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Abstract: In this paper we apply sequential Bayesian approach to compare the outcome of the presidential polls in Kenya. 

We use the previous polls to form the prior for the current polls. Even though several authors have used non-Bayesian models 

for countrywide polling data to forecast the outcome of the presidential race we propose a Bayesian approach in this case. As 

such the question of how to treat the previous and current pre-election polls data is inevitable. Some researchers consider only 

the most recent poll others Combine all previous polls up the present time and treat it as a single sample, weighting only by 

sample size, while others Combine all previous polls but adjust the sample size according to a weight function depending on 

the day the poll is taken. In this paper we apply a sequential Bayesian model (as an advancement of the latter which is time 

sensitive) where the previous measure is used as the prior of the current measure. Our concern is to model the proportion of 

votes between two candidates, incumbent and challenger. A Bayesian model of our binomial variable of interest will be applied 

sequentially to the Kenya opinion poll data sets in order to arrive at a posterior probability statement. The simulation results 

show that the eventual winner must lead consistently and constantly in at least 60% of the opinions polls. In addition, a 

candidate demonstrating high variability is more likely to lose the polls. 
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1. Introduction 

1.1. Background 

The problem of understanding and predicting election 

outcomes has long been part of political science research. 

However, lack of pre-election poll data especially in 

developing countries is one of the main challenges associated 

with forecasting election outcomes [1-8]. Nevertheless, in 

developed countries opinion polls are now easily accessible 

through online polling. The online polling is overhauling 

traditional phone polls, according to [9] analysis of the 2016 

US presidential election campaign. 

The seminal work of inflation [10, 11], spurred numerous 

studies which examined the evolution of voting intentions, as 

measured by opinion polls, and in particular the relationship 

between political popularity, ethnicity, youth factor and 

economic variables such as inflation, gross domestic product, 

personal producer index and unemployment. See for example 

[12-14]. An empirical issue of particular relevance to the 

present study is the degree of persistence in political 

popularity. Building on the rational expectations’ version of 

the permanent income hypothesis due to [11] argued that the 

effect of news about the economy on voting intentions would 

be permanent. The practical implication of their model is that 

the time series of opinion data should behave like a random 

walk, with the autoregressive-moving average (ARMA) 

representation of the time series containing an autoregressive 

root of unity. Such processes are nonstationary, and exhibit 

no mean-reversion tendencies. 

Further analysis by [15] rejected the unit root hypothesis in 

favour of stationary ARMA models, although with 

autoregressive coefficients close to unity. Such models would 

imply that the effect of news on voting intentions, although it 

could be quite persistent in practice, is in principle transitory. 

As a consequence of aggregating heterogeneous poll 

responses under certain assumptions about the evolution of 

individual opinion, Byers [16] concluded that the time series 
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of poll data should exhibit long memory characteristics. In an 

analysis of the monthly Gallup data on party support in the 

UK, Byers [16] confirmed that the series are long memory, 

and virtually pure ‘fractional noise’ processes. 

However, even though this time series approach is 

appealing it requires data observed over a long period of time 

which is a limitation to us. The alternative approach is the 

frequentist regression modelling which does argument/ 

update opinion polls as series of observations. However, 

holds our model to be updated once the data set is updated 

sequentially from time to time. In other words our expression 

must include the past information which serves as a prior 

information. It follows therefore that a Sequential Bayesian 

Analysis is the best candidate for this type of model. 

Basically, a simple model of political popularity, as 

recorded by opinion polls of voting intentions, is proposed; in 

particular, the Sequential Bayesian Analysis. 

1.2. Motivation for Bayesian Approach 

Bayesian estimation and inference has a number of 

advantages in statistical modelling and data analysis. These 

includes:- (a) Provision of confidence intervals on parameters 

and probability values on hypotheses that are more in line 

with commonsense interpretations; (b) provision of a way of 

formalizing the process of learning from data to update 

beliefs in accord with recent notions of knowledge synthesis; 

(c) assessing the probabilities on both nested and non-nested 

models (unlike classical approaches) and; (4) using modern 

sampling methods, is readily adapted to complex random 

effects models that are more difficult to fit using classical 

methods [17]. 

Unlike in the past when statistical analysis based on the 

Bayes theorem was often daunting due to the numerical 

integrations needed. Recently developed computer-intensive 

sampling methods of estimation have revolutionised the 

application of Bayesian methods, and such methods now 

offer a comprehensive approach to complex model 

estimation, for instance in hierarchical models with nested 

random effects [18-21]. They provide a way of improving 

estimation in sparse datasets by borrowing strength [22] and 

allow finite sample inferences without appeal to large sample 

arguments as in maximum likelihood and other classical 

methods. Sampling-based methods of Bayesian estimation 

provide a full density profile of a parameter so that any clear 

non-normality is apparent, and allow a range of hypotheses 

about the parameters to be simply assessed using the 

collection of parameter samples from the posterior. 

Bayesian methods may also improve on classical 

estimators in terms of the precision of estimates. This 

happens because specifying the prior brings extra 

information or data based on accumulated knowledge, and 

the posterior estimate in being based on the combined 

sources of information (prior and likelihood) therefore has 

greater precision. Indeed a prior can often be expressed in 

terms of an equivalent ‘sample size’. 

The relative influence of the prior and data on updated 

beliefs depends on how much weight is given to the prior 

(how ‘informative’ the prior is) and the strength of the data. 

For example, a large data sample would tend to have a 

predominant influence on updated beliefs unless the prior 

was informative. If the sample was small and combined with 

a prior that was informative, then the prior distribution would 

have a relatively greater influence on the updated belief:  

How to choose the prior density or information is an 

important issue in Bayesian inference, together with the 

sensitivity or robustness of the inferences to the choice of 

prior, and the possibility of conflict between prior and data 

[23-25]. 

In some situations it may be possible to base the prior 

density for θ on cumulative evidence using a formal or 

informal meta-analysis of existing studies. A range of other 

methods exist to determine or elicit subjective priors [23-27]. 

A simple technique known as the histogram method divides 

the range of θ into a set of intervals (or ‘bins’) and elicits prior 

probabilities that θ is located in each interval; from this set of 

probabilities, ( / )p Cθ  may be represented as a discrete prior 

or converted to a smooth density. Another technique uses prior 

estimates of moments along with symmetry assumptions to 

derive a normal 
2( , )N µ σ  prior density including estimates 

µ  and 
2σ  of the mean and variance. Other forms of prior can 

be re-parameterised in the form of a mean and variance (or 

precision); for example beta priors Be( , )α β  for probabilities 

can be expressed as Be (mτ, (1 − m)τ) where m is an estimate 

of the mean probability and τ is the estimated precision (degree 

of confidence in) that prior mean. 

2. Materials and Method 

2.1. Binomial Data 

Consider a binary outcome variable T defined as; 

�� = �1 if the i
th

 respondent voted for the incumbent

0 if the i
th

 respondent voted for the Challenger
 

Therefore in an opinion poll of size n where x respondents 

voted for the incumbent and n-x for the challenge, the 

random variable � = ∑ ��
���  has a binomial distribution with 

parameter (i.e. the probability that respondent i will vote for 

the incumbent) θ . The probability density function of X 

given θ is as below 

( / ) (1 ) 0,1,2,...,n x n x
xp X C x nθ θ θ −= − =  

2.2. The Sequential Binomial Model 

We can use a distribution to represent our prior knowledge 

and uncertainty regarding unknown parameter θ . An 

appropriate and a conjugate prior distribution for our unknown 

parameterθ  is a beta distribution denoted by Be( , )α β . The 

probability density function of a beta distribution is:  

1 1( )
( ) (1 )

( ) ( )

α βα βπ θ θ θ
α β

− −Γ += −
Γ Γ
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where ( )αΓ  is the gamma function applied to α  and 

0 1θ< < . The parameters α and β  can be thought of as 

prior “successes” and “failures,” respectively. 

This prior density can also be expressed using the 

proportionality sign as; 

1 1( ) (1 )α βπ θ α θ θ− −−  

The prior mean ( )E
αθ µ

α β
= =

+
 and variance 

2

2
var ( )

( ) ( 1)

αβθ σ
α β α β

= =
+ + +

 

The posterior density of θ  is a product of a prior and the 

likelihood. Implying a beta distribution with parameters 

and  x n xα β+ + − , specifically: 

( / ) ( / ) ( )

Be( , )

p X P X

x n x

θ θ π θ
α β

=
= + + −

 

1 1( / ) (1 )x n xp X α βθ α θ θ+ − + − −−  

We shall denote this posterior by (1)( / )p Xθ  

Now, if we observe another sample (2)X then the posterior 

becomes 

(2) (2) (1) 1 2 1 2 1 2( / ) ( / ) ( / ) Be( , )p X P X x p X x x n n x xθ θ θ α β= = = + + + + − −  

Recursively, for the k
th

 sample we have the posterior for ( )kX as 

( ) ( ) ( 1)

1 1 1

( / ) ( / ) ( / ) Be( ,  )

k k k

k k k i i i

i i i

p X P X x p X x n xθ θ θ α β−
= = =

= = = + + −∑ ∑ ∑  

This gives a better estimate than the one obtained by just 

aggregating all the previous pre-election polls in a single 

prior. 

The choice of andα β  for our prior distribution depends 

on at least two factors: (1) the amount of information about the 

parameter θ  available prior to this poll; (2) the amount of 

stock we want to put into this prior information. Contrary to 

the view that this is a limitation of Bayesian statistics, the 

incorporation of prior information can actually be an 

advantage and provides us considerable flexibility. If we have 

little or no prior information, or we want to put very little stock 

in the information we have, we can choose values for 

andα β  that reduce the distribution to a uniform distribution. 

For instance, choosing 1 and 1α β= = , we get 

0 0( / , ) (1 ) 1p θ α β α θ θ− =  which is proportional to a 

uniform distribution on the allowable interval for θ . That is, 

the prior distribution is flat, not producing greater a priori 

weight for any value of θ  over another. Thus, the prior 

distribution will have little effect on the posterior distribution. 

For this reason, this type of prior is called “noninformative.” 

On the other hand, if we have considerable prior information 

that we wish to weigh heavily relative to the current data, large 

values of andα β  are used. A little massage of the formula 

for the variance reveals that, as andα β  increase, the 

variance decreases, which makes sense, because adding 

additional prior information ought to reduce our uncertainty 

about the parameter. Thus, adding more prior successes and 

failures (increasing both parameters) reduces prior uncertainty 

about the parameter of interest (θ ). 

Lastly, if we have considerable prior information that we 

do not wish to weigh heavily in the posterior distribution, 

moderate values of andα β  are chosen that yield a mean 

that is consistent with the previous research but that also 

produce a variance around that mean that is broad. 

 

Figure 1. Various beta distributions with mean =0.5 for various choice of parameters. 
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In order to clarify these ideas, we illustrate using beta 

distributions plots with different values of andα β . All the 

three beta distributions, displayed in Figure 1, have a mean of 

0.5; but different variances as a result of having andα β  

parameters of different magnitude. The most-peaked beta 

distribution has parameters 
 � � � 100. The least-peaked 

distribution is almost flat—uniform—with parameters 


 � � � 2 . As with the binomial distribution, the beta 

distribution becomes skewed if andα β are unequal, but the 

basic idea is the same: the larger the parameters, the more 

prior information and the narrower the density 

Throughout the fall of every general election year in Kenya, 

many pollsters conduct a number of polls attempting to predict 

whether candidate A or candidate B would win the presidential 

election. One of the hotly contested general election was the 

2007 elections the battleground predominantly between the 

incumbent (here demoted as K) and the challenger (here 

denoted as R). The polls leading up to the election showed the 

two candidates claiming proportions of the votes that were 

statistically indistinguishable in the nation.  

Figure 2 shows the prior, likelihood, and posterior 

densities. The likelihood function has been normalized as a 

proper density for θ , rather than X. Clearly the posterior 

density is a compromise between the prior distribution and 

the likelihood (current data). The posterior is between the 

prior distribution and the likelihood, but closer to the prior. 

The reason the posterior is closer to the prior is that the prior 

contained more information than the likelihood: There were 

1,950 previously sampled persons and only 1,067 in the 

current sample. 

 

Figure 2. Prior, likelihood, and posterior for 2007 polling data for Kenya. 

With the posterior density determined, we now can 

summarize our updated knowledge about θ the proportion of 

voters who will vote for incumbent, and answer our question 

of interest: What is the probability that the incumbent would 

win? A number of summaries are possible, given that we 

have a posterior distribution with a known form (a beta 

density). First, the mean of incumbent K is 1498/(1498 + 

1519) = 0.497, and the median is also 0.497. The variance of 

this beta distribution is .00008283 (standard 

deviation=.0091). If we assume that this beta distribution is 

approximately normal, then the approximate a 95% 

confidence interval of K is [0.479-0.515].  

3. Simulation Results 

In order to understand the concept of sequential Bayesian 

analysis, we will consider a case of two candidates 

(incumbent denoted by K and challenger denoted by R) with 

four different scenarios forming our simulation set ups. 

Scenario one 

To begin with, let us consider the case where the two 

candidates have roughly equal popularity proportions but 

with some observable fluctuations. The first 100 iterations 

yielded results shown in Figure 3. Even after 20 iterations, 

the chain tends to the true value. 

 

Figure 3. History plot for the first 100 iterations to demonstrate initiation of 

the chain. 
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Figure 4. Trace plot after burn-in of 10,000 iterations predicting the success 

rate of the incumbent. 

From the graph it’s clear that the election will be tightly 

contested for instance the 2007 presidential elections in 

Kenya between K (incumbent) and R (challenger). 

Scenario two 

We now consider the case where the popularity of one 

candidate (say the challenger) is increasing implying that the 

popularity of the other is decreasing over time. As shown in 

Figure certainly the incumbent will win the presidential race 

as the posterior probability is well above 0.5.  

 

Figure 5. Trace plot after 10,000 burn-in where the probability of the 

incumbent is assumed over 0.5. 

Scenario three 

Thirdly, we consider the case where the popularity of one 

candidate (say the challenger) being constantly slightly higher 

but with misclassification in favour of the other (say the 

Incumbent). The misclassification for this scenario is as follows 

1) No misclassification 

2) Low misclassification: p01=.05 p10=.10 

3) Misclassification: p01=.05 p10=.15 

4) Misclassification: p01=.10 p10=.10 

 

Figure 6. History plot showing the effect of misclassification (panels a-d). 
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The simulations results show that without the 

misclassification, panel (a), the challenger will win the 

election with a good margin. However, with misclassification, 

panels (b) to (d), the challenger will narrowly lose the 

election as his popularity eventually stabilizes around 0.491. 

4. Conclusions and Recommendations 

In this paper, we have developed the basis of the Bayesian 

approach to statistical inference. Bayesian approach handles 

various scenario in the fall projection including the aspect of 

misclassification. Further, even where data are scanty, it 

incorporates prior distribution to express the model 

uncertainty. 

In this work, we have provided a flexible way of 

comparing the two leading candidates since in most election 

there is always two candidates who lead the pack. Our 

approach, though applied to Kenyan opinion polls, can be 

applied anyway in the word. This work can be extended to 

the case of multiple candidates. 
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