. A multi-objective optimization problem is then formulated where the two objective functions 

are the expectation and the variance. A sufficient condition is given for the existence of finite optimum in the case of the 

weighting method, where either the weight of the variance or the replacement costs are sufficiently small. In applying the ε - 

constraint method there is always finite optimum if the upper bound for the expectation is close to its minimal value. 
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1. Introduction 

Scheduling preventive maintenance and replacement is one 

of the most important problems of reliability engineering. 

There is a huge selection of optimization models known from 

literature. The survey papers of Beichelt (1993) and Wang 

(2002) give a good background, in addition there are a large 

number of books such as Nakagawa (2006, 2008), Elsayed 

(2012) among others. Most models maximize reliability or 

minimize expected cost or downtime per unit time without 

any additional consideration to the risks which can be 

characterized by the variances of the random outcomes. In 

the economic literature certainty equivalents are derived and 

shown to be equivalent to random outcomes (Sargent, 1979). 

It is a linear combination of the expectation and variance of 

the random phenomenon. This idea can also be interpreted as 

the application of a multiobjective solution method when 

weighting is used for minimizing expected cost or downtime 

and also minimizing their variances in order to minimize risk. 

In this paper this idea will be incorporated into a classical 

optimization model. The single-objective model will be first 

discussed, and then the multiobjective model will be 

introduced. There is a large variety of solution concepts and 

methods (Szidarovszky et al., 1986). In our study the 

weighting and the ε-constraint methods are selected. 

Conditions are given for the existence of finite optimum, and 

a numerical example illustrates the methodology. 

2. Optimum Age Replacement with  

One-Cycle Criterion 

Consider a system which is non-repairable and its time to 

failure distribution is a Weibull distribution with parameters � and �. The question is to find the optimal time T for its 

preventive replacement. However, if the system breaks down 

before it is scheduled, then failure replacement has to be 

performed. Let �� and �� denote the costs of preventive and 

failure replacements, respectively. It is clear that �� < ��. In 

order to formulate the expected cost per unit time, we have to 

consider the cost per unit time (CPU) as a random variable 

depending on the time ��  of the break down and on the 

decision variable T: 

	
��
� = �����  �� �� < 
���  �� �� ≥ 
�                         (1) 



2 Akio Matsumoto et al.:  Incorporating Risk in an Optimization Model of Reliability Engineering  

 

The CDF of ��  is given as ���� = 1 − �� !"#$
, the 

corresponding pdf is ���� = %&$ �%�'�� !"#$
 and the 

reliability function is (��� = �� !"#$
. The expected value of 	
��
� is given as 

)*	
��
�+ = , -�� ����.� + -�� (�
��0             (2) 

which is minimized with respect to T in the classical model. 

If � > 1, then the first term of this expression is finite, since � − 2 > −1  and so the function 
����� = %&$ �%�3���!"�$

 has 

finite integral in any interval 40, 
7. 
The derivative of this objective function has the following 

form: 

-�� ��
� − -��8 (�
� − -�� ��
� = *-��-�+9���� :;�
� − -�*-��-�+�<   (3) 

where 

;�
� = ����9��� = %&$ 
%�'                           (4) 

is the failure rate of �� . Based on this form of ;�
� , 

expression (3) can be rewritten as 

*-��-�+9����8 : %&$ 
% − -�-��-�<.                         (5) 

This expression is zero at 


∗ = � : ��%�-��-��<>$
,                             (6)  

it is negative for 
 < 
∗ and positive for 
 > 
∗. Therefore 
∗ gives the global minimum of )�	
��
��. 

The shape of )�	
��
�� as the function of T is shown in 

Figure 1 with  � = 5, � = 3, �� = 200, �� = 100, in which 

case 
∗ =  3.47 . 

 

Figure 1. The shape of )�	
��
�� 

This model does not consider the risk which should be a 

measure of the difference of the actual cost and its 

expectation. The multiobjective model incorporating risk into 

this model will be introduced next. 

3. Incorporating Risk into the 

Optimization Model 

Notice first that the second moment of 	
��
�  is the 

following: 

)�	
��
�3� = , -�8�8 ����.� + -�8�8 (�
��0                (7) 

so its variance is given as 

DEF*	
��
�+ = G ��3�3 ����.� + ��3
3 (�
��
0 − 

H, -�� ����.� + -�� (�
��0 I3
               (8) 

Minimizing expected cost per unit time and minimizing 

the associated risk result in a multi-objective optimization 

problem: minimize O)*	
��
�+ ;  DEF*	
��
�+Q subject to 
 ≥ 0                              (9) 

In order to have finite variance we have to assume that � > 2, since in this case � − 3 > −1 and so function �����3 = ��% �%�Y�� �&#$
 

has finite integral in any interval 40, 
7. 
We now investigate DEF�	
��
�� as function of T. Notice 

first that lim�→0 DEF*	
��
�+
= lim�→0 ��3
3 �(�
� − (�
�3�
= lim�→0 	�3*−��
� + 2(�
���
�+2
   
= lim�→0 ��3��
�2
 *−1 + 2(�
�+ = 0 

since (�0� = 1 and 
����� = %&$ 
%�3�� !"#$ → 0. 

It is also clear that 

lim�→\ DEF�	
��
�� = ]G �����3 .� − ^G �����
\

0 .�_3\
0 ` ��3 > 0 

since 
9����  and 

9����8  converge to 0. 

The derivative of DEF�	
��
�� has the following form: 
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��3
3 ��
� − 2��3
Y (�
� − ��3
3 ��
�
− 2 ^G ��� ����.� + ��
 (�
��

0 _ a��
 ��
� − ��
3 (�
�
− ��
 ��
�b = 

��3
3 ��
� − 2��3
Y (�
� − ��3
3 ��
� − 2 ��3
 ��
� G ����� .��
0+ 2 ����
3 (�
� G ����� .��

0 + 2 ����
 ��
� G ����� .��
0− 2 ����
3 ��
�(�
� + 2 ��3 (�
�3
Y + 2 ��3 (�
���
�
3 = 

 -�8�-�8#�����8 − 3-�89���*'�9���+�c − 3-�*-��-�+9��������8 +, ����� .��0  d− 3*-��-�+-������ + 3-�-�9����8 e      (10) 

This can be rewritten as 

����� d-�8�-�8� − 3-�8�'�9�����8f��� − 3-�*-��-�+9����  +
, ������0 .�  −2*�� − ��+�� + 2 -�-��f���#e    (11) 

As 
 → ∞, the multiplier of  
�����  converges to 

−2 G ����� .�\
0 *�� − ��+�� < 0 , 

so as 
 → ∞ the derivative of  DEF�	
��
�� converges to 0 

through negative numbers. The shape of this function is 

shown in Figure 2 with the same parameter selection as in the 

case of Figure 1. 

 

Figure 2. The shape of DEF�	
��
�� 

If problem (9) is solved by the weighting method, then 

with some h > 0 function i�
� = )*	
��
�+ +  hDEF*	
��
�+              (12) 

is minimized. Observe first that i�0� = ∞ and  

lim�→\ i�
� = G ��� ����.�\
0

+ h ]G ��3�3 ����.�\
0 − ^G ��� ����.�\

0 _3` 

which is a positive constant. Using (3) and (10), 

ij�
� = ��
�
 k�� − ��
;�
� − ��  
+ h a��3 − ��3
 − 2��3*1 − (�
�+
3;�
�
− 2��*�� − ��+(�
�
 � +� 

��, ����� .��0  −2*�� − ��+�� + 2 -�-��f���#bl      (13) 

If 
 → ∞, then the multiplier of 
�����  converges to 

*�� − ��+ m1 − 2h�� G ����� .�\
0 n 

from which we see that ij�
� → 0  as 
 → ∞  through 

positive numbers if 

h�� < '3 , ��!�! o�pq = '3r >!s#                    (14) 

and through negative numbers if 

h�� > '3 , ��!�! o�pq = '3r >!s#                  (15) 

In the first case there is a finite minimum of Q(T), which 

can be obtained either by an optimization software or by 

solving the first order condition. Since the problem is single 

dimensional, it is easy to find the optimum. In the second 

case however there is no theoretical guarantee for the 

existence of finite optimum, it depends on the particular 

model parameters. 

We can explain the condition (14). If h is small, then very 

small weight is given to variance, so the first term of (12) 

dominates, which has a finite optimum. If �� is small, then �� < ��  is also small, so the first term of (12) dominates 

again, since it is linear in �� and ��, while the second term is 

quadratic (every term includes either ��3, ��3, or ����). 

Consider next the application of the ε-constraint method, 

when the variance is minimized subject to an upper bound for 

the cost. The constraint has the form 

, -�� ����.��0 + -�� (�
� ≤ w                  (16) 

Let )xyz denote the minimum value of the expression and 

let )\  be its limit at infinity. Figure 1 shows the shape of 
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)�	
��
��. 

Assume first that w ≥ )\. Then there is a unique 
{  such 

that )�	
��
{� = w, and (16) holds for 
 ≥ 
{ . 

If )xyz < w < )\, then there are values 
'| < 
3|  such that )�	
��
'| �� = )�	
��
3| �� = w  and (16) holds for 
'| ≤
 ≤ 
3| . 

If w = )xyz , then only 
 = 
∗ is feasible, and if w < )xyz, 

then there is no feasible solution. 

In the case of )xyz < w < )\ the feasible region for T is a 

closed interval, and since DEF�	
��
�� is continuous, there 

is finite optimum. If w ≥ )\, then there is no guarantee for 

the existence of finite optimum. 

4. Numerical Example 

The same parameter values are selected as before, � = 5, � = 3, �� = 200 and �� = 100 . We selected the 

weighting method with several values of h. The optimal 

solutions are shown in Table 1. 

It is clear that a larger value of h, that is, a higher weight 

for risk results in a smaller optimal solution. In other words, 

when more importance is given to risk, then the optimal 

solution becomes more cautious by replacing the system 

more often. 

Table 1. Optimal Solutions h Optimal Solution (T) 

0 3.47 

0.001 3.43 

0.01 3.06 

0.05 1.83 

0.1 1.32 

0.5 0.60 

1 0.42 

2 0.30 

 

Figure 3. The shape of Q(T) for various h 

5. Conclusions 

A multiobjective programming model was formulated for 

the simultaneous minimization of the expectation and the 

variance of the cost per unit time in a cycle of a non-

repairable system. 

In applying the weighting method sufficient condition was 

given for the existence of finite optimum. This condition 

requires that either the weight of the variance and/or the 

failure replacement cost are sufficiently small. In applying 

the ε-constraint method there is always finite optimum when 

the upper bound of the expected cost is close enough to its 

minimal value. 

Since the problem is single dimensional, simple line search 

algorithm or an equation solver can be used to find the 

optimal solution. 

This model can be easily modified to minimize expected 

downtime per unit time, in which case �� and �� are replaced 

by 
� and 
�, respectively. 
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