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Abstract: Estimation of brain deformation plays an important role in computer-aided therapy and image-guided 

neurosurgery systems. Tumour growth can cause brain deformation and change stress distribution in the brain. 

Biomechanical models exist that use a finite element method to estimate brain shift caused by tumour growth. Such models 

can be categorised as linear and non-linear models, both of which assume finite deformation of the brain after tumour 

growth. Linear models are easy to implement and fast enough to for applications such as IGS where the time is a great of 

concern. However their accuracy highly dependent on the parameters of the models in this paper, we proposed an 

optimisation approach to improve a naive linear model to achieve more precise estimation of brain displacements caused by 

tumour growth. The optimisation process has improved the accuracy of the model by adapting the brain model parameters 

according to different tomour sizes.We used patient-based tetrahedron finite element mesh with proper material properties 

for brain tissue and appropriate boundary conditions in the tumour region. Anatomical landmarks were determined by an 

expert and were divided into two different sets for evaluation and optimisation. Tetrahedral finite element meshes were 

used and the model parameters were optimised by minimising the mean square distance between the predicted locations of 

the anatomical landmarks derived from Brain Atlas images and their actual locations on the tumour images. Our results 

demonstrate great improvement in the accuracy of an optimised linear mechanical model that achieved an accuracy rate of 

approximately 92%. 

Keywords: Brain Deformation, Finite Element Modelling, Linear and Non-Linear Brain Models, Brain Tumour, 

Tumour Growth 

 

1. Introduction 

Important achievements in engineering have been 

achieved by mathematical modelling and computer 

simulation of brain shift. Soft tissue deformation modelling 

has received increasing attention in the biomedical imaging 

community. The surgical simulation research goals are to 

model and simulate deformable tissues for applications 

requiring real-time interaction. Medical applications for 

modelling and simulation include simulation-based training, 

skills assessment and operation planning[1] Image guided 

intervention systems can help surgeons improve the clinical 

outcomes of surgery. Modelling and simulation are 

particularly important in certain areas, such as tumour 

growth, oedema, hematomas and craniotomy motion 
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tracking and segmentation. However, soft tissue 

simulations are often plagued by imprecise geometric 

information, unknown constitutive laws, boundary 

conditions and distributed forces[2].  

In this paper, we used 3D modelling with the finite 

element method to elucidate the effect of brain tumour 

mass. Several approaches have been developed to address 

brain deformation. Recently, biomechanical models have 

been developed that estimate displacements. These models 

are based on physical brain deformation and thus require 

measurements after deformation. Tissue deformation 

simulation usually starts with segmentation of the target 

geometry from a medical image, which is then used to 

reconstruct a representation of the target geometry’s 

boundary surface. Some models can model brain responses 

to strain and stress. Some such models are linear and 

assume that the stress and strain relationship is linear, while 

others assume a non-linear relationship. Linear models 

assume that the brain’s response to stress and strain is 

similar to that of elastic or solid materials[3]. A study by 

Hamidian et al. proved that the solid mechanical model is 

more reliable than the elastic model. However, more recent 

research has indicated that the brain’s response to stress 

and strain is non-linear, which suggests that the brain is 

best described as a viscoelastic material. The linear models 

have low computational complexity, and easy to implement 

but relatively more estimation error than non-linear models, 

which are more complex, and time consuming. 

Hogea et al. used a linear elastic model to simulate brain 

behaviour in combination with a tumour model to model 

brain deformation. They evaluated a linear model for two 

dog cases and one human case and found that in the human 

case the model error was high[4]. In other studies, purely 

mechanical models were used to simulate evolution of the 

tumour-brain interface and tumour mass effect[5-7]. In 

these cases, the brain tissue was modelled as a non-linear 

elastic material, a cavity representing the tumour was 

introduced and a pressure-like Neumann condition was 

used to model tumour-induced interface forces. Ashraf et al. 

used a non-linear model to simulate tumour mass effect and 

modelled glioma tumour mass effect and oedema and 

applied it for the registration method[7]. Their results 

showed that using the mass effect of the brain tumour 

model combined with the registration method can improve 

registration results. 

To estimate brain deformation caused by tumours, we 

used a brain mechanical model combined with a tumour 

growth model. The main motivation of this study was to 

optimise a model for brain tumour segmentation and 

registration. In previous studies, the deformation force was 

obtained from pre-registration of normal data and deformed 

data[8, 9]. Because we used tumour growth to compute 

external forces that affect the brain model, our model is 

more reliable than others. 

Computer Aided Therapy (CAT) requires a better 

understanding of the characteristics of brain cancer 

progression based on phenotypic cancer profiles derived 

from imaging, histopathology and other sources, which can 

ultimately help determine predictive factors of cancer 

invasiveness. Significant tools for understanding such 

cancer profiles are statistical atlases. In brain tumour 

patients, such atlases have the potential to assist surgical 

and treatment planning[10]. 

The decision of whether and how to best treat a brain 

tumour is based on multiple factors, including size and 

location of the tumour, tumour type, symptoms, growth rate 

and age of the patient (among others). In general, there are 

two basic options: surgical removal and radiation. In both 

cases (surgical and radiation) segmentation has an 

impressive impact on Image Guided Surgery (IGS) and 

CAT systems. Brain MRIs that reveal tumours are difficult 

to segment because of brain tissue deformation caused by 

tumour mass effect or volume expansion[11]. 

To model and estimate deformation of brain structure, 

we focused on one type of brain tumour, meningiomas, 

because they are a good representative of brain tumours in 

general and possess several attractive characteristics. 

Meningiomas arise from a layer of tissue (the 

meninges) that covers the brain and spine. Meningiomas 

grow on the surface of the brain (or spinal cord) and 

therefore push the brain away rather than growing from 

within. Meningiomas represent about 25 percent of all 

tumours originating in the head. Meningiomas are often 

slow growing, increasing in size only 1-2 mm per year, 

there for we can assume that the tomour growth rate is 1-2 

mm per year, and their growth behaviour can most closely 

be described as linear, so we can assume that their growth 

rate is linear. Finally, meningiomas have sharp margins and 

rarely invade neighbouring tissue[12].  

In sum, our proposed method can properly estimate brain 

displacement because of the optimised model parameters 

and external force calculation by the tumour growth model.  

2. Materials & Methods 

2.1. Pre-Processing 

We have difficulties in finding suitable cases with 

meningioma tumour at least two stage of tumour growth 

but we managed to find seven cases with different variation 

in tumour size and location which could validate our results 

statically. Patient geometric data used in this paper were 

obtained from a set of seven MRIs of patients with brain 

meningioma tumours obtained from the Imaging Centre of 

Imam Khomeini Hospital and surgical planning laboratory 

of Harvard University. These data have a resolution of 

256x256x124 with pixel size of 0.9375 x 0.9375 mm and 

slice thickness of 1.5 mm[13, 14]. Atlas data was obtained 

from brain-web with resolution of 256x256x100 pixels[21]. 

Type and location of tumours are shown in Table 1. 

Because MRI images only elucidate tumoural brain 

anatomy, the ability to predict soft tissue deformation, and 

therefore tumoural brain anatomy during tumour growth, is 

a primary requirement for reliable treatment. If 
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displacements within the brain can be computed, they can 

be used to simulate tumours in healthy atlases. A block 

diagram of the method presented in this paper is sketched 

in Figure 1. 

Table 1. Type and location of brain tumors in patient data that obtained from imaging center of Imam Khomeini hospital and surgical planning 

laboratory of Harvard University. 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Type of tumor Menengioma Menengioma Menengioma Menengioma Menengioma Menengioma Meningioma 

Location of tumor left frontal right parietal right parietal right frontal right parietal Left occipital left frontotemporal 

 

 

Figure 1. block diagram of proposed method for estimation of brain 

deformation 

The atlas data were registered non-rigidly with patient 

data to reduce misalignment errors. The non-rigid B-spline 

method was used to register atlas data to the patient dataset, 

as detailed in Equation 1. Figure 2 shows the results of the 

registration process for cases 2, 3 and 4, which had tumours 

in the right parietal, right parietal and right frontal lobes, 

respectively. 

 

Where i =[x/nx] – 1, j =[y/ ny]-1, and k =[z/ nz ]-1, denote 

the index of the CP cell containing (x, y, z) and u, v and w, 

which are relative positions of (x, y, z) in three dimensions. 

B0 through B3 are cubic B-splines[20]. 

In order to specify brain tissue displacement, anatomical 

landmarks are defined in both patient data and registered 

image data as shown in Figure 3. Landmarks, such as 

ventricle borders and the brain midline, are chosen close to 

tumour regions so that deformation can be effectively 

tracked as the tumour shifts these landmarks. 

In order to better distinguish between the brain 

parenchyma, ventricles and tumours when creating 3D 

brain models, the images were first segmented manually in 

two areas as shown in Figure 4 using open source 3D 

SLICER software[22].  

 
Figure 2. Registration of atlas data with patient data (case 2, 3, 4) left 

column patient data middle atlas data right column registered data. In this 

study we used the registered image to build a computational model of the 

brain, and patient image to measure the displacement of the exposed 

surface of the brain (used as loading of the model) and to validate 

computational results. Surfaces were determined from the images 

provided by Department of Surgery, Imam Khomeini Hospital Tehran 

University of Medical Science, Iran and Brigham and Women’s Hospital 

(Harvard Medical School, Boston, Massachusetts, USA)  

 
Figure 3. selecting landmarks in atlas and tumoural image. These 

landmarks are selected manually by experts in the regions that we can 

track the deformation of brain tissue  
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Figure 4. Segmented MRIs of the patient head used for building patient 

specific brain mesh. The tumor segmentation is indicated by whit green 

color.  

After segmentation, 3D models of surfaces of the brain 

parenchyma and tumours were created as shown in Figure 

5.  

 

Figure 5. 3D model of the brain parenchyma, and tumor surface which 

was applied to build the patient specific brain mesh 

A necessary step in obtaining the numerical model of the 

brain is the creation of a computational grid, which in most 

practical grids is a finite element mesh. Because of the long 

computation time requirements, meshes with low-order 

elements must be constructed that are not computationally 

costly. Many algorithms are available for fast and accurate 

automatic mesh generation using tetrahedral elements[2]. 

For obtaining the accurate results we choose the tumour 

seeds manually in regions that tumour exists in the real data 

and grow up there. In the case of severe pathologies (such 

as a brain tumour), many authors proposed the use of 

tetrahedral meshes for their models, and therefore, 

tetrahedral meshes were used here for model creation as 

shown in Figure 6. 

 

Figure 6. tetrahedron-dominant brain mesh constructed in this study 

2.2. Mechanical Properties of Brain Tissue 

2.2.1. Linear Model 

A linear model of the brain was used to determine brain 

deformation. It has been shown that such models provide 

numerical formulations that sufficiently describe brain 

tissue behaviour[3]. In addition, linear models are simpler 

to implement and run relatively fast. A linear model was 

used here because the brain is assumed to be a linear 

continuum with no initial stresses or strains. The energy of 

the brain’s deformation caused by externally applied forces 

can be expressed as Equation 2: 

T TW d F udσ ε
Ω Ω

= Ω+ Ω∫ ∫                                 (2) 

where F = F(x, y, z) is the total force applied to the brain, 

external force obtained from Ω is the brain, u is the 

displacement vector, and ɛ is the strain vector that can be 

defined as Equation 3: 

( , , , , , )
u u u u u u u u u

x y z x y y z x z
ε ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
         (3) 

In addition, σ is the stress vector, and in the case of 

linear elasticity with no initial stresses or strains it relates to 

the strain vector by the linear equation σ = Dɛ, where D is 

the elasticity matrix describing the material properties and 

is described in Equation 4:  
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    (4) 

The value of D is obtained by two material parameters: 

Young’s modulus (E), which relates tension and stretch in 

the main orthogonal directions, and the Poisson ratios (ν), 

which represent the ratio of the lateral contraction due to 

longitudinal stress in a given plane. Deformation of the 

brain is determined by solving Equation 1 for the 

displacement vector u, which minimises the energy 

function E. The Numerical solution to these equations 

could be written as the global linear Equation 5: 

Ku F= −                                                 (5) 

The solution of Equation 4 defines the deformation field 

that results from the forces applied to the brain. External 

force is obtained from tumour growth. Initial coefficients 

(Young’s modulus = 3000 Pa, Poisson ratio = 0.45) were 

chosen as previously described by Ferrant et al.[15].  
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2.2.2. Optimised Linear Model 

The brain model parameters, called Poisson ratio and 

Young’s modulus in the linear method, can be influenced 

by the patient’s brain anatomy and the type of tumours 

being modelled. Tumour sizes and brain anatomy can 

change the above parameters from patient to patient and for 

different types of tumours. Therefore, to obtain the best 

model parameters and to achieve accurate results, an 

optimisation process was utilised in combination with the 

conventional linear model to obtain the best parameters for 

each patient. In this study, meningioma tumours from 7 

patients were analysed. The cost function was defined as 

the mean square difference of distance between the 

landmark position manually selected in the real image data 

and their corresponding estimated positions in the model as 

explained in Equation 6. Landmarks were selected in a 

non-uniform manner around the tumour contour focusing 

on the areas with large deformations as shown in Figure 3. 

One half of the landmarks were used in the optimisation 

process and the other half were used for error calculation. 

The Matlab optimisation toolbox was used, which is based 

on a linear algorithm to optimise the following cost 

function:  

2

1

1
( )

M

iE iD

i

MSE x x
M =

= −∑                                 (6) 

Where M is the number of landmarks, XiE is the 

estimated landmark position and XiD is the corresponding 

landmark position the in real data. 

2.2.3. Non-Linear Model 

As mentioned above, brain shift behaves in a non-linear 

manner and is modelled as a viscoelastic material. Non-

linear models closely approximate real shift, and in 

comparison with linear models they achieve more accurate 

results, but have higher computational costs. To model 

deformations induced by tumours more precisely, the 

Ogden-based Hyper-viscoelastic constitutive model was 

used in the following Equations 7 and 8[2, 15-17]: 

1 2 32

0
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t
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α α αµ τ λ λ λ τ
τα

= − + + −∫            (7) 

0
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g e
τµ µ
−

=

= − −∑                                (8) 

Where W is the strain energy. λ1, λ2, λ3 (directions 1, 2, 

3 corresponding to x, y, z) are principal extensions and 

their values are 1 for no deformation, greater than 1 for 

extension and smaller than 1 for compression. α is a 

material coefficient without physical meaning. The value of 

α was found to be -4.7, see Table 2[2, 16], t and τ denote 

time. Equation 8 describes viscous response of the tissue. 

µ0 is the instantaneous shear modulus in the un-deformed 

state. τk are characteristic relaxation times. Stress-strain 

relationships are obtained by differentiating the energy 

function W with respect to strains[2, 16]. 

Table 2. Nonlinear brain tissue model parameters for Eqs (5) and (6) 

Instantaneous response k= 1 k= 2 

µ0 =842[Pa] 

α= -4.7 

characteristic time 

t1=.5[s] 

g1= 0.450 

characteristic time 

t2=50[s] 

g2= 0.365 

The stress-strain rate relationships are non-linear, and the 

stiffness of the brain in compression is much higher than in 

extension.  

To compute the external force, the tumour growth rate 

was used. An interesting consequence of the basic model 

assumptions is that the profile of the concentration of 

tumour cells depends on the ratio of the growth rate 

Equation 9[7, 18]: 

( )s

s

c cc

t c

ρ −∂ =
∂

                                 (9) 

In which c(x, t) designates the tumour cell density at 

location x and time t and ρ denotes the net proliferation rate. 

This computation makes our method more accurate due to 

proper force calculation for each patient. Therefore, brain 

displacement due to tumour growth can be measured by 

this method. Displacement by tumour is defined as a 

homogenous force applied to the brain that must satisfy the 

following condition[19]: 

( ) ( ( )) 0f ext div Ic tσ λ+ − =  (10) 

Where f (ext) is external force, σ is internal stress, c (t) is 

tumour growth model and λ is coupling factor. A coupling 

factor was chosen that minimises the quantitative 

difference between the model and the real deformations: 

1.4 N mm/Cells[8]. This equation is the differential version 

of the law proposed by Wasserman[19] and can be locally 

interpreted as a tissue internal pressure proportional to the 

tumour concentration.  

3. Results 

Biomechanical simulation of brain tumour shift took 

approximately 56.50 minutes and 18.00 minutes of 

computation time on a personal computer with a 2.53 GHz 

Pentium processor with 4 GB of Ram to predict brain 

deformation using a non-linear and linear model, 

respectively. Non-rigid B-spline registration was used to 

align atlas data to patient data. Then, segmentation was 

applied to our dataset to extract brain tissue from cranial 

bone. Finally, the 3D model of the brain based on 

tetrahedron finite element mesh was created as shown in 

Figure 6. We used the COMSOL3.4 software to implement 

the model, which is based on the finite element method for 

solving partial differential equations. To evaluate the 

efficiency of the created model in relation to real data, we 
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used images of seven patients with meningioma tumours and normal brain atlas MRIs. 

Table 3. Here, Atlas and tumoral MR images of seven patients with brain tumor (meningioma) are used. The atlas and patient images are registered none 

rigidly, and then pairs of anatomical landmarks are determined by radiologist in the corresponding images. Based on the error of the landmarks, ability 

of linear model to estimate real brain deformations by tumor is evaluated. 

 
case 1 case 2 case 3 case 4 case 5 case 6 case 7 

Max error in x(mm) 9.71 9.32 7.34 7.91 7.25 10.14 6.73 

Max error in y(mm) 8.62 8.52 7.52 7.78 6.79 9.91 5.94 

Max error in z(mm) 7.87 6.51 5.15 5.31 4.87 7.53 3.15 

Min error in x(mm) 3.8 3.9 3.28 2.54 2.22 4.16 2.35 

Min error in y(mm) 2.95 3.2 2.91 3.21 2.15 3.85 2.15 

Min error in z(mm) 2.55 2.75 2.25 2.16 1.85 2.85 2.05 

Mean error in x(mm) 7.95 7.15 5.15 5.25 5.78 7.76 4.95 

Mean error in y(mm) 6.35 6.37 5.38 5.23 4.92 7.75 4.25 

Mean error in z(mm) 5.65 5.24 4.15 4.15 3.15 6.22 2.75 

Error percent 15.65% 18.00% 17.50% 18.36% 16.80% 19.20% 17.15% 

Table 4. Here, Atlas and tumoral MR images of seven patients with brain tumor (meningioma) are used. The atlas and patient images are registered none 

rigidly, and then pairs of anatomical landmarks are determined by radiologist in the corresponding images. These landmarks used for the testing the 

model validation. Based on the error of the landmarks, ability of optimized linear model to estimate real brain deformations by tumor is evaluated 

 
case 1 case 2 case 3 case 4 case 5 case 6 case 7 

Max error in x(mm) 4.72 4.31 3.87 4.91 3.25 5.15 3.71 

Max error in y(mm) 4.54 4.66 4.26 4.84 3.83 5.89 2.93 

Max error in z(mm) 1.88 2.18 26 2.32 1.73 2.5 1.91 

Mean error in x(mm) 1.87 1.63 1.38 1.55 1.14 2.17 1.53 

Mean error in y(mm) 1.54 1.28 1.89 1.96 1.42 2.31 1.38 

Mean error in z(mm) 0.83 0.97 0.71 0.62 0.55 1.41 0.99 

Error percent 7.27% 7.58% 6.91% 6.70% 5.40% 8.10% 7.82% 

Table 5 Here, Atlas and tumoral MR images of seven patients with brain tumor (meningioma) are used. The atlas and patient images are registered none 

rigidly, and then pairs of anatomical landmarks are determined by radiologist in the corresponding images. These landmarks used for the testing the 

model validation. Based on the error of the landmarks, ability of nonlinear model to estimate real brain deformations by tumor is evaluated. 

 
case 1 case 2 case 3 case 4 case 5 case 6 case 7 

Max error in x(mm) 3.92 3.75 3.37 4.28 2.81 4.52 3.21 

Max error in y(mm) 4.15 3.92 4.17 4.31 3.29 5.41 2.45 

Max error in z(mm) 1.58 1.85 1.67 2.03 1.34 2.13 1.52 

Mean error in x(mm) 1.21 1.34 1.17 1.36 0.91 1.82 1.24 

Mean error in y(mm) 1.09 0.81 1.35 1.52 1.09 2.12 1.03 

Mean error in z(mm) 0.63 0.77 0.62 0.55 0.45 1.13 0.79 

Error percent 6.35% 6.65% 6.15% 5.9% 4.5% 6.95% 6.77% 

 
The displacement vector of brain tissue caused by 

tumours was obtained calculated by the model. The 

improved agreement between the computed and observed 

displacements has enhanced the model’s ability to predict 

deformation. As can be observed visually, the tumour 

simulated by this model resembles the real tumour imaged 

in a patient. Figure 7 shows the axial, coronal and sagittal 

views of the real brain tumour and the corresponding 

predicted model. Comparison of real and modelled tumours 

shows a good matchThe red to yellow color of estimated 
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deformation field can present the tomour region and the 

green color presents the regions of brain that deformation 

due to tumour exist. 

 

Figure 7. Real brain tumor (left column) and simulated one (right column) 

with optimized linear mechanical model: upper row axial axis, middle row 

coronal axis and lower row sagital axis  case 3. This patient has a 

meningioma in right parietal lobe of his brain. The red to yellow color of 

estimated deformation field can present the tomour region and the green 

color presents the regions of brain that deformation due to tomour exist. 

To quantify the accuracy of the simulation, a medical 

expert manually selected corresponding feature points on 

the patient MRIs. To estimate these landmark 

displacements, the measured displacements could then be 

compared to the ones shifted by the models. Detailed 

comparison of the cross sections of actual tumour shift and 

tumour shift predicted by the three brain models is 

presented in Tables 3, 4 and 5 and Figures 8, 9 and 10. 

 
Figure (8) error comparison of seven cases in linear model without 

optimization 

After optimisation of model parameters, the accuracy of 

the linear solid mechanical model increased. As showed in 

Table 4 and Figure 9, the model accuracy increased by 

about 15%. 

 
Figure 9. error comparison of seven cases in linear model with 

optimization 

 
Figure 10. error comparison of seven cases in nonlinear model  

 

Figure 11. comparison of linear and nonlinear model as depth increase 

the nonlinear model has better response in contrast of linear model. 

Because nonlinear model considered the viscose property of brain but in 

linear model there is not any parameter that controls the viscose property. 

In order to evaluate the two model types, we compared 

them in different depths of the brain. Our findings showed 

that, as we moved from the surface of the brain to deeper 

parts, the non-linear model achieved better results than the 

linear model, as depicted in Figure 11. This is likely 

because the non-linear model takes into account the viscose 

nature of the brain while the linear model does not. Thus, in 

cases with large deformations in which the viscose 

character of the brain changes as a result of tumour growth 

load, the non-linear model is recommended. It must be 

noted that implementing a linear solid mechanical model 

takes one-third times less time than implementing a non-

linear model. For example, the speed of implementation for 

the non-linear model and the linear mechanical model were 

56.50 minutes and 18.00 minutes, respectively. In our study, 

the accuracy of the optimised linear mechanical model was 

similar to the non-linear model for displacement of up to 

2.5 cm as shown in Figure 11. Therefore, the linear solid 

mechanical model is more appropriate and is highly 
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recommended for calculation of deformations because of 

its speed and acceptable accuracy. 

Table 6. Initial and optimized parameters value for linear model. These 

parameters change from patient to patient because of brain anatomy and 

tumor size  

 Initial value Optimized value 

Young modules (kp) 3000 3000±250 

Poisson ratio .45 .45±.145 

The tolerance of the model parameters and the error 

depended on tumour size, position and depth, and the 

position of the selected landmarks also affects the results. 

Based on our findings, we propose that landmarks be 

selected in places where large displacements have occurred. 

Therefore, we selected landmarks mostly around the 

tumour. This model is sensitive to Young’s modulus and 

passion ratio, and thus these parameters should be 

optimised because patients have different brain anatomy 

and different types of tumours. The deviations of the model 

parameters after optimisation based on Equation 6 are 

presented in Table 6.  

4. Discussion  

In this paper we focused on improving the well known 

linear model, which has been used expensively in previous 

works. Because of its simplicity, fastness and few model 

parameters we did not concentrate on non linear models 

which are already found very complex and time consuming 

with more model parameters to be chosen. However, in 

order to show how close an optimized linear model could 

be to a nonlinear model, we implemented a visicoelastic 

model to compare to our optimised linear model. 

In estimation of brain deformation, model selection and 

optimisation of model parameters are important steps 

toward obtaining accurate and reliable results. Here, we 

computed the deformation of brain tissue resulting from 

meningiomas. We used tumour growth model to compute 

the external forces and we choose the tumour seeds 

manually in the regions that tumour exists in real data. It 

must be noted that because of limitations in obtaining 

patient data at different stages of tumour growth, we only 

considered the last stage in all cases. The external force on 

the brain increases with tomour growth and the brain tissue 

becomes dens. This will cause changing the brain 

parameters (Young's modulus and Poisson rate). If these 

parameters remain the same for all patients, the results of 

brain shift estimation due to different tumor size will not 

have sufficient accuracy. But when the brain tissue 

parameters were optimized for each patient as shown in 

Table 3 and 4 the results became closer to actual values. 

This improvement in the results of optimization process 

emphasizes the necessity of the optimization process in the 

linear model. 

 Finite element formulation combined with the tumour 

growth model resulted in very good agreement between the 

computed and measured displacements. As the results 

illustrated, the accuracy of displacement predicted by the 

optimised model is similar to the real data. Accuracy rates 

were 92% in the optimised linear model and 95% in the 

non-linear model but the computation time of the linear 

model is three times less than nonlinear model. Because of 

that the computation time is important in operating room, 

so our optimized model with less computation time and 

accuracy close to nonlinear model is proper to brain shift 

computation. Although there were areas with more 

displacement errors in the traditional linear model, our 

optimisation approach particularly in the deep brain parts, 

exhibited much better overall agreement between the 

predicted and real brain shifts. Visual inspection by experts 

also demonstrated this improved accuracy in the optimised 

linear solid mechanical model. We showed that the time 

required to implement an optimised linear model is less 

than a non-linear model by an order of one-third. As shown 

in tables 2, 3 and 4 the accuracy of the optimised linear 

mechanical model is almost the same as the nonlinear 

model. Therefore, the proposed optimised linear solid 

mechanical model is applicable for computation of brain 

deformations caused by meningiomas tumour because of its 

speed and acceptable accuracy. This method can be used in 

CAT systems to define the tumour and therapy volume 

more precisely. This will in turn improve therapy planning 

and reduce safe tissue radiation. Another application of this 

model is in image guided surgery (IGS). IGS systems, 

which involve simulation of the brain tumour and its 

location, allow surgical planning and less invasive 

procedures. Finally, this model can be used in combination 

with brain segmentation and registration algorithms to 

achieve higher accuracy rates. 

The main limitation of this work is the relatively small 

number of patients with meningioma tumours from whom 

data were obtained and the lack of information about 

tumour staging. As mentioned earlier, brain parameters 

differ from patient to patient because of differences in brain 

anatomy and tumour size. In our approach, brain 

parameters were optimised for each patient. This 

optimisation can be further generalised to create a reference 

table of best model parameters for different patients. In this 

paper, we focused on meningioma tumours and did not 

consider the oedema effect of glioma tumours, but our 

method can be generalised to consider oedema effects by 

adding the diffusion term to the tumour growth model. We 

are currently working on evaluating the relevance of the 

model on more patient datasets and using this optimised 

model for deformable registration. 
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