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Abstract: Although Binary Relevance (BR) is an adaptive and conceptually simple multi-label learning technique, its 

inability to exploit label dependencies and other inherent problems in multi-label examples makes it difficult to generalize well 

in the classification of real-world multi-label examples like annotated images. Thus, to strengthen the generalization ability of 

Binary Relevance, this study used Multi-label Linear Discriminant Analysis (MLDA) as a preprocessing technique to take care 

of the label dependencies, the curse of dimensionality, and label over counting inherent in multi-labeled images. After that, 

Binary Relevance with K Nearest Neighbor as the base learner was fitted and its classification performance was evaluated on 

randomly selected 1000 images with a label cardinality of 2.149 of the five most frequent categories, namely; "person", 

"chair", "bottle", "dining table" and "cup" in the Microsoft Common Objects in Context 2017 (MS COCO 2017) dataset. 

Experimental results showed that micro averages of precision, recall, and f1-score of Multi-label Linear Discriminant Analysis 

followed by Binary Relevance K Nearest Neighbor (MLDA-BRKNN) achieved a more than 30% improvement in 

classification of the 1000 annotated images in the dataset when compared with the micro averages of precision, recall, and f1-

score of Binary Relevance K Nearest Neighbor (BRKNN), which was used as the reference classifier method in this study. 

Keywords: Binary Relevance, K-Nearest Neighbor, Binary Relevance K-Nearest Neighbor (BRKNN),  

Multi-label Linear Discriminant Analysis (MLDA) 

 

1. Introduction 

Advancements in digital technologies such as high-

resolution photography devices and large multimedia 

databases have seen an enormous increase in the volume of 

digital images and videos all over the world, making image 

annotation and classification active research topics [1]. 

An image in a typical image annotation problem will 

consist several objects, each associated with multiple 

different conceptual classes [2]. Such a scenario in machine 

learning is referred to as a multi-label classification task. 

Among the many multi-label classification algorithms, 

Binary Relevance (BR) is considered as an instinctual 

solution to learn from multi-label instances due to its 

conceptual simplicity and ability to take any binary learning 

method as a base learner [3]. 

However, BR becomes complex and computationally 

expensive in the case of annotated images which are always 

highly dimensional [4]. In addition, its inability to exploit 

label correlation contradicts multi-label learning assumption 

that labels correlation must be well exploited alongside other 

inherent properties of multi-label problems so as to build a 

multi-label prediction model with excellent generalization 

capability. 

Therefore, to enhance the generalization ability of BR in 

multi-label classification of annotated images, this study uses 

multi-label linear discriminant analysis (MLDA) which is a 

development of linear discriminant analysis as a 

preprocessing step to take care of the curse of dimensionality, 

label dependencies, and label over-counting inherent in 
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multi-label examples. After which, Binary Relevance with K 

Nearest Neighbor as the base learner is fitted and its 

classification performance evaluated on randomly selected 

1000 images of the MS COCO 2017 dataset [5]. 

2. Literature Review 

Unlike the single-label problems, multi-label problems are 

associated with more than one class at a time making 

classification inevitable [6]. Multi-label classification 

techniques are divided into ensemble-based methods, 

algorithm adaptation (AA) and problem transformation (PT) 

[7]. PT algorithms such as BR break down a multi-label 

classification task into a sequence of independent single-label 

classification tasks that can be solved using various binary 

classification algorithm. 

Santos compared classification performance of BR and 

Label Powerset (LP) on scene categorization using five 

traditional learning algorithms as the base classifier [8]. 

Experimental results indicated that LP with support vector 

machine as the base classifier achieved better classification 

accuracy than the counterparts. In 2016, Aldrees and Chikh 

investigated the multi-label classification performance of 

Binary Relevance One-vs.-one, Label Powerset, and Multi-

label K Nearest Neighbors (MLKNN) on music and emotion 

datasets [9]. MLKNN performed poorly. 

In 2018, Zhang examined BR from three perspectives, 

namely; the primary setting of binary relevance, certain 

typical correlation-enabling extensions, and associated class-

imbalance problems. He suggests that adequate BR learning 

methods that are in a position of modeling multi-label 

complexities as well as label-specific features be developed 

to identify distinct properties of class-wise label [4]. 

Multi-label learning, like many other machine learning 

problems, ails from the curse of dimensionality [7]. To 

reduce the large dimensions of multi-label data, Wang 

developed a generalized linear discriminant analysis dubbed 

Multi Label Linear Discriminant Analysis [2]. In 2016, Wang 

et al. extended Multi Label Linear Discriminant Analysis by 

normalizing label dependencies to correct over-counting of 

instances with multiple labels [10]. Extensive experimental 

evaluations demonstrated promising discriminative capability 

of MLDA. 

As presented in the above reviewed literatures, many 

studies have investigated binary relevance as a multi-label 

learning technique, however its weaknesses harbor its 

generalization ability. Thus, this study utilizes multi-label 

linear discriminant analysis which has proven to be a good 

discriminant in multi-label problems as a preprocessing 

technique to address most of the short coming of binary 

relevance in multi-label classification. 

3. Methodology 

3.1. Multi-label Linear Discriminant Analysis 

Wang et al. defines Multi-label Linear Discriminant 

Analysis (MLDA) as a natural extension of standard Linear 

Discriminant Analysis (LDA) for multi-label problems [2]. In 

contrast to LDA, MLDA incorporates class label correlations 

in the definition of scatter matrices which are computed from 

a class-wise perspective rather than from data point 

perspective. 

3.1.1. Multi-label Data 

Let ��� , �����  be a multi-label dataset portioned into � 

classes as �	
�
��
  where; 	
	represents the sample set of 

class k with �
  instances, �� ∈ ℝ� , �� ∈ �0,1�
 , ����� = 1 

if �� is a member of ��� class, and 0 otherwise. In general, 

� = ���, … , ���  and � = ���, … , ��� = ���1�, … , ����� 
where, �� ∈ �0,1�!" 	 is the indication vector for the ��� 

class. 

3.1.2. Measures of Multi-label Data 

The measures of multi-label data are; the number of 

instances (N) and the number of features (d) in the input 

space ��� , ����� , the number of classes (K) and label 

distribution which is characterized by label cardinality and 

label density [11]. 

Label cardinality denoted as LCard, is a measure of multi-

labelled-ness [12]; that is, the how many labels on average 

are associated with each data point. 

#$%&' = ∑ |*+|,+-.
�                                 (1) 

On the other hand, label density denoted as LDens refers 

to cardinality divided by the size of label set. 

#/0�1 = �

 #2%&'                              (2) 

3.1.3. MLDA Algorithm 

Step 1: Multi-Label correlations 

Wang et al. defines label correlation between two classes as 

[2]; 

$
3 = 45",567
	||5"||	||56|| 	89&	:, �	 ∈ 1, …�               (3) 

Where $ ∈ ℝ
	×	
 is a symmetric matrix, �
  and �3  are :�� 

and ���  class label vectors, ||. ||  is the :=  norm and <
�
 , �3 > is the inner product between label vector k and l. 

Then $ is normalized so as to correct the number of times an 

instance �� with multiple labels is used in the scatter matrices 

via equation 4 

@�
 = 5+A
||5+||6.                                    (4) 

Where, @�
 	is the correlated normalized weight factor for 

the B�� instance in ��� class and	∑ @�


�� 	≥ 1. 

Step 2: d-dimensional mean vectors 

Mean vector of ��� class denoted as D
 is computed as 

D
 = ∑ E+"F+G"+-.
∑ E+"G"+-.

                                 (5) 

Multi-label global mean vector denoted as D is computed 

as 
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D = ∑ ∑ E+"F+,+-.H"-.
∑ ∑ E+",+-.H"-.

                             (6) 

Step 3: Class-wise scatter matrices 

Class-wise between-class scatter matrix (IJ) 

IJ = ∑ �∑ @�
���� �

�� �D
 − D��D
 − D�            (7) 

Class-wise within-class scatter matrix (IL) 

IL = ∑ ∑ @�
!"
���



�� ��� − D
���� − D
�           (8) 

Step 4: Eigenvalues and Eigenvectors 

Compute the eigenvalues and associated eigenvectors of 

the matrix I 

I = ILM�	IJ                                   (9) 

Group the realized eigenvectors by decreasing eigenvalues 

and choose 2  (�	 − 1) eigenvectors whose eigenvalues are 

the largest to form a �'	 × 	2�-dimensional matrix	N. 

Step 5: New feature subspace 

Use matrix N  to transform the original feature space 

� ∈ 	ℝ�×�onto a new feature subspace O ∈ ℝ�×P for 2 < ' 

as given by equation 10. 

O = � × N                                (10) 

3.2. Binary Relevance K-Nearest Neighbor 

Binary Relevance K Nearest Neighbor (BRKNN) is a 

multi-label learning algorithm that adapts the K Nearest 

Neighbor (KNN) algorithm to categorize multi-label 

instances [13]. In particular, BRKNN extends the KNN to 

produce independent predictions after a single search of the 

nearest neighbors [14]. Furthermore, Zhang et al. claims that 

BRKNN is theoretically analogous to combining BR with the 

KNN method [15]. 

3.2.1. Binary Relevance 

Binary Relevance refers to a problem transformation 

method that breaks down a multi-label learning problem say 

O	 = 	 ��� , �������  into Q  independent single label problems 

say OR  [3]. Where �� 	 ∈ 	ℝP ,  ��  denotes the corresponding 

label vector for instance �� and	S	 = 1,·	·	·, Q. 

Each of these Q  single label problems correspond an 

individual class label in the label space. More specifically, 

for every class label UR, BR constructs a corresponding single 

label dataset OR  from the original multi-label dataset 	O  by 

taking into account the relevance of each instance to UR 	as 

follows [16]; 

QR 	= 	 ���� , 8��� , 	UR��|1	 ≤ S	 ≤ Q�            (11) 

Where, 8X�� , URY = Z 1, B8	UR ∈ ��0, 9[ℎ0&]B10 

Table 1. Multi-label dataset example. 

Instance Label Set 

1 {U=, Û } 

2 {U�, U=, U_} 

3 {U�} 

4 {U=, U_} 

 

Table 2. Single-label dataset produced by BR. 

Instance Label (`a) Instance Label (`b) Instance Label (`c) Instance Label (`d) 

1 0 1 1 1 0 1 1 

2 1 2 1 2 1 2 0 

3 1 3 0 3 0 3 0 

4 0 4 1 4 1 4 0 

 

Then, on each of the m resultant single-label datasets, a 

binary classifier is trained. BR has the following properties; 

1. Binary relevance is conceptually simple since it is a 

first-order technique that builds classification models in 

a label-wise manner ignoring the coexistence between 

class labels. The difficulty of binary relevance modeling 

is proportional to the size of label space [17]. 

2. BR being a problem transformation method, is not 

limited to any specific binary learning technique. Thus, 

it can be initiated with any binary classifier with 

multiple properties [4]. 

3. BR quickly learns from multi-label cases with labels 

that are missing as a result of high labeling costs and 

human labelers' negligence [18]. 

3.2.2. K-Nearest Neighbors 

K Nearest Neighbors (KNN) is a memory-based 

supervised machine learning method used for classification 

and/or regression tasks [4]. Wu et al. regards KNN as one of 

the top data mining algorithms and attributes this fact to the 

following properties [19]; 

1. KNN is non-parametric meaning it does not assume any 

probability distribution on the input data. This comes in 

handy for inputs whose probability distributions are 

unknown and thus makes KNN more robust. 

2. KNN quickly adapts to changes in the input data by 

employing lazing learning which generalizes during 

testing. That is, the model has no learning phase and all 

work is done when prediction is sought. 

i. K-Nearest Neighbor Classifier 

As a classifier, KNN saves all the available examples 

and classifies new cases based on a distance function as 

follows [20]; 

Step 1: Compute the distance metric 

Compute the distance between the test instance and all the 

training examples in new subspace O using various types of 

distance metrics. The Euclidean distance (equation 13) 

defined as the square root of the sum of difference between 

the test instance and the training instance is used in this study. 

Step 2: Sort training instances according to evaluated distance 
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The K-NN classifier then sorts the training instances 

�� 	according to the evaluated Euclidean distance in ascending 

order and selects eF+f ⊑ e	 the set of K closest training 

instances to the test instance	��‘ . 
Step 3: Classify according to majority vote 

Finally, KNN classifies ��‘  into to the class with majority of 

its K �� as follows; 

��i = %&jQ%�	k ∑ l�m = ����F+,n+�∈	op+f
            (12) 

However, KNN as a classifier has two open issues to be 

addressed namely; the similarity measure between the test 

and training instances, and choice of an optimal K value [21]. 

ii. Parameter selection 

a. Distance metric 

Different KNN applications require different distance 

measures [22]. However, the most commonly used distance 

metric is Euclidean distance [23]. It is evaluated as in 

equation 13. 

'X��‘ , ��Y � q∑ X��‘ K ��Y=���                   (13) 

Where, ��‘  is the test instance and �� denotes all the training 

instances in the feature space. Other distance metrics 

includes the Manhattan distance, the Lagrange distance and 

the cosine coefficient [24]. 

b. Optimal value of K 

The parameter K in the KNN refers to the number of 

nearest neighbors to the instance being categorized. Several 

approaches have been proposed for finding an appropriate K 

value. One of the most frequent methods cross validate 

distinct values of K and keep the K with the lowest 

classification error rate [24]. 

3.3. Multi-label Classification Metrics 

In multi-label classification the main interest is on how well 

all the labels can be predicted rather than a single one [25]; that 

is, how the results of Q binary problems can be averaged to a 

single measurement value based on a contingency table of 

predicting behavior for binary classification. 

Table 3. Contingency table for binary classification. 

Predicted label 

 Positive Negative 

Actual 

label 

Positive True Positive False Negative 

Negative False Positive True Negative 

From the above table the following metrics were 

evaluated; 

rB2&9	%m0&%j0	@&02B1B9� � 	∑  s+
 s+tus+

v���           (14) 

rB2&9	%m0&%j0	&02%:: � ∑  s+
 s+tu�+

v���               (15) 

rB2&9	%m0&%j0	w1	129&0 � =�x�Pyz	{k|y{}|	Ey|P�~�z!	;x�Pyz	{k|y{}|	y|P{33�
�x�Pyz	{k|y{}|	Ey|P�~�z!	tx�Pyz	{k|y{}|	y|P{33�                                         (16) 

Where, precision and recall refers to the ratio of predicted correct labels to the total number of positive predictions and ratio of 

predicted correct labels to the total number of actual positives respectively, and F1 score is the harmonic mean of precision and recall. 

4. Results 

4.1. Label Distribution 

This study was experimented on MS COCO 2017 dataset. Table 4 summarizes the label statistics of this dataset. 

Table 4. Dataset label statistics. 

Dataset Instances Features Labels Cardinality Density 

MS COCO 2017 1000 727 5 2.149 0.4298 

 

As shown in Table 4, the MS COCO 2017 dataset had a 

total number of 1000 examples, labeled in up to 5 classes and 

each example was described by 727 features. Each of these 

1000 examples was associated with had an average of more 

than 2 labels (Cardinality = 2.149) and each label had an 

average occurrence of 42.98% in the dataset (Density = 

0.4298). 

In addition, the frequency distribution of the five selected 

labels in the MS COCO 2017 datasets is as shown in Figure 1. 

From Figure 1 it is clear that the most frequent label is 

“Person” and the least frequent label is “Bottle”. 

 

Figure 1. MS COCO 2017 labels’ frequency distribution. 
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4.2. Label Correlations 

After examination of the data set’ label distribution, the 

study then explored the label correlations in the dataset using 

cosine similarity scores. Figure 2 is the cosine similarity 

score heat map for the labels in the dataset. 

 

Figure 2. Cosine similarity heat map of the MS COCO 2017 dataset. 

From Figure 2, the cosine similarity score between “Chair” and “Dining table” is 0.57 which implies that there is a 57% 

overlapping between these two labels as illustrated below. 

 

Figure 3. Scatter plot of simulated labels. 

From Figure 3 above, the data points of “Chair” and 

“Dining table” are mixed up making it difficult to 

determine a linear decision boundary between them. Thus, 

this study incorporated cosine similarity scores in Figure 2 

in the calculation of scatter matrices defined in equations 

7-8. 

4.3. Discriminative Capability of MLDA 

After exploration of the label correlations, the study run 

Multi-label Linear Discriminant Analysis algorithm 

formulated in section 3.1.3 on MS COCO 2017 dataset. The 

algorithm transformed the feature space of the dataset from 

727 features to a new feature subspace with 4 features as 

shown by the two tables below. 

Table 5. MS COCO 2017 dataset features space. 

Id Att1 Att2 Att3 Att725 Att726 Att727 

1 0.00627 0.00752 0.00376 0.66291 0.684210 0.68672 

2 0.47368 0.47870 0.48622 0.78133 0.781955 0.79449 

3 0.00877 0.01003 0.01128 0.89975 0.879700 0.90226 

4 0.00000 0.00376 0.01504 0.83208 0.829570 0.85965 

5 0.09398 0.09023 0.11278 0.94110 0.923560 0.93734 

Table 6. MS COCO 2017 new features subspace produced by MLDA. 

Id 1 2 3 4 

1 0.548931 0.347216 0.592742 0.183433 

2 0.482971 0.687382 0.562128 0.316599 

3 0.566009 0.534774 0.507913 0.281472 

4 0.486544 0.559246 0.333150 0.287352 

5 0.479095 0.578148 0.397271 0.393479 
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Then the study at random selected two classes and 

visualized their corresponding data points in the new feature 

subspace onto a 2-dimensional plane of the first two multi-

label linear discriminants as shown in Figure 4. 

 

Figure 4. MS COCO 2017 labels on 2D plane in reduced subspace by MLDA. 

As demonstrated in Figure 4, the data points of the “chair” 

and “dining table” were clearly segregated with a cosine 

similarity of 0.21 based on their class membership along the 

second multi-label linear discriminant. 

4.4. Binary Relevance K-Nearest Neighbor 

After preprocessing of the dataset, the study normalized 

the resultant feature subspace so as to give same importance 

to all features. Then those feature were split at random into 

training and testing set in the ratio 70:30. 

Thereafter, the study employed BR which transformed the 

MS COCO 2017 datasets in the new feature subspace into 5 

independent single label datasets according to equation 11 

and as shown in Tables 7 and 8. 

Table 7. MS COCO 2017 dataset labels. 

Image Id Person Bottle Chair Dining table Cup 

5 1 1 0 0 0 

6 1 0 1 0 0 

8 1 1 1 1 1 

10 1 0 0 0 1 

15 1 0 0 0 0 

Table 8. Single label datasets of Scene dataset produced by BR. 

Image Id Person Image Id Bottle Image Id Chair Image Id Dining table Image Id Cup 

5 1 5 1 5 0 5 0 5 0 

6 1 6 0 6 1 6 0 6 0 

8 1 8 1 8 1 8 1 8 1 

10 1 10 0 10 0 10 0 10 1 

15 1 15 0 15 0 15 0 15 0 

 

Then on each of these 5 independent single label datasets, 

K Nearest Neighbor was employed as the base classifier with 

Euclidean distance to decide the neighborhood in the KNN. 

4.5. Classification Performance 

To evaluate the performance of MLDA-BRKNN on multi-

label classification of the 1000 randomly selected annotated 

images in the MS COCO 2017 dataset, micro averages of 

precision, recall and f1-score were reported to account for 

class imbalances as shown in Table 8 with BRKNN as a 

reference classifier for this study. 

Table 9. Performance evaluation of BRKNN and MLDA-BRKNN. 

Method Micro avg precision Micro avg recall Micro avg f1- score 

BRKNN 0.56 0.52 0.54 

MLDA-BRKNN 0.87 0.91 0.89 
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Figure 5. Classification performance of BRKNN and MLDA-BRKNN. 

From Figure 5, MLDA-BRKNN achieved a more than 30% 

improvement in classification of MS COCO examples when 

compared to BRKNN which is used as the reference method in 

this study. 

5. Conclusion 

In this study, MLDA is presented as a preprocessing 

technique to address Binary Relevance short comings of 

inability to exploit label correlations, computational 

complexities in case of high dimensional problems and label 

over counting. Thereafter, a multi-label learning model is 

built using Binary Relevance with K Nearest Neighbors as 

the base learner. Experimental evaluations of the Binary 

Relevance K Nearest Neighbors with prior preprocessing by 

Multi-label Linear discriminant Analysis (MLDA-BRKNN) 

on the randomly selected 1000 annotated images of MS 

COCO 2017 dataset achieved a more than 30% improvement 

than when classified using only Binary Relevance K Nearest 

Neighbors (BRKNN). 

Future studies should explore the performance of other 

base classifiers on Binary Relevance with Multi-label Linear 

Discriminant Analysis as the preprocessing technique in 

classification of annotated images. Also, other standard and 

non-standard classification experiments including transfer 

learning and deep learning should be conducted to explore 

the label correlations in annotated images. 
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