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Abstract: This project analyzes the monthly average rainfall and temperature from 2005 January to 2021 December in 

Minot, ND, USA. Since both rainfall and temperature time series represent seasonal components, Seasonal Auto Regressive 

Integrated Moving Average (SARIMA) models were used to forecast the average rainfall and temperature. The main objective 

was to identify the SARIMA models based on Akaike’s Information Criteria (AIC). The graphical and diagnostic analysis 

techniques validated the models having the smallest AIC values. Among the competitive tentative models, the SARIMA (2, 0, 

0) (2, 0, 1, 12) and SARIMA (1, 0, 1) (2, 0, 1, 12) were found to be the best time series forecasting models that capture the 

existing pattern of the rainfall and temperature data, respectively. Nevertheless, these models satisfy the model diagnostics test 

assumptions on the residuals such as randomness, independency, normality, and heteroscedasticity. Therefore, SARIMA (2, 0, 

0) (2, 0, 1, 12) and SARIMA (1, 0, 1) (2, 0, 1, 12) models were used to forecast the mean rainfall and temperature, respectively, 

from the 2022 January to 2023 December. 
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1. Introduction 

Time series analysis is a statistical technique that deals 

with data collected at different times. Usually, data are 

collected at the adjacent period, and there is a potential for 

correlation between the observations. The intervals on which 

data are collected are called time series frequency. 

Forecasting is obviously a difficult activity, but many 

advanced forecasting techniques have been developed with 

new software packages to overcome this challenge. Good 

forecasts capture the genuine patterns and relationships in the 

historical data. The primary purpose of weather forecasting is 

to provide knowledge that people and organizations could 

utilize to decrease weather-related losses and improve 

societal advantages, such as life and property protection, 

public health and safety, and economic prosperity and quality 

of life [12]. 

Forecasting should be an integral part of the decision-

making activities in various sectors of society. Depending on 

the specific application, modern organizations require short-

term, medium-term, and long-term forecasts. Forecasting 

average temperature and rainfall are essential for planning 

and formulating agricultural strategies. It helps farmers to 

manage risks, especially; short-range forecasts are mainly 

used in agriculture, water management, and many other 

purposes. Crop growth, or crop yield, requires appropriate 

amounts of moisture, light, and temperature. Detailed and 

accurate forecast weather information can help farmers better 

understand and track the growth stages to make decisions. 

Having access to this information can guide farmers in 

making significant and potentially costly decisions, such as 

when and how much to irrigate. These facts emphasize that 

accurate forecasting models are essential to a critical 

geographic region like Minot. For most of the months of the 

year, the temperature drops too low, and outdoor farming is 

not possible during this time. Therefore, accurate weather 

forecasting models help farmers get maximum benefit during 

the cultivation period in the summer months. 

Since Minot gets snow for approximately five months, the 

snow water equivalent data is used as rainfall data because of 

the unavailability of the rainfall data in the major climate 
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centers. Minot poses a challenge when collecting rainfall data 

for these months as snow is the main form of precipitation 

during that period. From northern to southeastern North 

Dakota, mean annual precipitation varies from 14 to 22 

inches. Around 75 percent of the yearly precipitation occurs 

within the crop-growing season, which runs from April to 

September, and 50 to 60 percent between April and July. The 

coldest months, November to March, get only approximately 

0.50 inches of precipitation each month, largely in the form 

of snow [20]. 

This research aims to identify the pattern of the historical 

data for average monthly rainfall and temperature and to find 

the best SARIMA model that can be used to forecast the 

temperature and rainfall for the geographic region of Minot, 

North Dakota. Observations from 2005 January to 2019 

December were used as the training data, and 2020 January 

to 2021 December were used as the testing data to validate 

the models. The data collected from the Minot Airforce base 

and Minot North Hill reading locations were used, and these 

data were retrieved from the National Operational 

Hydrological Remote Sensing Center website [11]. Since 

Minot is experiencing snow from November to March, the 

rainfall data is not available during this period. But instead, 

snow water equivalent data was used to replace the missing 

rainfall data. In some rare situations, when snow water 

equivalent data is not available, the rainfall height is 

approximated by the snow height adopting the measurement 

that ten inches of snow are equivalent to one inch of rain. A 

simple and cost-effective procedure for estimating solid and 

liquid precipitation can be found in [8]. 

The graphical analysis demonstrated that both series have 

seasonal components, and hence, the SARIMA model was 

chosen as the most appropriate model for analyzing the series. 

The Auto Correlation Function (ACF) and Partial Auto 

Correlation Function (PACF) were used to determine the 

order of the Auto Regressive Moving Average (ARIMA) 

model. The Akaike’s Information Criteria (AIC) was used as 

the primary model selection criterion, and residual analysis 

techniques were used to validate the selected models. Among 

the competitive tentative models, the models with the 

smallest Root Mean Squared Error (RMSE) and largest R-

squared value were further discussed as those criteria used 

for different purposes in our analysis. Models with the lowest 

AIC work best for forecasting as they fit well with the testing 

data compared to other models. The models with the highest 

R-squared and lowest RMSE values determine the goodness 

of fit against the training data. Since our primary purpose is 

forecasting, models with the smallest AIC were selected to 

predict mean rainfall and temperature from January 2022 to 

December 2023. 

Several studies have been performed to analyze the climate 

data using different statistical models in the literature. Many 

researchers who work on forecasting problems use ARIMA 

and SARIMA models to do the initial analysis and identify 

the series's pattern. Also, in addition to Moving Average 

(MA) smoothing techniques, exponential smoothing 

techniques can transform the non-stationary series into a 

stationary series. A comprehensive description of the 

exponential smoothing techniques was given [9]. However, 

there should be an interrelation between temperature and 

rainfall. Because of that, it is difficult to do an accurate 

analysis of the joint distribution of the rainfall and 

temperature. The possible interdependence of temperature 

and precipitation was studied in [14]. A similar case study 

can be found in [1, 17, 18] in the recent literature. 

2. Different Types of Covariance and 

Correlation Functions 

2.1. The Autocovariance Function 

Covariance is a measure of linear dependence between two 

random variables. The Autocovariance function is defined as 

the covariance between two observations of a series, �� and 

�� for all � and �. 

cov	��, ��� = E[	�� − ���	�� − ���]                  (1) 

where �� and �� are the mean of each time series respectively. 

Autocovariance measures the linear dependence between two 

points on the same time series observed at different times. 

2.2. Cross-Covariance Function 

Cross-covariance function is used when the time series �� 
is used to measure the predictability of another time series ��  
assuming both have finite variances. 

cov	��, ��� = 	E[	�� − ������ − ����]              (2) 

whare, ��� and ��� are the mean of the respective time series. 

2.3. Autocorrelation Function (ACF) 

Autocorrelation function measures the linear predictability 

of the time series at a time �, say �� , using the value ��  at 

time �. The ACF is defined as 

�	�, �� = ���	��,	���

���	��,	���	���	��,	���
                     (3) 

ACF is used to estimate how the current value 	��� of the 

time series depends on past values, directly and indirectly, 

depending on the time lag. For example, if time lag 	�� is 

chosen to be 3 then ACF uses all the past values �� !, �� ", 

�� #	 and use their linear dependencies to calculate the 

correlation between current and past time series values. 

Significant spikes of the ACF plot can be used to determine 

the order of the (Moving Average) MA model. 

Similarly, the Cross-Correlation Function (CCF) is given 

by 

���	�, �� =
���	��,	���

���	��,���	���	��,	���
                   (4) 

2.4. Partial Autocorrelation Function (PACF) 

The PACF provides more information about the order of the 

linear dependency that MA models may not be captured. 
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ACF provides a considerable amount of information about 

the order of the dependency when the process is a moving 

average process. At the same time, PACF removes the 

intermediate linear dependencies of the autocorrelation for 

different lag values. It can be used to determine the number 

of lags that need to explain the linear dependency of the time 

series. Significant spikes of the PACF plot can be used to 

determine the order of the AR model. 

3. Model Selection Criterion and Tests 

for Stationarity 

3.1. Model Selection Criterion 

The Akaike’s Information Criterion (AIC), Corrected 

Akaike’s Information Criterion (AICC), and Schwarz 

Bayesian Information Criterion (SBIC) is used to compare 

the relative goodness of the fit for generalized linear 

regression modeling. 

AIC is given by the formula, 

AIC = 2( − ln +                            (5) 

where	( is the number of parameters in the regression model 

and +  is the log-likelihood function. The AICC (for small 

samples) is given by 

AICC = ",-

- , !
− 2 ln +                         (6) 

SBIC is computed as 

.BIC = ( ln 0 − 2 ln +                      (7) 

For each criterion, the model with the smallest value gives 

the best-fitted model. AIC and SBIC explain how well the 

model will fit the new data, and hence lower values improve 

the validity of the predictions. More details of the derivation 

and recent developments of these criteria can be found in [2, 

3, 10, 15, 16]. 

3.2. Auto Regressive Integrated Moving Average Model 

One of the key applications in the time series analysis is 

that the current value depends on past observations. This 

dependence is one of the major advantages of using time 

series models for forecasting than the classical regression 

models. The property that the current value depends on its 

past value described by the Auto-Regressive Moving 

Average models. The correlation that may be generated 

through the lagged relations of the variable leads to propose 

the Autoregressive (AR) and Autoregressive Moving 

Average (ARMA) models. Adding nonstationary models 

leads to an Auto-Regressive Integrated Moving Average 

model (ARIMA). A significant contribution to the 

development of ARIMA models was made by Box, G. E., 

and David A. Pierce [5]. ARIMA model is a combination of 

the following major components. 

I. AR(p) denotes an autoregressive part of the ARIMA 

model. Autoregression is a regression where the target 

variable depends on its time-lagged values. It is very 

natural to predict future values based on past or current 

values. Therefore, the order of the AR model can be 

used to determine how many lags are significantly 

contributed to defining the linear dependency of the 

time series. An autoregressive model of order 1  is a 

model of the form. 

�� =	2!�� ! + 2"�� " +⋯+ 25�� 5 +6� ,      (8) 

where 6�  is Gaussian white noise, and 2!, 2", … , 25  are 

constants with 25 ≠ 0. 
AR(p) models can be written more consciously using the 

backshift operator :. 

;	:��� = 6�                                 (9) 

where, ;	:� = 1 − ;!: − ;":" −⋯− ;5:5 , 

	:,�� = �� ,.                               (10) 

see ([19], p. 56, 57) for more details. 

II. I 	=�  define the degree of differencing involved. 

Differencing is a method of removing non-stationarity 

by calculating the change between each observation. In 

many situations, time series can be thought of as being 

composed of two components, stationary, and 

nonstationary trend components. Differencing such a 

process eliminates the nonstationary component and 

this process will lead to a stationary process. If the trend 

components >? + >!�  and stationary components �� 
composed to give the time series ��, where 

�� =	>? + >!� + �� ,                            (11) 

>? and >! are constants. then the first differencing 	= = 1� 
yields, 

�� − �� ! 	= 	 >! + �� − �� !                    (12) 

The degree of the differencing determines the value of =. 

III. MA	@� indicates the order of the moving average part 

of the model, which is given as a moving average of the error 

series. It can be described as a regression against the past 

error values of the series. 

The moving average model of order 	@�	is defined to be 

�� = 6� + A!6� ! + A"6� " +⋯+ AB6� B	,       (13) 

where 6�  is Gaussian white noise and A!, A", … , AB		AB ≠ 0� 
are parameters. This also can be represented more concisely 

using the backshift operator :. 

�� = 	A	:�6� ,	                              (14) 

where, 

A	:� = 1 + A!: + A":" +⋯+ AB:B          (15) 

The stationary property of the moving average component 

does not depend on the parameters A!, A", … , AB . ACF plot 

can be used to determine the order of the MA model. 
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3.3. Seasonal AutoRegression Integrated Moving Average  

Model 

Seasonality is a prevalent feature in most time series that 

appear in weather forecasting. Suppose any predictable 

fluctuation or pattern is available. In that case, the 

appropriate time series model should be used that captures 

the seasonal patterns because there may be a significant 

contribution from the different seasonal factors. The time-

series data consists of two parts: the non-seasonal and the 

seasonal models. The non-seasonal part incorporates long-

term changes, while the seasonal part looks at seasonal cycles. 

Therefore, ARIMA(p, d, q)(P, D, Q, S) is the most 

appropriate model to analyze time series with seasonal 

patterns. P, D, and Q represent the parameters for the 

seasonal model, while S represents the period of repeating 

seasonal patterns. The SARIMAX is the updated version of 

the SARIMA model that captures the seasonal changes and 

Xogenous factors. 

3.4. Probabilistic Behavior and Regularity 

The regularity of the time series was introduced by the 

concept called stationarity. Strict stationarity is tangible 

property, and in general, it isn't easy to find a time series that 

satisfy this condition. The changes of the stationary time 

series do not change over time. Therefore, stationary series 

are more accessible to analyze than non-stationary series. 

If the time series is strictly stationary, its probabilistic 

behavior is identical to every collection of values at different 

times. 

That is for a time series ��, 

C���D E F!, … , ��G E F,� � C	��DHI E F!, … , ��GHI E F,� (16) 

for all ( � 1,2, …, all the time shifts � � 0, J1,J2,… , all-

time points �!, �", … , �, and all numbers F!, … , F, . Since this 

version is too strong for most applications, a milder version 

called weak stationary that imposes conditions only on the 

first two moments is used to fulfill this requirement. 

In our discussion, the term stationary means weak stationary, 

and we will mention it if strong stationery is required. 

3.5. Dickey-Fuller Unit Root Test 

One of the robust formal tests that can be used to 

determine whether the time series is the AR(1) model. Let 

the observations K!, K", … , K-  generated by the first-order 

linear difference equation. 

K� � LK� ! 3 M� , 	L	is	a	real	number, M�~W	0, X"�   (17) 

The time series converges to a stationary series for |L| Z 1 

when � → ∞, and it is not stationary if |L| � 1. If |L| ] 1 the 

time series is not stationary as the variance grows 

exponentially [7]. The augmented Dickey-Fuller (ADF) Test 

facilitates checking the stationarity of higher-order AR 

models. 

 

Figure 1. KDE plot and histogram for average rainfall. 

4. Computations and Results 

The following computations, analyses, and discussions are 

based on the data collected from Minot, North Dakota, USA, 

from January 2005 to December 2021. 

4.1. Descriptive Statistics of the Rainfall and Temperature 

Data 

In any statistical test, it is a common practice to compute 

the summary of the statistics that provide the researchers 

with the complete overall descriptive coefficients of the 

information in the data set. Usually, mean, standard deviation, 

and five-number summary are used to identify the nature of 

central tendency and spread of the data. Table 1 shows the 

descriptive statistics for the monthly average rainfall and 

temperature data from 2005 January to 2021 December for 

204 observations. 

Table 1. Descriptive statistics for monthly average rainfall and temperature. 

Variable Count Min Max Mean Std 

Rainfall 204 0 10.05 1.48 1.72 

Temperature 204 -6.15 74.39 41.14 21.42 

 

Minot experiences heavy snow during the winter months. 

In January and February, the maximum temperature is 

recorded as negative values. According to the data, the 

minimum temperature is -6.15 Fahrenheit, while the 

maximum is 74.39 Fahrenheit. Figure 1 shows the Kernel 

Density Estimation (KDE) and histograms for the average 

rainfall, and figure 2 demonstrates those plots for the 

monthly average temperature. The temperature distribution is 

approximately symmetric with a mean of 41.14 Fahrenheit, 

while the average rainfall variation is skewed right with a 

mean of 1.48 inches. The minimum recorded rainfall for this 

period is 0 inches, and the maximum is 10.05 inches. 

4.2. Time Series Decomposition and Model Identification 

Monthly average rainfall and temperature data from 2005-

January to 2019-December are used as training data, and the 
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observations from 2020-January to 2021-December are used 

as testing data. Both rainfall and temperature distribution are 

stationary, and Dickey-Fuller test values are 0.04 and 0.05. 

One lag differencing further decreases the Dickey-Fuller test 

values for both series, and d=0 and d=1 are the most 

appropriate values for the integrated order of the ARIMA 

model. Although there is no clear trend, both series 

demonstrate a seasonal pattern. 

 

Figure 2. KDE plot and histogram for average temperature. 

4.2.1. Time Series Decomposition 

Decomposition is a powerful statistical technique to 

deconstruct the time series into seasonal 	.��, cyclic 	 �̂�, 
trend 	_̀ �  and noise 	M��  components. Considering the 

variation around the trend, this can be done in two different 

ways, namely additive and multiplicative decompositions. 

This can be given by the equations: 

i. Additive model 

�� � .� 3 �̂ 3 _̀ 3 M�                      (18) 

ii. Multiplicative model 

�� � .� a �̂ a _̀ a M�                       (19) 

In general, the amplitude of the multiplicative model 

changes more drastically than the amplitude of the additive 

model. Figures 3 and 4 show the graphical representation of 

the individual components of the decomposed time series, 

namely, trend and seasonality. In both average temperature, 

and rainfall data, a strong 12-month seasonal pattern can be 

observed, and the order of the seasonal parameter obviously 

should be 12. A comprehensive overview of techniques and 

methods in time series modeling and decomposition can be 

found in [4, 13]. 

Table 2. Possible values for p, d, and q. 

Model Rainfall Temperature 

AR (p) 0, 1 0, 1, 2 

MA (q) 0, 1, 2 0, 1, 2 

I (d) 0, 1 0, 1 

4.2.2. Identification of the Order of the AR and MA Models 

ACF and PACF provide strong support in determining the 

order of the AR and MA components of the time series. 

Figures 5 and 6 represent the ACF and PACF plots for average 

rainfall and temperature data. According to the plots, the 

possible combinations of the orders for the AR and MA 

components, along with integrated orders, are given in Table 2. 

4.3. SARIMA Model Selection 

An iterative process is used to calculate the AIC values for 

the different combinations of the ARIMA parameters 

1, =, and	@  and the SARIMA parameters C , c , and d . The 

table shows ten different SARIMA models with their AIC 

along with log-likelihood values, R- squared values, and 

Root Mean Square Error (RMSE). The AIC value is used as 

the primary model selection criterion. SARIMA model with 

the lowest AIC is chosen as the best among the other 

competitive models. 

 

Figure 3. Additive seasonal decomposition of monthly average rainfall. 
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Figure 4. Additive seasonal decomposition of monthly average temperature. 

 

Figure 5. ACF and PACF plots for monthly average rainfall. 
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4.4. Model Results for Rainfall Data 

The AIC, Log-Likelihood value, R-squared values, and 

RMSE for the top SARIMA models for average rainfall data 

are shown in Table 3. Among the top ten competitive models, 

the SARIMA (2, 0, 0) (2, 0, 1, 12) has the smallest AIC, 

while the model (2, 0, 0) (3, 0, 1, 12) qualified for the 

smallest RMSE and largest R-squared value. 

Table 3. SARIMA (2, 0, 0) (2, 0, 1, 12) model results for monthly average 

rainfall data. 

SARIMA Model AIC 
Log 

Likelihood 

R - 

squared 
RMSE 

(2, 0, 0)(2, 0, 1, 12) 664.332 -326.166 0.0848 0.9679 

(1, 0, 0)(2, 0, 1, 12) 666.474 -328.237 0.0604 0.9807 

(2, 0, 0)(1, 0, 2, 12) 664.407 -326.203 0.1069 0.9561 

(1, 0, 0)(1, 0, 2, 12) 666.651 -328.325 0.0807 0.9700 

(1, 0, 1)(2, 0, 1, 12) 665.324 -326.662 0.0677 0.9769 

(3, 0, 0)(2, 0, 1, 12) 666.221 -326.111 0.0792 0.9708 

(2, 0, 1)(2, 0, 1, 12) 666.240 -326.120 0.0799 0.9705 

(1, 0, 0)(2, 0, 2, 12) 668.470 -328.235 0.0660 0.9778 

(2, 0, 0)(3, 0, 1, 12) 666.267 -326.134 0.1169 0.9507 

(2, 0, 0)(2, 0, 2, 12) 666.308 -326.154 0.0970 0.9614 

4.5. Model Results for Temperature Data 

The AIC, Log-Likelihood value, R-squared value, and 

RMSE for the SARIMA models with the lowest AIC value for 

the average temperature data are shown in Table 4. Among the 

top ten competitive models, the SARIMA (1, 0, 1) (2, 0, 1, 12) 

has the smallest AIC, while the model (0, 0, 1) (1, 0, 2, 12) 

qualified for the smallest RMSE and largest R-squared value. 

Table 4. SARIMA (1, 0, 1) (2, 0, 1, 12) model results for monthly average 

temperature data. 

SARIMA Model AIC 
Log 

Likelihood 

R - 

squared 
RMSE 

(1, 0, 1)(1, 0, 2, 12) 1155.658 -571.829 0.9441 4.8392 

(1, 0, 1)(1, 0, 1, 12) 1153.879 -571.940 0.9448 4.8098 

(1, 0, 1)(2, 0, 1, 12) 1155.424 -571.712 0.9449 4.8021 

(0, 0, 1)(1, 0, 1, 12) 1176.319 -584.159 0.9491 4.6170 

(0, 0, 0)(1, 0, 1, 12) 1188.346 -591.173 0.9501 4.5727 

(2, 0, 0)(1, 0, 2, 12) 1164.430 -576.215 0.9498 4.5878 

(0, 0, 1)(1, 0, 2, 12) 1177.267 -583.634 0.9502 4.5669 

(0, 0, 0)(1, 0, 2, 12) 1192.269 -592.134 0.9472 4.7011 

(0, 0, 2)(1, 0, 2, 12) 1175.792 -581.896 0.9499 4.5810 

(0, 0, 1)(2, 0, 0, 12) 1227.418 -609.709 0.8746 7.2484 

 

 

Figure 6. ACF and PACF plots for monthly average temperature. 
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5. Model Validation 

Model validation is the process of confirming the 

introduced model achieves the intended purpose, and 

different types of diagnostics tests are available to justify the 

validity of the fitted model. Without validating the model, it 

is not right to rely on the predictions. A widely used 

diagnostic technique is residual analysis. Residual is the 

difference between actual observations and fitted values. 

Residuals of a well-fitted model are uncorrelated and follow 

a Gaussian distribution with a mean zero and satisfy the 

homoscedasticity property [9]. 

5.1. Parameter Estimation for Rainfall Data 

The coefficients of the (Auto Regression) AR, (Seasonal 

Auto Regression) SAR, (Seasonal Moving Average) SMA 

components, along with their standard error values and p-

values for the SARIMA (2, 0, 0) (2, 0, 1, 12) are given in 

Table 5. 

Even though the model fitted well with the observed data, 

predicting rainfall using the model is challenging because 

Minot experiences snow for more than four months over the 

year. 

Table 5. Parameter estimation (rainfall). 

Component Coefficient Std. Error p-value 

AR(1) 0.1932 0.084 0.022 

AR(2) 0.1522 0.086 0.075 

SAR(1) 0.8111 0.088 0.000 

SAR(2) 0.1785 0.083 0.033 

SMA(1) -0.8368 0.088 0.000 

5.2. Parameter Estimation for Temperature Data 

The coefficients of the (Auto Regression) AR, (Seasonal 

Auto Regression) SAR, (Seasonal Moving Average) SMA 

components, along with their standard error values and p-

values for the SARIMA (1, 0, 1) (2, 0, 1, 12) are given in 

Table 6. 

Table 6. Parameter estimation (temperature). 

Component Coefficient Std. Error p-value 

AR(1) 0.9127 0.051 0.000 

MA(1) -0.6709 0.075 0.000 

SAR(1) 0.9907 0.016 0.000 

SAR(2) 0.0091 0.016 0.572 

SMA(1) -0.9095 0.116 0.000 

6. Model Diagnostics Tests 

Various diagnostic tests are available to determine the 

fitted model’s validity. Each diagnostic tests focus on a 

different dependence structure. Figures 7 and 8 show the 

residual plot, normal Q-Q plot, Histogram plus KDE plot, 

and correlogram for the average rainfall and temperature data. 

6.1. Residual Plot 

The residual plot visually demonstrates how the fitted 

model captures the actual data. A good forecasting method 

will yield uncorrelated residuals. If there are correlations 

between residuals, there is information left in the residuals 

that should be used in computing forecasts. The residuals 

have zero mean. The estimates are biased if the residuals 

have a mean other than zero [9]. If the appropriate model is 

chosen, there will be zero autocorrelation in error [5]. 

6.2. Histogram and Estimated Density 

Histograms of the residual of the fitted models for the 

rainfall and temperature have approximately bell shape, and 

this can be further confirmed by comparing the standard 

normal curve and Kernel Density Estimator (KDE). 

6.3. Normal Q-Q Plot 

The normal Q-Q plot is a visual representation that can 

compare the normality of theoretical and observed models. 

Further, it can be used to confirm the validity of the 

normality assumptions. Normal Q-Q plots compare the 

quantile residuals against the theoretical quantile. If most of 

the data points lie on a straight line, then residuals are 

normally distributed. 

6.4. Correlogram Plot 

Correlogram plots for the residual show the significance of 

the autocorrelation of the residuals at each lag value. 

7. Model Diagnostics Tests Results 

According to the rainfall diagnostics, by the Q-Q plot in 

Figure 7, it is hard to confirm that the residuals are perfectly 

normally distributed because a significant number of the 

observations deviate from the straight line. The KDE plot is 

skinnier than the standard normal density curve. The 

correlogram shows no considerable correlation between the 

residuals at each lag value. 

Figure 8 shows the diagnostic plots for average 

temperature data. Unlike rainfall data, the temperature data 

residuals closely follow the standard normal distribution, and 

the Normal Q-Q plot reflects this. Moreover, the KDE 

density curve for the temperature data approximately follows 

the standard normal density curve, and hence the residuals 

are approximately normally distributed. The correlogram plot 

also suggests no significantly visualized correlation between 

residuals for each lag value. However, according to the 

overall diagnostic analysis plots, the fitted model for the 

average temperature is more accurate compared to the 

rainfall model. 

7.1. Ljung-Box Test 

Ljung-Box test can be used to check if autocorrelation 

exists in the time series. The Ljung-Box test statistics d is 

given by, 

d � 0	0 3 2�∑ G̀
f

	- ,�
g
,h!                        (20) 
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where 0  is the number of observations, i,  is the 

autocorrelation for lag (, and j is the number of lags tested. 

This test is a hypothesis test that the null hypothesis is that 

the residuals are independently distributed, and the 

alternative hypothesis is that the residuals are not 

independently distributed and exhibit a serial correlation. 

 

Figure 7. Model diagnostic plots for the SARIMA (2, 0, 0) (2, 0, 1, 12), monthly average rainfall. 

 

Figure 8. Model diagnostic plots for SARIMA (1, 0, 1) (2, 0, 1, 12), monthly average temperature. 
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Table 7. Ljung-Box test results. 

Test values Average Rainfall Average Temperature 

Ljung-Box (L1) (Q) 0.03 0.01 

Prob (Q) 0.86 0.94 

The Ljung-Box test summary is given in Table 7. The 

Ljung-Box p-value for rainfall data is 0.86, while it is 0.94 

for temperature data. So in both cases, the null hypothesis 

fails to reject at the significance level 2 � 0.05. So the test is 

not significant and sufficient evidence does not exist to 

conclude that residuals are not uncorrelated. 

7.2. Heteroskedasticity 

Heteroskedasticity (or heteroscedasticity) can be used as a 

reference to check the uniformity of the variance of the 

residual over time. Table 8 shows the heteroscedasticity and 

corresponding p-values. In both situations, we fail to reject 

the null hypothesis and do not have enough evidence to 

suggest that residuals do not have equal variance at the 

significance level of 2 � 0.05. 

Table 8. Test results for heteroskedasticity. 

Test Values Average Rainfall Average Temperature 

Heteroskedasticity (H) 0.79 1.03 

Prob (H) (two sided) 0.37 0.90 

If the residual has a constant variance, it is known as 

homoscedasticity. More details on efficient tests for 

normality and homoscedasticity can be found in [6]. 

7.3. Jarque-Bera Test 

Jarque-Bera test is another diagnostic test that can be used 

as a test for normality. This test is based on the sample 

skewness and sample kurtosis. It is a goodness of fit test that 

can be used to determine whether the skewness and kurtosis 

follow the normal distribution. Jarque-Bera (JB) test statistic 

Q is given by 

d � 	 -l m�
" 3 	, #�f

n o	                        (21) 

where 0, (, and	�	 represent the sample size, kurtosis, and 

skewness respectively. 

The null hypothesis for the tests is data are normally 

distributed, while the alternative hypothesis is data are not 

normally distributed. Table 9 shows the JB test statistics and 

p-values for average rainfall and temperature data. 

Table 9. Test results for the Jarque-Bera test. 

Test values Average Rainfall Average Temperature 

Jarque-Bera (JB) 252.15 8.10 

Prob (Q) 0.00 0.02 

8. Prediction with Fitted Models 

The average monthly rainfall and temperature data from 

2005-January to 2019-December were used to fit the data 

with SARIMA models, and observations from 2020-January 

to 2021-December were used as testing data to validate the 

model. Figure 9 shows the graphical representation of the 

observed data and predictions for the SARIMA (2, 0, 0) (2, 0, 

1, 12) model for average rainfall data with a 95% confidence 

band. Figure 10 demonstrates the observed and predicted 

values for SARIMA (1, 0, 1) (2, 0, 1, 12) for the average 

temperature data with a 95% confidence band. Moreover, 

each graph shows the average rainfall and temperature 

forecasting pattern from January 2022 to December 2023 for 

the average temperature and rainfall. 

 

Figure 9. Observed and SARIMA (2, 0, 0) (2, 0, 1, 12) predictions. 



 International Journal of Data Science and Analysis 2022; 8(3): 82-93 92 

 

 

Figure 10. Observed and SARIMA (1, 0, 1) (2, 0, 1, 12) predictions. 

9. Conclusion and Recommendation 

9.1 Conclusion 

The best model is selected based on the AIC criterion and 

the SARIMA (2, 0, 0) (2, 0, 1, 12) has the smallest AIC for 

the rainfall data while the SARIMA (1, 0, 1) (2, 0, 1, 12) has 

the smallest AIC for the temperature data. Although the 

SARIMA (2, 0, 0) (2, 0, 1, 12) has the lowest AIC value the 

SARIMA model (2, 0, 0) (3, 0, 1, 12) has the smallest RMSE 

and largest R-squared value compared to the previous model. 

But the difference between those values is very small (Table 

3). For the average temperature, SARIMA (0, 0, 1) (1, 0, 2, 

12) has the lowest RMSE and largest R-squared value among 

the other comitative models (Table 4). The model we 

selected as the largest R-squared value for the rainfall yielded 

an R-squared value of 11.69%, and this is obviously not a 

good value for a forecasting model. The reasonable 

justification for the low R-squared value of rainfall data is the 

irregularity of rainfall patterns due to the heavy snowfall 

during the winter and the practical difficulties of measuring 

the snow water equivalent amount to replace the missing 

rainfall data. The unavailability of accurate rainfall data is 

one of the major challenges in fitting a good time series 

model for the average rainfall. For the temperature data, the 

SARIMA (0, 0, 1) (1, 0, 2, 12) has the largest R-squared 

value of 95.02% among the other competitive models. 

Although the temperature is very low for some months there 

are no technical difficulties to measure the temperature 

compared to the rainfall measurements in the winter. 

Therefore the fitted SARIMA model captures most of the 

temperature variations including cyclic patterns throughout 

the period considered in the analysis. 

9.2. Recommendation 

The SARIMA model for the monthly average rainfall 

could be improved by considering the eXogenous factors and 

using advanced techniques to find out the snow water 

equivalent amount to replace the missing rainfall data for the 

months where Minot experiences heavy snowfall. 
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