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Abstract: A Bayesian Self-Controlled Case-Series (BSCCS) method is proposed and used to estimate the relative risk of an 

adverse drug event (ADE) given transient exposure to a drug or vaccine. Markov Chain Monte Carlo (MCMC) methods through 

WinBUGS are used to estimate parameters of the model given different settings and sample sizes. The method explores full 

posterior distribution for the model to obtain the relative risk estimates which at times is a challenge in likelihood analysis of 

complex models. Data was simulated for 10, 20 or 50 children aged between 365 and 730 days, and received their first dose of the 

measles, mumps, and rubella (MMR) vaccine within this follow-up period. Each child had the outcome event – viral-meningitis, 

in the follow-up period. Results of the data analysis indicated an increased risk of viral meningitis within 14-35 days post 

vaccination. Results of Bayesian approach are quite similar to the MLE risk estimates, assuming a non-informative prior. 

However, with more informative priors, BSCCS method produced better results with narrow credible intervals. For the real data, 

children aged 365 and 730 days, exposed to MMR vaccine, with viral meningitis (single exposure) were considered. While the 

frequentist approach estimated the incidence rate ratio (IRR) as IRR 12.037 (95% CI (3.002 - 48.259)), the Bayesian estimate 

was IRR 8.971 (95% CI 2.869 - 27.994). This is similar to the MLE results but with narrow credible intervals. In all cases, there 

is significantly higher risk of viral meningitis within 14-35 days post MMR vaccination. Results from the simulation study and 

real data revealed that the BSCCS model fitted better than the SCCS model. 

Keywords: Zero-truncated Poisson Distribution, Case-series, Bayesian Self-controlled Case Series, MMR Vaccine,  

Viral Meningitis 

 

1. Introduction 

Truncated data arise when we restrict the range of possible 

outcomes of the data in some way [1]. The most common 

form of truncation that we often encounter is the omission of 

the zero class [2]. Zero-truncated count data models are often 

used, given the supported count distributions. These 

distributions, often assume the possibility of zero counts. 

Generally, zero-truncated data are not necessarily a problem, 

although quite common in health data. However, given the 

underlying assumptions of the supported count distributions; 

Hardin and Hilbe [3] pointed out that modeling such count 

data using regression methods that are based on 

non-truncated distributions is more likely to give biased 

results. This, becomes more likely when the mean response is 

closer to zero [3]. To deal with this problem of influence on 

inference from biased results, several methods of regression 

have been proposed by researchers to model such data for 

different situations [3]. These include among others, the 

Zero-Truncated Negative Binomial (ZTNB) and the 

Zero-Truncated Poisson (ZTP) regression. One of the 

modelling designs that employs the ZTP approach is the 

self-controlled case-series (SCCS) design [4]. 

SCCS is an innovative method developed by Whitaker, 

Paddy Farrington, Spiessens and Musonda [5] in the 
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mid-1990s as an alternative to the bias-prone case-control or 

cohort studies. This method has been used to conduct robust 

studies in assessing the risk of adverse events given 

exposures to various health related time-varying exposures. 

Generally, the method is used to overcome the problem of 

between-person confounding. This is achieved by including 

in the study, only individuals with information on both 

exposure and outcome. This, therefore restricts individuals in 

the study to have had at least one outcome event [5]. 

1.1. Zero-Truncated Poisson (ZTP) Distribution 

Consider Y to be a standard Poisson random variable with 

mean θ > 0 and the probability distribution being defined as 

���|�� = �	
��

! , � = 0, 1, 2, …           (1) 

The Poisson random Y in equation (1) has the mean, 

E(Y)=θ and variance, var(Y)=θ. David and Johnson (1952) 

defined the density function of zero-truncated (or positive or 

conditional) Poisson distribution, that structurally excludes 

zero counts while modeling count data, as 

���|� > 0, �� = �	
��

!���
��� , � = 1, 2, 3, …      (2) 

By conditioning equation (1) on � > 0 , that is, 

eliminating the possibility of the outcome zero from the 

sample space and re-normalizing the remaining density, 

David and Johnson [6] obtained equation (2). Later, while 

extending the work of David and Johnson [6], Tate and Goen 

[7] obtained the minimum variance unbiased estimator for 

the parameter of the left truncated Poisson distribution model, 

using the properties of sufficient statistics. Furthermore, the 

r
th

 factorial moment of Y in equation (2) as given by Johnson, 

Kemp and Kotz [2] is 

����� − 1� … �� − � + 1�� = �1 − �������      (3) 

Hence, the basic parameters such as mean and variance of 

Y can be derived and given respectively as follows; 

���|� >� = �
��
�� = �
�


���             (4) 

and variance 

"#���|� > 0� = �
�
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���% = ����
����
���
&��
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From the two results in equations (4) and (5), clearly, 

E�Y�  <  E�Y |Y >  0�; while var(Y |Y > 0) < E(Y |Y > 0), 

since 0 < 1 − ��� < 1 , implying that var(Y |Y > 0) is 

under-dispersed. To obtain the higher moments from this 

probability, we use the moment generating function (mgf) of 

the ZTP density. The mgf of the truncated Poisson mass 

function, ,-�.� can be derived as follows; 

,-�.� = E��/
 � = ∑ �/
 1
2�

���	


!���
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��
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!
1
2�  (6) 
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��
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Using the 45� in equation (7), the first central moment is 

obtained as follows 

,-6 �.� = ,6�.�
1 − ��� 

���� = ,-6 �.�|/27 = �
��
��         (8) 

Likewise, the second and third central moments can be 

obtained for the mass function. Moreover, the cumulative 

distribution function can also be obtained as described by 

Springael and Van Nieuwenhuyse [8]. The model parameter 

estimation has previously been achieved either through 

maximum likelihood estimation (MLE) or by method of 

moments [9]. 

The ZTP model (2) can be extended to a regression model 

that accounts for the effect of independent variables. The 

mean parameter �8  of the ZTP for the 9/:  individual is 

usually linked to a linear predictor of p+1 independent 

variables ;8 = �1, <8�, <8=, … . <8?�-  given the log link 

function, that is, 

���8|;8� = �8 = exp �<86C�           (9) 

D� 

ED5��8� = <86C 

where C = �C7, C�, … . C?�- represents the unknown 

regression parameters. To ensure that �8 is positive, for a 

proper distribution, the log link function is used. Thus, using 

Newton Raphson’s method, parameter C can be estimated 

by maximizing the log of ZTP likelihood [10]. The 

estimation procedure requires both the score and Hessian 

matrix which are obtained from the log-likelihood [11]. 

1.2. Zero-Truncated Poisson Log-Likelihood 

Suppose ��, �=, �F … �G  is an independent sample from 

equation (2), then the likelihood function is given by 

ℒ��� = ℒ��|�� = ∏ 
���	J

J!���
���

G82� = �K	J
�L�
�M
J!�&��
��'L  (10) 

And the log-likelihood function is 

ED5ℒ��� = N{�8 log��� − � − log&1 − ���' − log��8�
G

82�
} 

= ∑ { �8G82� ED5��� − � − ED5&1 − ���' − ED5T��8 + 1�} (11) 

Since �8 = exp �<86C�  as given in equation (9), the 

log-likelihood function in equation (11) can therefore be 

expressed as; 

ED5ℒ�C� = ∑ {�8G82� <86C − exp �<86C� − log U1 − ��VWX �YJZ[�\ − ED5Γ��8 + 1�             (12) 

To estimate the parameters, we maximize the log-likelihood function. Moreover, the score function of equation (12) is 
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obtained by taking the first derivative of the equation with 

respect to C. Similarly, taking the second partial derivatives 

gives us the Hessian matrix of the regression parameters as 

illustrated by Lee [11]. 

2. The Self -Controlled Case Series 

(SCCS) Model 

Over the years, there has been an increasing availability of 

large scale longitudinal observational databases, which has 

provided opportunities for different approaches in data 

analysis. Despite this, the complexity and scale of some of 

the available databases presents some interesting statistical 

and computing challenges. The SCCS model was developed 

from a cohort study by conditioning on the occurrence of at 

least one event during the specified observation period of the 

individual, given an individual’s history. The method models 

the event rate during exposure periods, in comparison to the 

baseline event rate while unexposed [4, 5]. 

In SCCS model, each individual act as their own control [4, 

5]. An observation period is defined beforehand, and each 

treatment observation, which is a period of time that someone 

is exposed, is considered with respect to other periods of time 

in which the same person is not exposed. This way of 

matching, gracefully avoids patient-level selection bias [4, 5]. 

Additionally, it helps to control for all fixed confounders, such 

as the individual’s underlying frailty, the severity of their 

underlying disease, genetics, and socioeconomic status, 

amongst others. Figure 1 illustrates a typical example of the 

SCCS design. The figure shows the start of observation period, 

the risk period, event date - that can happen at any time within 

the follow-up period -, and the end of observation period. 

Furthermore, time varying covariate, age, has been partitioned 

into some age groups within the observation period. The 

choice of age group cut points depends on factors such as 

duration of study period, event of interest amongst others. 

 

Figure 1. Graphical representation of self-controlled case series design. 

Assuming that the outcome of interest arise in a 

non-homogeneous Poisson process, then the baseline 

incidence of the event for subject 9 can be denoted by �^J, in 

age group _ ; while �`a  and �[a  are the risk incidence 

associated with age groups _ � 1 and exposure period b � 1 

respectively relative to the baseline periods, _ � 0 and b � 0 

[4, 5]. Building on this information, the general model based 

on a multinomial formulation will be as follows. 

Consider a random selection of c  events in d  subjects 

9 � 1,2,3 … . d  each with one or more events. Suppose  c8 

denotes the number of events observed for subject  9 , 

implying c � ∑ c88 . The observation period for subject 9 can 

be split into intervals for age groups indexed by _ and risk 

periods indexed by b. 

Taking .8ef to denote the time spent by subject 9 in the age 

group _ and risk period k, the incidence �8ef is assumed to be 

constant within each interval. A multiplicative model for the 

incidence function of the form in equation (13), can be 

assumed. 

�8ef � �gJhijhkl              (13) 

or 

log ��8ef� � m8 � ne � of 

where m8  represents an effect for each subject 9 , ne 

represents an age group effect _, and of represents an effect 

for risk group b. 

The number of events c8ef is taken as the response variable. 

Thus, the associated main effects model will be: 

c8ef � pD9qqDc��8ef.8ef� 

log&�8ef' � m8 � ne � of            (14) 

where the log of the time spent in the interval ln&�8ef' is 

included as an offset. 

3. Bayesian Inference for Zero-Truncated 

Poisson Count Data 

Bayesian approach considers prior information on the 

distribution of parameters, together with the likelihood of the 

observed data to construct posterior distribution of relevant 

quantities, for inference about the unknown parameters as 

well as other features of interest like data, or a combination 
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of parameters [12]. The challenge in Bayesian statistics is 

choosing appropriate priors for a parameter. For convenience, 

conjugate priors are chosen to ensure that the resulting 

posterior distribution is in the same distributional family as 

the prior [13]. This may not be the case in many problems 

involving Bayesian analysis, especially when there are 

several parameters involved, for instance, a ZTP model. As a 

result, deriving the joint posterior distribution using standard 

densities may be challenging. However, simulation methods 

offer feasible strategies in such cases. For instance, in the 

absence of prior information on the parameter � (equation. 

2), using the uniform prior for � will be appropriate as it is 

dominated by the likelihood. This, however, results in 

estimates that are similar to the results of frequentist 

approach [12]. 

3.1. Bayesian ZTP Model Without Covariates 

For the parameter � in equation (2), as a random variable, 

the gamma distribution is a natural conjugate of its prior 

distribution, which is given as 

s��|t, C� = [u
vw �w����[w, t, C, � > 0       (15) 

That is; 

s��|t, C� ∝ ������[�             (16) 

Applying the Bayes theorem, the posterior distribution of 

�  from the likelihood function in (10) and the prior 

distribution function in (16) results to the distribution (17) 

s��|�� = ℒ���?��|w,[�
y ℒ���?��|w,[�z�{

|
           (17) 

This gives rise to a non-standard density shown by equation 

(18). 

s��|�� ∝ ℒ���s��|t, C� 

∝ �G
}��G�

�1 − ����G ∗ ������[� 

∝ �L	��u�a
���L���
&��
��'L               (18) 

3.2. Bayesian ZTP Model with Covariates 

To assess the relationship between the response variable 

and the predictor variables, regression type models are used. 

In equation (9), covariates are related to �  through a 

log-linear model as illustrated in equation (14). The likelihood 

function for a random sample 

� = ���, �=, �F, … . . �G�~��p��8ef = exp�<6C�� , for 

9 = 1,2. . . c, _ = 1,2, . . . 4, b = 1,2, . . . E where C6 =
�C7, C�, … C?� represents the unknown regression parameters 

given s + 1  independent variables. This can therefore be 

re-parameterized as 

ℒ�C|�� = ∏ VWX&YZ['	J
���&�Z�'


!U��
���&�Z�'\LG82� = VWX&YZ['K	J
�L���� ��Z��

�∏ 
J!����
���&�Z�'�L                        (19) 

The prior is now given as s�C�~,�N�C, Σ�, that is; 

s�C� = �2���a
(���.Σ��a

( exp �− �
= {C − C7}6Σ��{C − C7}�                       (20) 

hence, 

s�C� ∝ exp �− �
= {C − C7}6Σ��{C − C7}�                               (21) 

Once again applying the Bayes theorem, the posterior distribution of � from the likelihood function in (19) and the prior 

distribution function in (20) can now be shown to be 

s��|�� ∝ ℒ���s�C� ∝ VWX&YZ['K	J
�L&���&�Z�''

U��
� ���&�Z�'\L ∗ exp �− �
= {C − C7}6���{C − C7}�             (22) 

4. Sampling Technique 

Given the challenges in evaluating the posterior distribution 

in equations (18) and (22) analytically, simulation-based 

Markov Chain Monte Carlo (MCMC) techniques are used to 

draw independent samples from the target distribution. The 

ability to sample from the posterior distribution is therefore 

essential as it permits Monte Carlo estimation of all posterior 

quantities of interest. To achieve this, Gibbs sampler, also 

known as alternating conditional sampling is used [12, 14]. 

Gibbs sampling is the second mechanism - after 

Metropolis-Hastings (M-H) algorithm - that allows one to 

sample from the posterior distribution whenever direct 

approach is not possible. Basically, the idea is to split the 

multidimensional parameter vector � into � different blocks, 

� = �e … . �z  then sample from each block separately, 

conditioning on the most recent values of the remaining 

blocks [12]. Sampling of each block is randomly changed at 

each iteration. Full conditionals are used for construction of 

the Markov chain moves. This, eventually ensures that no 

rejection is experienced at any of the sampling steps. 

Given the vector containing all parameters, � =
��e … . . �z�′ the Markovian updating scheme proceeds as 
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follows; 

Set . � 0, and choose an arbitrary initial value of �7 =
��e7, … … … . . �z7� 

Generate each component of � as follows 

Draw ��
�eh��

from the full conditional 

s���|�=
e, �F

e … . . �z
e) 

Draw �=
(eh�)

from the full conditional 

s(�=|��
e, �F

e … . . �z
e) 

…………. 

…………. 

.…………. 

Draw ��
(eh�)

from the full conditional 

s(�z|��
e, �=

e … . . �z��
e ) 

This completes one iteration of the Gibbs sampler, thereby 

producing one draw �(eh�). 

Set _ = _ + 1. If j < N, the desired sample size, then return 

to step (2), else stop. 

5. Sample Data Set, Exposure and 

Outcome of Interest 

The data set used in this study consists of children aged 

between 12 and 24 months who had a single exposure to 

Measles, Mumps and Rubella (MMR) Vaccine. More details 

on the data set is provided in section 6.2. The outcome of 

interest is viral meningitis. The following is a brief summary 

of the exposure and outcome of interest in the study. 

5.1. Measles, Mumps and Rubella Diseases 

Measles is a contagious disease caused by a single-stranded, 

negative-sense nonsegmented Ribonucleic Acid (RNA) virus 

of the genus Morbillovirus [15]. Measles is an airborne 

disease that easily spreads through contact with saliva or nasal 

secretions, cough or sneezes of an infected individual [15]. 

Ninety percent (90%) of individuals who are not yet immune 

to the disease and are living with infected persons eventually 

catch the disease. The incubation period of the disease is 

10-14 days (range 7-23 days). However, studies have shown 

that the virus easily becomes inactive under extreme pH, heat 

or sunlight [16]. Serious complications of the disease includes 

amongst others, pneumonia and death. Although recognized 

as a disease of many years, studies have shown that with the 

introduction of the measles vaccine [17], the burden of the 

disease has been substantially reduced [18]. Moreover, almost 

all children vaccinated between 12 and 15 months usually 

develop the requisite antibodies [16]. 

Like measles, mumps is an acute viral disease caused by an 

enveloped, negative sense RNA virus of the genus 

Rubulavirus [19]. The disease is transmitted via direct contact 

with respiratory secretions, droplets nuclei or fomites that are 

transferred from the nose to mouth. Children under 5 years 

more commonly manifest symptoms of lower respiratory 

disease, while adults mostly experience asymptomatic 

infections [16]. World over, since the introduction of the 

mumps vaccine, the incidence of mumps infections witnessed 

a reduction to nearly 1% of the population per year by 1994 

[17]. The reduction continues to be witnessed to date. 

Rubella (German measles) on the other hand, is caused by 

an enveloped, positive-sense RNA togavirus of the genus 

Rubivirus [20]. The disease mainly spreads through contact 

with infectious respiratory secretions. If one is affected by the 

disease during pregnancy, then this may lead to congenital 

rubella infection in neonates [21]. In the early 1700s, the 

disease was considered a disease of children and young adults. 

Currently, more than 100,000 cases world wide of infant 

rubella syndrome are witnessed yearly. Once infected by 

Rubella, one eventually becomes immune to the disease. 

5.2. Measles, Mumps, and Rubella – Vaccine and Some of 

the Side-effects 

The MMR vaccine is a safe and an effective vaccine used in 

preventing MMR diseases [17]. The vaccine is usually a 

mixture of live attenuated viruses of the three diseases. The 

first dose of the MMR vaccine injection is usually given to 

children at the ages 9 to 15 months. The second dose usually 

comes between 15 months to 6 years but with a gap of at least 

4 weeks between two doses. Studies have indicated that 2-5% 

of the children immunized with the first dose, fail to develop 

immunity to measles [22]. Hence, the second dose helps to 

produce this immunity that may have been missed in the first 

dose. A third dose may be recommended for groups of persons 

identified by public health authorities, especially during an 

outbreak [23, 24]. Like any other vaccine, some of the side 

effects that have been witnessed with MMR vaccine include; 

sore throat, fever and mild-rash. Previous studies have 

associated viral meningitis with exposure to MMR vaccines 

containing the Urabe strain of mumps [7, 25-27]. Moreover, 

research has also shown that children below 7 years old, have 

increased risk of febrile seizures 6 to 14 days after MMR 

vaccination. The vaccine has also been associated with 

increased incidence of ITP [28], although this is said to resolve 

after a period of seven days [28] or six months for acute 

conditions. 

5.3. Viral Meningitis 

Prior to the introduction of MMR vaccine, mumps virus 

was known as the main cause of viral (or aseptic) meningitis. 

Meningitis is an inflammation of the lining of the brain and the 

spinal cord [29]. It is mainly caused by a viral, bacterial or 

fungal infection. Viral meningitis is a viral disease that can 

attack people of all ages [30]. However, children below 5 

years and individuals with weak immune systems are usually 

at a higher risk of contracting the disease. Despite being the 

most common form of meningitis, viral meningitis is less 

severe as compared to bacterial meningitis. The disease is 
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more likely to develop to severe illness when one is less than 1 

year old or has a very weak immune system [29]. Apart from 

mumps virus, some of the viruses that can cause viral 

meningitis include; Non-polio enteroviruses, Measles virus, 

Influenza virus, West Nile virus and Lymphocytic 

choriomeningitis virus [29]. Individuals with mild cases of 

viral meningitis usually recover fully within 7 to 10 days 

without any treatment. To prevent viral meningitis, one can be 

vaccinated against some of the diseases that lead to meningitis 

such as measles, mumps, chickenpox, and influenza. MMR 

vaccine is usually administered to children for this purpose. 

The work presented here, extends the analysis that has been 

carried out in the previous studies [5], by considering in 

addition, a zero-truncated Bayesian case-series approach to 

investigate the association between MMR vaccine with viral 

meningitis hospital admission [29]. Empirical analysis is 

based on hospital data from Oxford, initially analyzed by 

Whitaker, Paddy Farrington, Spiessens and Musonda [5] 

using the frequentist SCCS framework. 

6. Simulation Study: Design and Analysis 

For the simulation process, data was generated where the 

true population value of the relative risk was assumed to be 

known. Bayesian Self-Controlled Case-Series (BSCCS) 

model was then used to analyze the simulated data and 

compare the value with the initially assumed population 

parameter value. This, helped in evaluating the performance 

of the proposed model. The simulation set-up mirrored what 

commonly happens with studies involving adverse drug 

events, such as vaccines. The same model was later fitted to 

the real data sets of MMR vaccine, with the ADE being viral 

meningitis [5]. 

6.1. Simulation Setting 

The Oxford MMR vaccine data set described by Whitaker, 

Paddy Farrington, Spiessens and Musonda [5] on MMR 

vaccine, was used to set-up the simulation study. This, 

followed the following procedure. First, an observation period 

was declared as between 366 and 730 days after the birth of 

the child. As per MMR vaccination guidelines [17], this is the 

period over which a child is expected to receive the first dose 

of MMR vaccine. Three population relative risk values were 

assumed as 2.5, 5.0 and 12.04. The relative risk value 12.04 is 

similar to the results that have previously been presented for 

the MMR data set using a frequentist approach [5]. Three 

samples sizes of 10, 20 or 50 individuals were used to generate 

data for each of the population risk values. Time varying 

factors generated were outcome (event) date and the exposure 

date. Every child included in the study had an outcome event 

and must have also been exposed. An event date was assumed 

to occur at any time within the observation period. Since the 

start and end of observation period was fixed for this study, 

only the exposure (vaccination) and event dates were 

generated as follows. To generate the exposure date, a uniform 

distribution was assumed, with parameters, runif (n, 366, 730), 

with c being the sample size. Similarly, the event date was 

also assumed to follow a uniform distribution within the 

observation period, but taking into account, the assumed 

population relative risk. All n children had an exposure and 

just one outcome event as per the study design (Figure 1). This 

simulation approach is similar to the approach used by [31]. 

6.1.1. Overview of the Simulation Setting 

Figure 2 gives a summary of the data simulation and 

analysis given the different sample sizes and for different 

population values assumed. First, set a seed, sample size and 

established the parameters required for the model. This was 

followed by generation of the exposure and outcome points. 

Finally, data management and analysis was carried out. 

 

Figure 2. Summary of data generation and analysis for the simulation study. 

6.1.2. Sample of Simulated Dataset 

To simulate a sample data set, a population relative risk of 

12.04 was assumed, sample size of 10 children, an observation 

period beginning 365 to 730 days after birth of the child. The 

MMR vaccine was assumed to be administered any time 

within the observation period and an event (viral meningitis) 

occurring anytime during the observation period, Table 1 

displays a sample data set simulated, and used in this paper. 

There are two columns pre-risk and risk-end, that were 

included in the table after the data management process as 

detailed in section 6.1.3. To assess the performance of the 

proposed model, other data sets were simulated with the 

following combinations; sample sizes 10, 20 and 50, assumed 

population risk of 12.04, 5 and 2.5. 
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Table 1. Simulated MMR vaccine data. 

child pre-start ex.day pre-risk risk-end event.day end.day 

1 365 460 474 481 500 730 

2 365 500 514 521 520 730 

3 365 707 721 730 637 730 

4 365 435 449 470 450 730 

5 365 398 412 433 407 730 

6 365 704 728 730 720 730 

7 365 416 430 451 430 730 

8 365 700 714 730 729 730 

9 365 592 592 613 565 730 

10 365 432 432 453 431 730 

 

6.1.3. Management of Simulated Data Sets 

Ten individuals with ten outcomes were simulated 

following the procedure illustrated in section 6.1 as shown in 

Table 1. Variables included in the table are; 

1. child - identifier for each child selected in the study 

2. pre-start - age (days) just a day before the start of 

observation period 

3. ex.day - age (days) when the child was exposed (received 

vaccination) 

4. pre-risk – age (days) just before the beginning of the risk 

period 

5. risk-end - age (days) last day of the risk period 

6. event.day - age (days) that the outcome event was 

recorded 

7. end.day - age (days) indicating the last day of the 

observation period 

Since these children were followed for the same duration 

and same calendar period, the pre-start and end.day was the 

same for all ten of them, although this is not always a 

requirement. As highlighted (bold), child 2, 4, 7 and 8 had the 

event.day recorded during the risk period, while child 3, 6, 9 

and 10 had the event.day coming before they were vaccinated. 

Given that the risk of viral meningitis varies with age, like the 

case of [5], only two age groups with a cut-point at 547 days 

(six months into the follow-up period) were considered. The 

pre-start and pre-risk data points are useful for the purpose of 

programing at the analysis stage. For the Bayesian model, 

further data preparation involved putting the data into a format 

for use in WinBUGS. This was facilitated by the �s�. 

command in R. 

6.1.4. Analysis of Simulated Data Sets 

For both frequentist and Bayesian analysis, risk periods 

were defined as periods including 14 to 35 days after exposure 

to MMR vaccine, which reflects on the period it takes the 

virus to replicate [4, 5]. Control periods were defined as all 

periods outside the risk period but within the follow-up period. 

Covariates included in the model were age adjusted at 6 

months after the start of the observation period, which is at 1.5 

years age of the child. The incidence rate ratio (IRR) for 

exposure to MMR and the respective 95% Confidence 

(Credible) Intervals (CI) were obtained using the conditional 

Poisson regression model stratified by each case [4, 5]. This is 

done by comparing incidents during the risk and control 

periods. 

In the frequentist setting, in order to compare the results 

with those obtained by Whitaker, Paddy Farrington, Spiessens 

and Musonda [5], the analysis took up the same approach as 

[5]. The approach can also be found on their website at Open 

University [4]. 

For the Bayesian models fitted, samples of 15000 values 

were achieved after a burn-in of 1000 iterations from three 

chains. The chains were all started from dispersed initial 

points. Convergence of the MCMC to the target distribution 

was monitored via the density, trace, time series, 

autocorrelation function (acf) plots and Gelman & Rubin plots 

and statistic. Furthermore, the relationship between the MC 

error and the posterior standard deviation for the parameters of 

interest was also utilized. 

6.1.5. Prior Specification 

To incorporate the Bayesian approach, priors for the 

parameters in the model in equation (22) were specified. In the 

case of non-informative priors, a normal distribution with 

mean 0 and variance 1.0E-3 &�cD�4(0,1.0� − 3)' for the 

two parameters in the model was assumed. Similarly, a normal 

distribution was considered for the random effect  m , 

�cD�4(0, .#�) with .#�~�5#44#(1, 0.1). In the case of 

informative priors, the same distributions were assumed for 

the parameters but different mean and variances for the two 

parameters based on the information obtained from the 

literature [5, 31]. 

6.2. Application to Oxford MMR Vaccine Data 

To illustrate the modelling approach discussed in sections 3 

and 6, the MMR data set previously described by [5, 31] on 

children who received the MMR vaccine at Oxford University 

hospital was used. A brief description of the data set is 

provided as follows.  

The MMR data set consists of episodes of viral meningitis 

arising from children aged between 365 - 730 days over a 

calendar period of 1st October 1988 to 31st December 1991. 

Once identified, the cases were then linked to the vaccination 

records. This facilitated labelling of the child’s follow-up time 

as exposed or not exposed to the vaccine. No information on 

the denominator was available as it was unclear what 

population was represented, since hospital catchment area 

where cases originated was not clearly defined. Cases were 

defined as children who had experienced at least one or more 

events of interest over the observation period. For the purpose 

of this analysis, each of the 10 cases identified had 
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experienced only one episode of the outcome (viral 

meningitis). This study therefore considers a single event 

outcome as represented by Figure 1. Furthermore, Whitaker, 

Paddy Farrington, Spiessens and Musonda [5] sought to 

investigate if the Urabe strain (a particular type of live mumps 

vaccine) was associated with an increase in the risk of viral 

meningitis. The same is investigated in this study using the 

frequentist and Bayesian approach. For the analysis, data was 

initially managed and analysis carried out as described in 

section 6.1.3. 

7. Results and Discussion 

7.1. Results 

In this section, the diagnostic plots (section 7.1.1) and the 

parameter estimates (section 7.1.2) are presented. Given the 

number of models fitted, Bayesian diagnostic results are 

presented for only two of the models fitted with informative 

priors. That is, the model for simulated data with population 

relative risk assumed to be 12.04, and the model fitted on the 

Oxford data set. However, the diagnostic results for the other 

models (not presented) showed good convergence of the 

MCMC to the posterior distribution. 

7.1.1. MCMC Diagnostics 

The trace and time series plots in Figure 3 clearly show a 

good mix of the three chains considered. There is some very 

mild form of serial correlation between successive draws in 

the trace plots. Given the ACF plots in Figure 4, initially, 

autocorrelation is large at short lags but this quickly goes to 

zero. Brook-Gelman-Rubin statistic obtained was 1.05 which 

is very close to the recommended value of 1.1. This confirms 

that convergence of the MCMC has been attained, and that a 

large portion of the samples being drawn are from 

distributions that are similar to the target distribution. 

Moreover, the effective sample size seem to be appropriate. 

Also, the ratio of the MC error to the posterior standard 

deviation for the parameters presented was less than the 

recommended cut off of 5%. Similar plots were also witnessed 

with the other simulated data sets. The diagnostic plots and 

results for the MMR data set in Figure 5 and 6 also indicates a 

good mix of the three chains, and minimal serial correlation, 

hence suggesting good convergence. 

 

Figure 3. Trace and Time series plots of the parameters based on three chains for the simulated data of 10 children (IRR=12.04). 
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Figure 4. Density, Gelman & Rubin, ACF plots for the simulated data set of 10 children (IRR=12.04). 

 

Figure 5. Trace and Time series plots of the parameters based on three chains for the Oxford MMR data. 
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Figure 6. Density, Gelman & Rubin, ACF plots based on three chains for the Oxford MMR data. 

7.1.2. Parameter Estimates  

Simulated Data 

Table 2 presents the posterior estimates of the exposure (MMR 

vaccination - C� ) and age ( C= ) parameters of the Bayesian 

case-series model, and the classical model. The models were fitted 

on the data simulated assuming a population relative risk of 2.5. 

For the three sample sizes used (10, 20, 50), using a 

non-informative prior for Bayesian model, exposure to MMR 

vaccine was only associated with an increased risk of viral 

meningitis between 14-35 days post-vaccination only for the 

sample of 50 children. These results were true for both Bayesian 

IRR 95% CI 2.878 (1.261 - 5.995) and frequentist 3.74 (1.73 - 

8.05). However, the Bayesian model had a smaller interval. 

Similar pattern of results are also seen when an informative prior 

was used for the Bayesian model. Age seem to be giving similar 

and consistent results across all the models presented in Table 2. In 

Table 3, the population relative risk assumed for simulating the 

data was 5.0. Significant associations are observed for samples of 

10 and 50 but not for 20 with an uninformative prior. The same 

trend of results is also seen when informative priors are used. 

Compared to the frequentist model, similar pattern of results are 

witnessed. However, the frequentist estimates are far much higher 

than the Bayesian estimates in absolute terms. This shows a much 

higher association of viral meningitis with exposure to MMR 

vaccination in the 14-35 days post vaccination. Moreover, the 

Bayesian intervals are again seen to be smaller. For the final three 

simulated data sets of size 10, 20 and 50, the population relative 

risk was assumed to be 12.04 and the results of the fitted models 

are presented in Table 4. Results in this table show that the 

frequentist method seem to give lower values in absolute terms as 

compared to the Bayesian models both with informative and 

non-informative prior. However, the results are quite similar and 

the Bayesian model seem to give again smaller intervals. In all the 

three models fitted for various sample sizes, exposure to MMR 

vaccine was associated with a higher risk of viral meningitis within 

14-35 days post vaccination. Age again is seen not to be associated 

with the outcome event, although it appears that increase in age is 

associated with lower risk of viral meningitis. 

Application to the Oxford MMR data 

Finally, Table 5 presents the result of the analysis carried out 

with the Oxford MMR vaccine data set. The table displays results 

of the proposed Bayesian model and the frequentist model as 

previously fitted by [5]. From the model diagnostic plots (Figures 

5 and 6), the plots shows convergence of the underlying MCMC 

to stationarity. Results obtained from the frequentist model 

shows an increased risk of the outcome viral meningitis within 

between 14-35 days post vaccination with IRR 95% CI 12.037 

(3.002 - 48.259). For the Bayesian model, similar results were 

observed for the outcome viral meningitis given exposure to 

MMR vaccine, but the magnitude to the risk is reduced and also 

with a smaller credible interval, IRR 95% 7.941 (2.104 - 30.908). 

The estimates were improved further when a more informative 
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prior was used with a further shorter credible band of IRR 95% 

CI 8.971 (2.869 - 27.994) being reported. Increase in age is 

significantly associated with reduced risk of meningitis in the 

BSCCS model IRR 0.177 (0.044-0.660). 

Table 2. Posterior estimates of exposure and age for the age-adjusted Bayesian case-series model: Assumed IRR=2.5. 

Parameter size mean sd 2.5% 97.5% MC Error IRR (95% CI) Freq. IRR (95% CI) 

Non-Inf. prior         

β1† 10 1.148 0.890 -0.813 2.684 0.006 3.152 (0.444 - 14.644) 4.46 (0.91 - 21.74) 

 20 0.193 0.841 -1.715 1.590 0.006 1.212 (0.180 - 4.904) 1.96 (0.45 - 8.57) 

 50 1.057 0.396 0.232 1.791 0.003 2.878 (1.261 - 5.995) 3.74 (1.73 - 8.05) 

β2†† 10 -0.067 0.628 -1.298 1.172 0.007 0.935 (0.273 - 3.228) 1.36 (0.38 - 4.93) 

 20 -0.296 0.431 -1.154 0.540 0.004 0.744 (0.315 - 1.716) 1.03 (0.43 - 2.50) 

 50 0.097 0.272 -0.431 0.641 0.003 1.102 (0.650 - 1.898) 1.56 (0.88 - 2.75) 

Inf. prior         

β1† 10 1.310 0.654 -0.044 2.536 0.005 3.706 (0.957 - 12.629)  

 20 0.407 0.636 -0.939 1.544 0.004 1.502 (0.391 - 4.683)  

 50 1.077 0.381 0.292 1.785 0.003 2.936 (1.339 - 5.960)  

β2†† 10 -0.001 0.562 -1.086 1.116 0.006 0.999 (0.338 - 3.053)  

 20 -0.260 0.418 -1.094 0.558 0.004 0.771 (0.335 -1.747)  

 50 0.104 0.269 -0.423 0.640 0.003 1.109 (0.655 - 1.896)  

†MMR vaccination ††Age group 

Table 3. Posterior estimates of exposure and age for the age-adjusted Bayesian case-series model: Assumed IRR=5.0. 

Parameter size mean sd 2.5% 97.5% MC Error IRR (95% CI) Freq. IRR (95% CI) 

Non-Inf. prior         

β1† 10 2.198 0.825 0.513 3.799 0.007 9.007 (1.670 - 44.657) 11.34 (2.41 - 53.18) 

 20 -0.988 1.309 -4.120 0.988 0.008 0.372 (0.016 - 2.685) 0.79 (0.11 - 5.97) 

 50 1.317 0.360 0.577 1.990 0.003 3.732 (1.781 - 7.316) 4.76 (2.36 - 9.61) 

β2†† 10 -1.571 0.790 -3.274 -0.161 0.007 0.208 (0.038 - 0.851) 0.30 (0.07 - 1.36) 

 20 -1.162 0.494 -2.192 -0.240 0.004 0.313 (0.112 - 0.786) 0.42 (0.16 - 1.10) 

 50 -0.257 0.275 -0.800 0.288 0.003 0.773 (0.449 - 1.334) 1.04 (0.59 - 1.83) 

Inf. prior         

β1† 10 2.243 0.638 0.963 3.481 0.005 9.422 (2.620 - 32.492)  

 20 -0.990 1.352 -4.129 0.987 0.008 0.371 (0.016 - 2.682)  

 50 1.328 0.350 0.610 1.985 0.002 3.773 (1.840 - 7.279)  

β2†† 10 -1.423 0.624 -2.701 -0.250 0.005 0.241 (0.067 - 0.779)  

 20 -1.163 0.496 -2.192 -0.240 0.004 0.313 (0.112 - 0.787)  

 50 -0.251 0.271 -0.784 0.286 0.003 0.778 (0.457 - 1.331)  

†MMR vaccination ††Age group 

Table 4. Posterior estimates of exposure and age for the age-adjusted Bayesian case-series model: Assumed IRR=12.04. 

Parameter size mean sd 2.5% 97.5% MC Error IRR (95% CI) Freq. IRR (95% CI) 

Non-Inf. prior         

β1† 10 2.191 0.679 0.799 3.467 0.008 8.944 (2.223 - 32.040) 7.88 (1.94 - 31.95) 

 20 1.709 0.510 0.656 2.653 0.004 5.523 (1.926 - 14.197) 7.56 (2.85 - 20.06) 

 50 1.764 0.319 1.117 2.371 0.002 5.836 (3.056 - 10.708) 7.40 (3.94 - 13.90) 

β2†† 10 -0.604 0.697 -2.036 0.722 0.009 0.547 (0.131 - 2.059) 1.28 (0.34 - 4.79) 

 20 -0.347 0.454 -1.261 0.541 0.004 0.707 (0.283 - 1.718) 0.99 (0.39 - 2.49) 

 50 -0.469 0.283 -1.032 0.081 0.003 0.626 (0.356 - 1.084) 0.83 (0.46 - 1.47) 

Inf. prior         

β1† 10 2.177 0.578 1.011 3.279 0.005 8.820 (2.748 - 26.549)  

 20 1.747 0.470 0.779 2.624 0.003 5.737 (2.180 - 13.791)  

 50 1.771 0.314 1.127 2.368 0.002 5.877 (3.086 - 10.676)  

β2†† 10 -0.390 0.581 -1.559 0.726 0.005 0.677 (0.210 - 2.067)  

 20 -0.314 0.435 -1.184 0.535 0.004 0.730 (0.306 - 1.708)  

 50 -0.462 0.280 -1.018 0.081 0.003 0.630 (0.361 - 1.084)  

†MMR vaccination ††Age group 

Table 5. Bayesian Posterior estimates of the risk of hospital admission for aseptic meningitis from MMR vaccine using the Age-adjusted Bayesian case-series 

model - (30000 Simulations after 1000 burn-ins with three chains). 

Parameter size mean sd 2.5% 97.5% MC Error IRR (95% CI) Freq. IRR (95% CI) 

Non-Inf. prior         

β1† 10 2.072 0.684 0.7436 3.431 0.0098 7.941 (2.104 - 30.908) 12.037 (3.002 - 48.259) 

β2†† 10 -2.365 1.352 0.0126 -5.477 -0.2057 0.094 (0.004 - 0.814) 0.225 (0.251 - 2.016) 

Inf. prior         

β1† 10 2.194 0.577 1.054 3.332 0.0060 8.971 (2.869 - 27.994)  
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Parameter size mean sd 2.5% 97.5% MC Error IRR (95% CI) Freq. IRR (95% CI) 

β2†† 10 -1.723 0.698 -3.134 -0.4157 0.0049 0.177 (0.044 - 0.660)  

†MMR vaccination ††Age group 

 

7.2. Discussion 

In this study, the BSCCS model has been used to obtain 

posterior estimates of the model parameters under different 

conditions for viral meningitis as the outcome of interest. The 

risk of viral meningitis with exposure to MMR vaccine has been 

well defined in previous research [26, 32, 33]. The posterior 

estimates of the parameters obtained in this study demonstrates 

similar trend in risk, with exposure to MMR vaccine. These 

results indicate that the risk of viral meningitis increased up to 

nine-fold between 14 to 35 days after receiving the MMR 

vaccine. This study thus supports the results that have been 

previously presented by studies that have looked at the risk of 

meningitis in the second year of life, using the same data set or 

other data sets with different approaches [5, 31, 34, 35]. Similar 

results have also been obtained using the cross-over design, 

especially the Urabe strain, with risk being elevated from three to 

six weeks after vaccination [36]. However, this study further 

presents an improvement in terms of the point and the interval 

estimates. This is an addition to the methods available for use in 

vaccine safety surveillance. For simplicity, this study has only 

considered one exposure in the entire follow-up period. Further 

research is looking at using the model when an individual has 

more than one exposure period in the entire follow-up. Also, the 

choice of risk period has been guided by previous studies in order 

to enable comparison with results from previous studies [4, 5, 31]. 

Since the exact risk period is unknown, using more than one risk 

period, including time before exposure, would enable one to deal 

further with some of the very stringent assumptions of the SCCS 

model [5]. One of the advantages of the BSCCS is that even with 

small sample sizes, the SCCS method has been proved to be 

sufficient [37]. This is enhanced by the fact that Bayesian 

methods work well even with small sample sizes. Missing data 

can easily be handled in the analysis making the method to be 

more robust in obtaining the risk. 

Despite these strengths of the method proposed, there was 

one case where results of the Bayesian model were higher than 

the results obtained by the frequentist approach. One of the 

possibilities is the presence of residual confounding. Age is 

adjusted for at the point of analysis but not incorporated at the 

point of data simulation. For actual data, this may not be an 

issue. Thus, the approach and results obtained in this study is 

currently being extended to consider other possible 

combinations in the follow-up period or pre-exposure periods. 

This will help in determining the possible bias due to incorrect 

specification of the risk periods and adjustment of the 

covariates under the BSCCS approach [38]. 

8. Conclusion 

A Bayesian estimation approach for evaluating the risk of 

adverse events given transient exposure when the outcome 

event is left-truncated, has been proposed and evaluated. 

Simulation studies were used to illustrate the method, and an 

application to the real data has been demonstrated with results 

compared to those previously obtained using the frequentist 

approach. The method demonstrated a good performance 

compared to the frequentist approach that was previously used 

for the MMR data set. The model is applicable to a wide 

variety of cases where an exposure and outcome event occurs 

within an individual. Further work that is ongoing in this area 

involves modelling the risk of an outcome given multiple 

exposures and outcomes within an individual over the 

observation period, with different observation periods. One 

example is when an individual is on medication of more than 

one drug concomitantly, or a combination of drugs. Moreover, 

the ongoing work is also considering sensitivity analysis on 

the stringent assumptions of the case series model. These 

results, extend the advantage offered by the case-series 

method over other methods of analysis. 
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