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Abstract: Survival analysis is the primary statistical method of analysing time to event data. The most popular method for 

estimating the survivor function is the Cox-Proportional Hazard model. It assumes that the effect on the hazard function of a 

particular factor of interest remains unchanged throughout the observation. This is known as Proportional Hazards. Tsiatis 

assumed that the underlying hazard function is constant over distinct intervals. In the current study, no shape assumption is 

imposed other than that the hazard function is a smooth function with an arbitrary choice of a smoother. Such an approach 

involves the implementation of kernel-smoothing of the initial hazard estimate which have proved in studies to provide a trade-

off between bias and variance. The cross-validation and plug-in bandwidth selectors are considered to determine the optimal 

bandwidth, h to be used as a smoothing parameter. Consequently, the survivorship function is estimated using the Cox-

Proportional Hazards model. Proper application of the smoothing procedure is seen to improve the statistical performance of 

the resulting hazard rate estimator. No constraints are implored on the form of the underlying hazard proving to be less bias 

than Tsiatis’ method. This implies that the kernel smoothed survivorship function is more appropriate than the common 

standard techniques in survival analysis as it provides piecewise smooth estimates. Coverage probabilities of the estimate are 

then obtained which are found to be more accurate and closer to the nominal level compared to those estimated by Tsiatis. 
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1. Introduction 

Survival times are data that measure follow-up time from a 

well-defined starting point to the occurrence of a given event. 

Standard statistical techniques cannot be easily applied 

because the underlying distribution is not normal and the data 

are often censored. In survival analysis, data is called 

censored when there is a follow up time and the event has not 

yet occurred or is not known to have occurred. 

Survivorship function is defined as the probability of 

surviving at least to time t. There are various methods that 

have been proposed to estimate the survivorship function of 

any survival analysis data. One among them is the Kaplan 

Meier method proposed by Kaplan and Meier [1]. The most 

popular method for estimating the survivorship function is by 

using the Cox-Proportional Hazard model which has a 

variety of advantages. One of them is that covariates must 

not be changing over time. It is a semi-parametric model that 

makes fewer assumptions than a typical parametric method. 

A hazard function is defined as the conditional probability 

of dying at time �	having survived to that time. Though 

parametric models provide convenient ways to analyse 

lifetime data, the necessary assumptions when violated can 

lead to erroneous analysis. In estimating the hazard function 

under Cox-PH model, no assumption is made about the 

probability distribution of the hazard except for smoothing. 

Kernel smoothing specifically provides a powerful 

methodology for gaining insights into data. Effective use of 

these methods requires the choice of a smoothing parameter 

known as the bandwidth. A non-parametric smoothed 

estimate of the hazard function can be obtained by 

implementing the Nadaraya [2] estimator which proved to be 

asymptotically unbiased. 
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Breslow [3] came up with a proposal to estimate the 

underlying hazard function and assumed that the hazard rate 

is a constant between death times. This assumption was 

adopted by Tsiatis [4] and used to estimate the survivor 

function under Cox-PH model. The current study seeks to 

estimate the underlying hazard function by smoothing 

through it first. The exponential relationship between the 

smoothed hazard estimate and the survivorship function is 

implemented to obtain the parameter estimates. An 

asymptotic variance of the estimated survivorship function is 

further be derived to determine if the confidence intervals 

obtained will give accurate coverage probabilities. 

2. Some Related Works 

Regression models for survival analysis with censored data 

have been used quite extensively in the past few years. One 

very popular model is known as the Cox-Proportional Hazard 

model which is a method for investigating the effect of 

several variables upon the time a specified event takes to 

happen. Kernel based methods for the smooth, non-

parametric estimation of the hazard function have received 

considerable attention in statistical literature. The results 

obtained can be used to estimate the survivorship function. 

Rosenblatt and Murray [5] carried out a detailed analysis 

of the bias and covariance properties of a number of 

estimates of the log survival function and hazard functions. 

Estimates were also considered when one has dependence. 

The study was quite useful in studies of mortality. However, 

the actual estimator of the survivor function was not done 

and the usage of the said estimator not clearly discussed. 

For each individual in the analysis of censored death times, 

Cox [6] assumed that they were affected by one or more 

explanatory variables. He wanted to explore the 

consequences of allowing the underlying hazard to be 

arbitrary. His interests were mainly in the regression 

parameters. He determined that if the function has sensible 

properties, then the parameters would only be slightly 

affected. An adoption of the assumption that some 

smoothness in the distribution function would therefore be 

reasonable enough which the current study considers. 

A method which gives a piece-wise smooth estimate for 

the hazard function given by Cox’s model was described by 

Anderson and Senthilselvan [7]. The penalized likelihood 

estimation introduced by Goodd and Gaskins [8] was used. 

This gave a quadratic spline with discontinuities in the slope 

at death times. The hazard function and corresponding 

survival curves were estimated and proved to be less bias 

compared to rougher estimates by Kalbfleisch and Prentice 

[9]. However, the hazard function could take negative values 

of certain values in the smoothing parameter which was a 

drawback. An alternative smoothing method is therefore 

determined in the current study. 

The bandwidth selection procedure to be considered is of 

great importance. Three bandwidth selection procedures were 

compared in detail by Gijbels [10] where the bootstrap 

outperformed the plug-in and cross-validation method. This 

leaves a leeway for the comparison of cross-validation and 

plug-in which is investigated in the study. 

On coverage probabilities, Lin and Fleming [11] 

constructed confidence bands for survival curves under the 

Cox-PH model. The distribution of the normalized 

cumulative hazard estimator was approximated by a zero-

mean Gaussian process whose distribution was easily 

generated through simulation. Since the choice of the weight 

function affected the widths of the band at different time 

points, two weight functions were considered namely the 

equal-precision band by Nair [12] and Hall-Wellner band by 

Bie, Borgan and Liestol [13]. The proposed bands maintained 

their coverage probabilities near the nominal level even for 

small sample sizes with heavy censoring. 

3. Methodology 

3.1. Cox-Proportional Hazard Model 

Cox-Proportional Hazards regression model is a tool that is 

used for studying the dependency of survival time on 

predictor variables. It’s given by: 

���� = �������	
��
��
��
��
⋯
��
��� 
where ����  is the expected hazard at time � , �����  is the 

baseline hazard and represents the hazard when all of the 

predictors; ��, ��, … , �� 	 are equal to zero. A prominent 

feature of the Cox’s model is that the baseline hazard 

function is measured non-parametrically, and so unlike most 

other statistical models, the survival times are not assumed to 

follow a particular statistical distribution and the �  in ���� 
indicates that the hazard function may vary over time. 

3.2. Estimation of Cox- Proportional Hazard Model 

Parameters 

Parameter estimates in the Cox-PH model are obtained by 

maximizing the partial likelihood as opposed to the full 

likelihood itself. Assuming that �  is the number of 

individuals observed and �  is the number of failure times 

which are assumed to be distinct, the partial likelihood is 

given by: 

���� = � �
��∑ �
��� !�
"

#!�  

$��� = $%&���� = '(�#� − $%& *' �
���
 !� +,"

#!�  

Maximization is accomplished by setting the first partial 

derivatives equal to zero. It can then be solved by the 

Newton-Raphson iteration method and the matrix of second 

partial derivatives. 

3.3. Estimating the Survivorship Function 

3.3.1. A review of the Cox-PH Model Approach 

The survivorship function of the Cox-PH model is given 
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by: 

-��� = -����./01
 

where 

-���� = �234�5� 
is the baseline survival function and 

Λ���� = 7 ���8�985
�  

is the cumulative baseline hazard function. 

In the estimation of -���, �:  
is substituted for � from the 

model parameters. Estimation of Λ����  and S����  can be 

done using two different methodologies that are discussed in 

this section. One of them is that of Tsiatis which is compared 

to a proposed methodology of the current study. 

3.3.2. A Review of Tsiatis Approach 

The survival probability in Cox’s model is estimated by 

using likelihood techniques similar to Breslow [14]. 

Estimates are derived for the underlying cumulative hazard 

function and the underlying survival probability. Tsiatis 

computed the estimates for the asymptotic variance of the 

cumulative hazard function and the survival probability for a 

given set of covariates	�. 

Tsiatis uses: 

-���� = �234�5� 
where 

Λ���� = ' <#∑ ��0
� ∈>�5�?5
 

An assumption is made that the underlying hazard function 

is constant over distinct intervals. That is, let	0 < �� < ⋯ <�"
�, then 

����� = �# 
for �# < �	 ≤ 	 �#
� , C = 1,… . , � 

Under this assumption, standard likelihood techniques are 

used to estimate the survivorship function as well as its 

variance. The cumulative hazard function for an individual 

with covariates � evaluated at �#
� is: 

Λ��5
#|�� = '�	���0
�Δ�	#
	!�  

where Δ�	 = Δ�	
� − �	  denoted by Λ# .	 The maximum 

likelihood estimate of Λ# 	is equal to: 

Λ# = '�	���0
�#
	!�  

The survivorship function will therefore be given by: 

-��� = ��H − I'�	�J�0
K#
	!� L 

3.3.3. The Proposed Approach with Relaxed Tsiatis 

Assumptions 

In the current study, the interest is to determine the 

unknown parameters of the underlying hazard and 

survivorship functions. Let �� < �� < ⋯ < �M be the distinct 

time deaths and censoring, �#  be the number of deaths and 

censoring at time �#  and N#  be the number of deaths at time	�#. 
The unknown parameter �  in

 ���, �� = �������0
  
is 

estimated using the arguments of the conditional likelihood. 

To estimate Λ���� , Breslow assumed �����  is constant 

between uncensored observations and estimated the hazard 

rate between 	�#  and 	�#2�for C = 1,… , � as: 

�# = N#��# − �#2�� ∑ ��0
�� !�  

The survival function was therefore estimate by: 

-��� = O�1− N#∑ ��0
�� ∈>�

P
#!� Q.

/01
 

It is noted that ΛR���  and Breslow’s -:���  are inconsistent 

with the assumption of a continuous underlying hazard 

function. Furthermore, Breslow’s estimate can take negative 

values especially when the number in the C5S risk set is small. 

This motivates the current study to use a smooth estimate for Λ� instead to determine any significant differences. 

The hazard smoothing technique to be used is based on 

that studied by Ramlau-Hansen [15] and Tanner and Wong 

[16]. Having estimated 	� , the log likelihood function for ����� can be written as: 

$T�����U = 'VN# logT����#�U + �	[# −'��\��	 7 ���8�5�
� 98M

 !� ]M
#!�  

where [#  is the sum of the covariates of the N#  individuals 

failing at time �#  and ^#  is the vector of being censored at 

time �# . Since $T∙U  is a functional of 	����� , it cannot be 

maximized with respect to ����� , because it’s unbounded. 

Ramlau showed how to impose a smoothness constraint on 

l[·] to obtain a bounded estimate of the function �����. He 

estimated the cumulative hazard function and terminated his 

work. 

In the current study, the survivorship function is further 

estimated after smoothing is done. A kernel function is used 

to estimate the smoothed underlying hazard function which is 

given by: 

����� = 1ℎ���	'a5
�

#!� b� − ��#�ℎ��� c <#� − C + 1 

where a�∙�  is a kernel function, ℎ  is the bandwidth and 
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0 < ���� < ⋯ < ���� are distinct ordered times. 

The underlying cumulative hazard function can then be 

estimated as: 

Λ���� = 7 �����9�5
�  

and consequently the survivorship function is estimated by: 

-��� = -����./01
 

where -���� is the estimated baseline survival function. The 

survivorship function obtained is a smoothed version of the 

step function estimate by Breslow and Tsiatis. It is therefore 

consistent and desirable with the assumption of a continuous 

underlying hazard function. It also gives an estimate of the 

survival function for any time � ≤ �"  rather than just the 

observed time deaths. 

3.4. Asymptotic Variance of the Survivorship Function 

A simple application of the delta method is used to 

estimate the asymptotic variance of the survival function. 

This is given by: 

defT-���U = -����	defTΛ���U 
The asymptotic variance of the cumulative hazard function 

is first derived. The likelihood for �  individuals with 

covariates can be expressed as: 

��gh�������0
�ij�� 	��Hh−�������0
�ik# l"
#!�

�
 !�  

where 9# = 1 if individual m dies in the interval C and 9# = 0 

otherwise. k# 	 is the time spent in the C5S  
interval by 

individual m. The log likelihood would be equal to: 

� = '9# log ����� +'�n� −'�#"
#!� ∈o 	'��0
�k# 

"
#!�

"
#!�  

where 9# = ∑ 9# 	� !�  is the number of deaths in the C5S  

interval and k denotes the index set for individuals who died. 

Maximization is accomplished by setting the first partial 

derivatives equal to zero. The log-likelihood however cannot 

be maximized with respect to �����	as the smoothed function 

is restricted to the class of continuous functions which have 

piecewise continuous first derivatives. The asymptotic 

variance of Λ��� using the <- method will be equal to: 

def	TΛ���U = pn	q%rJ�:����		�R K	p 

where p  is the vector of first partial derivatives of the 

cumulative hazard function. The evaluation of these values 

yields: 

def	TΛ���U = s��0
t�	����� +	^n	def���	^ 

where 

^n = I' 9	Δ�	∑ ��0
�k	 � !�
#

	!� 	u∑ � P��0
�k	 � !�∑ ��0
�k	 � !� − �Pv , $ = 1,… , HL 

and def��� = wx�y���x�zx�z{2�
 

The asymptotic variance of the survivorship function is 

then estimated as: 

defT-���U = -����	defTΛ���U 
For a case where 	� = 0 , the variance of the survivor 

function reduces to the asymptotic variance of the classic 

Kaplan-Meier estimate. 

3.5. Coverage Probabilities 

The coverage probability for an interval estimate is the 

proportions of instances in which the sample statistic 

obtained from infinite independent and identical replications 

of the experiment is contained. They are important in that 

they can be used as a measure of accuracy done by checking 

these values against the selected confidence level if they are 

equivalent. To estimate the coverage probabilities, the 

following steps are taken: 

i. Simulate many samples of size � from the population. 

ii. Estimate the survivorship function using Cox-PH model 

while relaxing the Tsiatis assumption. 

iii. Estimate the asymptotic variance for the survivorship 

function. 

iv. Construct the point-wise confidence interval for the 

estimate as -��� ± }%�[�e� ∗ 	 T-��-����U where the constant 

is given by ^	 ��  

v. Compute the proportion of samples for which the 

survivor function parameter is contained in the confidence 

interval. The proportion is an estimate for the empirical 

coverage probability for the confidence interval. 

4. Simulation Study 

A simulation study was carried out whereby � independent 

subjects were involved in a survival study and only right 

censored data were obtained. For a subject C, �#  denotes the 

survival time of interest and q#  denotes the censoring times. 

We also assume that q#  and �#  are independent for C =1, 2, … , �.	The actual observations consist of ��# , <#� where �# = min	��# , q#�  and <# = �T�# ≤ q#U  is an indicator of the 

censoring status of �# . The following quantities are used to 

simulate the data set: 

i. Sample size: 100 

ii. Covariates: One categorical and one continuous 

covariates were generated, that is �1~�C���, 0.45�  and �2~��44, 2.915� 
ii. Hazard: Followed a Weibull distribution, ��C�0.5, 4� 
iv. Censoring: Exponential censoring times were 

generated, q~exp	�0.01� 
v. Regression parameters -0.5 and -0.6 were also used 

Simulations were replicated 1000 times for the three 

sample sizes 100, 300 and 500 respectively to determine if 
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the confidence intervals obtained from the proposed method 

provide accurate coverage probabilities after estimating the 

survival function. Comparisons are made to that of Tsiatis’ 

estimates and the choice of bandwidth selected (plug-in and 

cross-validation) for kernel smoothing are also observed. 

5. Results and Discussions 

An assessment of the Proportional Hazards assumption 

confirmed its violation. From literature, two solutions of 

dealing with the violation of the assumption are considered 

where the covariates can either be stratified or extending the 

PH model appropriately. The extension of the model could be 

viewed in the classical context of considering more covariates 

after stratification, including interactions between the 

covariates or considering a different family for the error term. 

In an even more robust way, the assumptions can be relaxed as 

in Tsiatis [17]. The covariates are therefore assumed to be zero 

and onto which the current study is built up. 

For visual comparison, the corresponding survival 

functions are given together with the estimates computed by 

Tsiatis in Figure 1. It’s evident that the Tsiatis survivor curve 

is a step-function which is common with most survivorship 

functions. The proposed curves smooth out the 

discontinuities found on Tsiatis’ curve and are consistent with 

the assumption of a continuous hazard. For a large sample 

size, the smoothed survival probabilities are higher at most 

time points. At say time � = 80, the probability of survival 

for all three curves is approximately 87% as they coincide at 

this time point. 

 

Figure 1. Tsiatis, Cross-Validation and Plug-In survivorship functions. 

This goes to show that the target point provides crucial 

information about the dataset proving that smoothing often 

considers the important peaks and leaves out white noise. 

Both the plug-in and cross-validation bandwidth selectors are 

competitive in the sense that neither can be claimed to be the 

best in estimating the survivorship function from a visual 

perspective. 

Figure 2 presents the asymptotic variance estimates of the 

survivor function. The variances in the respective techniques 

increases as time increases attributed to fewer observations as 

more subjects experience the event of interest. The variances 

also decrease as the sample size increases which is an 

indication that the asymptotic normality assumption is 

appropriate. The smoothed survivor functions variances 

record lower variances compared to those of Tsiatis’ 

estimates. Estimators with low variances are generally 

preferable hence the proposed models provide better 

estimates due to discontinuities smoothed out during 

estimation. 

 

Figure 2. Point-wise asymptotic variance estimates for the survivorship 

function. 

Simulation enabled the computation of the proportion of 

samples for which the survivor function parameter is 

contained in the confidence interval. Table 1 shows the 

coverage probabilities repeated for three sample sizes and 

90%, 95% and 99% confidence levels. It’s noted that the 

coverage remains about constant and close to their respective 

nominal levels which is good. The proposed smoothing 

techniques coverages are however seen to be more accurate 

than Tsiatis’. More accurate coverages implies narrower or 

more precise confidence intervals which is always preferable. 

No trend is observed with increase in the sample size hence 

the coverage probabilities are independent of the sample size. 

The coverage probability of 90%, 95% and 99% is only true 

when the population is normally distributed (which the 

simulated data violates) or when the sample sizes are large 

enough to invoke the Central Limit Theorem. 

Table 1. Coverage Probabilities of the Estimated Survivorship Function. 

Confidence Level n 
Coverages 

Tsiatis Plug-In Cross-Validation 

90% 100 0.889 0.903 0.911 

 300 0.892 0.890 0.902 

 500 0.894 0.889 0.898 

95% 100 0.939 0.942 0.953 

 300 0.937 0.939 0.947 

 500 0.941 0.946 0.941 

99% 100 0.979 0.980 0.981 

 300 0.980 0.983 0.987 

 500 0.976 0.982 0.986 
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6. Conclusions 

In the estimation of the survivorship function using the 

Cox-PH model, kernel smoothing is more appropriate than 

the common standard techniques in survival analysis. Kernel 

smoothing which is a non-parametric estimator method 

uncovers features in the data which parametric approaches 

such as Tsiatis’ might not reveal. For instance, the smoothed 

hazard rates provide more information such as the immediate 

risks attached to a given subject. They also eliminate white 

noise by smoothing out any discontinuities. An advantage of 

the proposed methodology is that it gives piecewise smooth 

estimates and does not have negative values. Furthermore, no 

constraints are implored on the form of the underlying hazard 

proving to be less bias than Tsiatis’ method. On the choice of 

bandwidth, the cross-validation and plug-in selectors are very 

competitive such that neither can be said to outdo the other 

when estimating the survivor function. Generally, empirical 

estimators are reduced on application of kernel smoothing 

which the study concurs as observed by the lower variances 

and coverage probabilities that are accurate and closer to the 

nominal level. 
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