

International Journal of Business and Economics Research
2013; 2(3): 33-40

Published online June 10, 2013 (http:// www.sciencepublishinggroup.com/j/ijber)

doi: 10.11648/j.ijber.20130203.11

Large-scale agent-based models in marketing research:
the quest for the mythical free lunch

Alexandru Voicu
1, *

, Cristina Galalae
2, *

1Faculty of Management, Bucharest Academy of Economic Studies, Bucharest, Romania

2Faculty of Economics and International Business, Bucharest Academy of Economic Studies, Bucharest, Romania

Email address:
alex@beyond3d.com(A. Voicu), cristina.galalae@fulbrightmail.org(C. Galalae)

To cite this article:
Alexandru Voicu, Cristina Galalae. Large-Scale Agent-Based Models in Marketing Research: The Quest for the Mythical Free Lunch.

International Journal of Business and Economics Research. Vol. 2, No. 3, 2013, pp. 33-40. doi: 10.11648/j.ijber.20130203.11

Abstract: Positioned as an alternative to equation-based methods, agent-based modelling (ABM) has shown notable

promise in dealing with cases where the latter has proven inadequate. One of the areas where the limitations of traditional

approaches are most pronounced is that of consumer behaviour research. A primary trait encountered within this scope is that

of adaptability, and agent-based methods appear to be ideally suited to the task of capturing this dimension. It therefore

follows that marketing researchers are likely to gain novel and extensive insight by way of constructing large-scale, complex

ABMs. However, the computational cost of complex simulations can be prohibitive. Furthermore, the literature makes little

effort to elucidate means of making such ABMs feasible, beyond relying on natural hardware evolution. Unfortunately, the

latter source of growth has grown stagnant, and the only avenue for the continued expansion of performance appears to be the

move to parallel platforms and programming. The present research presents a cross-section of the current state-of-the-art in

high-performance ABM frameworks, and proposes a novel approach to levering the as of yet untapped potential of cheap,

ubiquitous Graphics Processing Units (GPUs). This insight is mapped into the space of consumer behaviour research, and a

consistent argument is made in favour of larger, more detailed, ABMs, both as alternatives to current approaches as well as a

development of prior forays into this area. In conclusion, a call to action is formulated, both to marketing researchers as well

as computational economists, emphasizing the interdisciplinary requirements of ABM usage in the field of marketing.

Keywords: Agent-Based Modelling, Consumer Behaviour, Parallel Programming, GPGPU, C++ AMP, Economics

1. Introduction

One of the many challenging tasks faced by the yet

young science of marketing is that of modelling and,

ultimately, comprehending consumer behaviour. Indeed, it

could be argued that this is actually one of the most

difficult endeavours in economics research in general. This

observation stems from the fact that the mathematical

apparatus that economists in general, and marketers in

particular, have come to rely on is woefully inadequate

when it comes to representing the dynamics of complex

adaptive systems[1]. Whilst it is commonly accepted that

systems made up from humans fully qualify for being

included in this category, few if any comprehensive tools

exist that allow one to gain notable insight into their inner

workings. In the complicated balancing act between

tractability and informational entropy brought about by a

particular modelling exercise, the casualty ends up being

the latter aspect. Through the enforcement of overly

restrictive assumptions (e.g. hyper-rationality,

omniscience[2]) or very high-level abstract concepts (e.g.

broad scope latent variables in Structural Equation Models

(SEM)[3], approximation as a hydraulic system in System

Dynamics[4]), models become solvable, albeit not

necessarily very realistic. Agent-Based Modelling (ABM)

proposes an alternative, generative approach, which focuses

on the micro-specification of purposive agents (e.g.

consumers, firms, managers – roles are not mutually

exclusive), which through their free, uncontrolled

interaction generate the dynamics of interest. Members of

the scientific community seems increasingly keen on

pointing out that ABM has the potential to greatly expand

the scope of economics modelling, whilst at the same time

increasing its depth and thus removing age-old

limitations[5],[6],[7],[8].

A primary bound on the evolution of ABM in economics

is due to high computational costs. Indeed, part of the surge

in interest for ABM is attributed to the exponential growth

34 Alexandru Voicu et al.: Large-Scale Agent-Based Models in Marketing Research:

The Quest for the Mythical Free Lunch

in processor performance associated with the steadfast

progress of manufacturing technologies, as conjectured in

Moore's Law[9]. More often than not, authors tend to brush

the topic of performance aside, and express the conviction

that the performance scaling will continue its natural course,

thus making increasingly complicated ABMs tractable[10],

[11], [12]. This view is mirrored in the frameworks

commonly employed by researchers: NetLogo[13],

MASON[14] or Repast[15]. Whilst holding the lion's share

of applications encountered in the literature, they are all

geared towards usability, at the expense of performance,

being written in higher level, interpreted languages (i.e.

Java, or, more recently, C#), with no aggressive tuning in

place. A common moniker for the sustained and constant

growth of single-processor performance has been that of a

“free lunch”. This captures the basic idea that programs

could be written sub-optimally, with hardware evolution

picking up the slack and ensuring that they would

eventually achieve sufficient levels of performance.

Unfortunately, whilst relying on the “free lunch” was

adequate up until early in the 21st century, as outlined in

the first chapter of[16], power and thermal limits have all

but stopped single-processor scaling. In an aptly named

essay[17], Herb Sutter deals with this topic in a

comprehensive manner, and indicates concurrency /

parallelism as the new performance vein to be mined.

Reference[18], due to the same author, fully fleshes out the

sources of parallel throughput, and the various forms in

which the latter can be leveraged, with emphasis being

placed on heterogeneous solutions as being endowed with

the most potential. Very recent research[19],[20] match this

description, in recent years Graphics Processing Units

(GPU) have emerged as cheap, ubiquitous solutions

available to researchers from all fields. In this context, it is

not unreasonable to look to GPUs and, by extension, the

General Programming of GPUs (GPGPU) paradigm as

future avenues for supporting ABM development.

Intriguingly, the literature on the topic is relatively sparse,

and it would appear that in spite of a series of advantages,

beyond sheer processing throughput, GPUs remain largely

unexploited by ABM researchers. The juxtaposition of this

latter dynamic and the high computational costs of

large-scale ABMs leads to a dearth of such constructs. We

conjecture that this is a constraint that must be ultimately

removed, if ABMs are to deliver on their initial promise as

a solution to problems that have proven intractable with

traditional modelling tools. In this context, a valid

observation is that neither of the aforementioned ABM

specific frameworks is supportive of GPGPU acceleration

at the time of this writing and, furthermore, the

opportunities for even basic parallel acceleration are

limited, in spite of attempts of retro-fitting it:

1. MASON (uses JAVA) can spawn multiple parallel

schedulers that can execute concurrently, however it is most

difficult to ensure race-free execution, thus leading do

difficult to debug errors – no provisions for GPGPU or

massive parallelism are present;

2. the Repast developers have opted for providing a

separate version focused on high-performance parallel

computing named Repast HPC (uses C++) – adoption rates

have been low, because it is more difficult to use by

non-expert programmers (most synchronization is directly

under modeller control) – as was the case with MASON,

GPGPU support is absent;

3. NetLogo (uses Scala and Java) is purely serial.

This article pursues two concurrent goals: investigating

approaches to using GPGPU to accelerate ABM presented

in the literature, and proposing an alternate, potentially

superior approach to using GPUs for ABM in general, and

consumer behaviour research in particular. We note that the

latter is more demanding on the researchers, mandating an

inter-disciplinary approach, but is likely to yield more

comprehensive benefits in the long-run. Clearly, it would

be folly to aim for an all encompassing analysis, as there is

a breadth of applications of ABM in economics. As such,

and as already hinted in the opening phrase, we focus on

marketing specific models, primarily on those that study

the dynamics of consumer behaviour.

We structure our work in the following manner:

• first, a non-exhaustive literature review is

presented, aiming to analyse marketing specific

ABM applications;

• to explore how to optimally exploit the parallel

throughput offered by GPUs in the context of

ABM based marketing research, we study the two

main solutions demonstrated in the literature,

which is to say either adhoc implementation of a

model in one of the Application Programming

Interfaces (API) currently available or using

GPGPU accelerated ABM frameworks;

• we propose an alternative, more involved process

in which the software implementation is developed

by the researchers, but instead of directly using

APIs and thus being forced into a low-level,

non-portable paradigm, we focus on using

high-level, hardware agnostic libraries; we argue

that this latter approach is more supportive of

novel research that cannot be easily cast within the

confines of existing frameworks and, at the same

time, tends to be conducted by non-expert

programmers;

• in conclusion, we outline directions for future

development and potentially optimal patterns for

minimising friction induced by the uptake of ABM

in marketing research in general and, more

specifically, the use of GPGPU accelerated ABM.

It is our contention that this work, coupled with future

developments, that will move from broad level overview

into tangible implementations, will serve to “stoke” the fire

under ABM based marketing research, thus making good

on the initial promise of higher explanatory power made in

the de facto manifest of ABM in social sciences due to

Joshua Epstein and Rob Axtell[21].

 International Journal of Business and Economics Research 2013; 2(3): 33-40 35

2. Literature Review

It can be argued that Thomas Schelling's seminal

work[22], which is generally accepted as the literary birth

of ABM in social sciences, does include some marketing

specific work in its 3rd chapter, wherein Akerlof's

investigation into the market for “lemons”[23] is

considered from a different, heterogeneous agent angle.

Another important strand of research, that had notable

impact on subsequent works, was that conducted into the

allocative efficiency of markets when the traders are so

called Zero-intelligence agents[24]. The latter serves as an

early outline of the power of ABM, and in the sorts of

insights that can be gained from conducting such analyses,

as it shows that high market efficiency can be achieved

even in the absence of elaborate behaviour such as active

pursuit of optimality through inter-period optimisation.

Further in the same vein, ABM's applicability to the study

of complex phenomena such as the self-organization

property of various markets has been researched as far back

as the early 1990s[25].

Two data-points serve to illustrate the benefits of ABM

in the analysis of consumer behaviour. Reference[26]

studies the key phenomenon of “lock-in”, in which

supremacy on a particular market is achieved by a single

competitor, making it difficult for consumers to switch to

another product. Contrary to Zero-intelligence experiments,

agents are endowed with psychologically plausible decision

processes, derived from behavioural theories such as those

of social comparison and imitation. Such traits would be

difficult to embed in a traditional mathematical model,

although they do come at an increased computational cost,

which might be one of the reasons for which a population

of only 900 agents is used in the simulations.

Reference[27] is a relatively recent, in-depth into look at

consumer behaviour through the ABM lens, from a

different angle, that of the impact of quality variability on

consumers' confidence, and, by extension, its potential for

seriously damaging a market. It is also worth noting that

the social network is taken into account (structure varies in

accordance to multiple parametrizations spanning the two

extremes of full connectivity and lack of connectivity), and

identified as a primary determinant of market stability. The

authors give substance to a frequently encountered, but

seldom quantitatively supported claim in marketing science,

that of the tree-like propagation of consumer experiences

(e.g. a single unsatisfied customer generates 15 / 20 / 25

lost sales etc.). Thus, it is shown that aggregating group

experience through social information leads to more

balanced assessments and avoids the over-biasing due to

singular bad experiences. This is yet again a sort of analysis

that would be difficult to cast into a traditional modelling

mould, as there is little room for such heterogeneity and

granularity within the confines of an aggregate

mathematical construct.

It is opportune to also point out that the Morgan

Kaufmann's long-running and widely appreciated

“Handbooks in Economics” series includes a volume

entirely dedicated to ABM[28], which dedicates ample

spaces to discussing topics most relevant to marketing such

as the modelling of learning processes[29], endogenous

interactions[30] or market design[31].

Table 1. Some marketing research application areas suitable for ABM, reproduced after[10]

Area Advantage of ABM

Diffusion of information and innovations Allows individual-level heterogeneity within both adoption decisions and social networks.

Retail location decisions. Enables integration of individual-level behaviour patterns with geographic information systems.

Inter-firm relationships, strategy and

competition.

Facilitates as many firms as necessary, each firm with firm-level characteristics, and the ability for

firms to adapt their strategies over time

Marketing mix models
Allows the examination of individual-level behaviour patterns and reactions to the various elements of

the marketing mix.

Retail and servicescape design.
Can be used to model individuals moving about and making decisions in a complex retail

environment.

Possibly the most impressive use of ABM is embodied in

EURACE[32], which is, to the authors' best knowledge, the

largest-scale ABM constructed, and aims to represent in

extensive detail the economy of the European Union. Three

types of learning agents are included (households, firms

and banks), interacting through five types of markets

(consumption goods, investment goods, labour, credit and

financial assets). Agent counts are orders of magnitude

higher than what is commonly present in the literature (e.g.

the upper bound on household count is 107). EURACE is

intended to be holistic, and to study economic interactions

as they occur in the context of an over-arching, inclusive

system. This clearly presents novel opportunities for

marketing researchers, who could leverage findings from

multiple threads of investigation and organically integrate

them in the same analytical tool. A limitation of EURACE

was that in its fully fledged form it relied on parallel

acceleration through large-scale computing clusters (local

or distributed), which limits its usability to researchers that

can access such constructs. In theory, GPGPU acceleration

of ABM would lead to such large-scale models becoming

feasible on local machines equipped with the right

(comparatively inexpensive) hardware, thus making

explorations in this directions even more opportune if not

outright mandatory. Given spatial constraints, we must

limit the more verbose analysis, however we will point the

interested reader towards a recent, comprehensive

cross-section of the topic, due to Rand and Rust[10]. We

reproduce below, in Table 1, the abbreviated synopsis of

marketing research areas suitable for ABM:

36 Alexandru Voicu et al.: Large-Scale Agent-Based Models in Marketing Research:

The Quest for the Mythical Free Lunch

3. ABM and GPGPU

An in-depth discussion of programming or, more

specifically, GPGPU, is beyond the scope of this work. We

direct the interested reader to Chapter 4 from[16] for an in

extenso treatise of the hardware architecture and to[33],[34]

for programming paradigms and directions for the software

side. In a nutshell, GPUs are many-core machines (e.g. up

to 32 cores on a modern high-end processor[35]), which

use relatively wide (i.e. 32 or 64 elements in the two

dominant GPU architectures) Single Instruction Multiple

Data (SIMD[36]) execution on vector units attached to each

core to achieve high computational density, and implicitly

throughput. High-end GPUs are also endowed with

high-speed memory attached to wide buses, thus offering

an order of magnitude higher memory bandwidth than most

CPUs. Finally, in spite of the very impressive theoretical

performance (e.g. 4 single-precision TeraFLOPs), GPUs are

available as consumer devices, and thus both widely

available and competitively priced. This serves to explain

the explosive interest in levering them as general-purpose

programmable devices, capable of accelerating a wide array

of scientific applications.

Table 2. ABMs using GPGPU[10]

Reference ABM implemented API / Framework

[40]
SugarScape (simplified),

StupidModel.
OpenGL.

[41]
Mood Diffusion, Conway's Game

of Life.
OpenGL.

[42] Crowd simulation. OpenGL.

[43] Crowd simulation. Direct3D.

[44] Crowd simulation. CUDA.

[45] Crowd simulation. CUDA.

[46] Crowd simulation. CUDA.

[47] Crowd simulation. OpenGL, CUDA.

[48]
Conway's Game of Life,

Leadership Model (LDR).
CUDA.

[49] Spatial opinion diffusion. CUDA.

Parallel programming is generally accepted as a

challenging task, with an extensive span of specific

challenges that are not apparent when writing serial code.

In the case of GPUs, this is compounded with the

heterogeneity of the system, as the GPU is a separate

processing platform, an accelerator, that has its own

discrete memory and executes asynchronously. The fact

that GPUs employ wide-SIMDs serves to further raise the

challenge, as the extraction of optimal performance implies

consideration for control flow coherence or independent

execution across multiple elements. In order to tackle this

difficulty, most if not all GPU compute APIs, such as

CUDA, OpenCL or C++ AMP, follow a Single Instruction

Multiple Thread (SIMT) or Single Program Multiple Data

(SPMD) paradigm, abstracting away much of the

complexity[37],[38],[39]. We will not delve into the

differences between the above listed 3-tuple, beyond noting

that on a basic level all can be used with success and with

varying degrees of difficulty, as is evidenced by the

ever-growing literature on GPGPU. We note, however, that

outside of the scope of numerical work such as linear

algebra or image processing, success in using GPGPU has

been limited. By extension, this also applies to ABM. In

Table 2, we list the main cases of GPGPU use in ABM

literature:

It is easy to observe that the scope of the implemented

models is rather narrow, and that there is no exploratory

modelling work. Whilst this observation is not intended

to diminish the merits of the research into optimal

parallel implementations of existing models, it is clear

that there is a rather noticeable gap by comparison with

the complexity of the models we listed in section 2.

Indeed, in certain cases the number of agents is up to

three orders of magnitude higher in the GPGPU

accelerated case, but these are too simple agents

engaging in too simple interactions. Excluding the case

of the zero-intelligence experiments, it appears that the

needs of marketing researchers are notably more

complex in what regards agent specification. We outline

what we consider to be the two causes for this

discrepancy:

1. Programming GPUs is challenging: it is unlikely

that non-specialists, researchers without a specific

background in Computer Science, are going to invest the

time into acquiring a skill that is not certain to augment

their chances for publications and directly support their

core work; in this context, the use of dedicated

frameworks is more appealing, as it allows the

(economics, marketing) specialist to focus on areas

where his expertise lies, without having to fight what

seems like an uphill programming battle;

2. Many data-structures (e.g. linked lists) and

approaches commonly used by serial ABMs (e.g.

centralized pseudo-random number generation) do not

map well, if at all, to the GPU; moreover, at this time,

GPUs support only a restricted subset of the full set of

features available on CPUs (e.g. no dynamic allocation /

deallocation of memory, no runtime polymorphism) it is

therefore impossible to merely “pilfer” existing code, and

new code has to be written, however the first constraint

makes that a seldom feasible solution.

Clearly, the goal should be a feasible combination of

the usability of existing and widely used ABM

frameworks, and the throughput made possible by

levering GPUs. Otherwise, and somewhat more

prosaically stated, we aim to have (at least some of) the

new “free lunch” afforded by the sustained growth in

parallel throughput, whilst abstracting the latter's

complexity to the greatest extent possible. We envision

two approaches capable of reaching this goal:

1. New frameworks are built by 3rd parties that have

the programming knowledge required;

2. Higher-level libraries are used by the researcher(s)

in order to implement a particular model.

Out of the two approaches, we expect the first to serve

as the main vehicle for expanding the uptake of GPGPU

 International Journal of Business and Economics Research 2013; 2(3): 33-40 37

accelerated ABM by marketing researchers who are not

keen on programming (historically, this has been the case

for serial ABMs too). The second approach, whilst

decidedly more involved, is also the one that yields

maximal flexibility and thus is the most supportive of

highly exploratory work – models that do not fit well

within what is expressible with a general-purpose

framework can only be analysed by manually

implementing them. In what follows, we will detail both

cases, GPGPU accelerated ABM frameworks as

represented by FLAMEGPU[50], as well as autonomous

development and implementation, based on our

experiences with the latter.

4. The FLAMEGPU Framework

FLAMEGPU is the moniker under which GPU

acceleration is being added to the FLAME framework. The

initial goal for FLAME was to support molecular / cellular

level modelling as required by, for example, computational

biologists. It has grown into a generic ABM framework and

has been used with some success outside of its initial scope,

being, quite notably as the baseline for the EURACE

implementation.

At the time of this writing, FLAME uses NVIDIA's

proprietary CUDA API to access the GPU, thus binding it to

the company's hardware. Work on an OpenCL

implementation is on-going, so it can be theorised that at

some point in the future the vendor lock-in will be removed.

Whilst there are valid reasons for using CUDA (e.g. optimal

exposure of the hardware, mature tool-chain), we consider

the requirement for a particular brand of GPU an unfortunate

constraint that limits the usability of FLAMEGPU to some

extent.

Researchers are not exposed to these low-level details

(unless they choose to): the simulation code is generated

based on specification written by the modeller in XML with

extendible schemas. Agents are formally specified as state

machines with internal memory (dubbed X-Machines).

Message passing and behaviour are defined through

functions that rely on state. A set of XSLT code templates are

used, in conjunction with the model specified in XML,

during the parse phase in order to generate compilable

simulation code that is linkable against C based agent

function scripts. From the perspective of the researcher, the

latter steps tend to be opaque, therefore insulating him from

programming details he may have no interest in. An

exhaustive analysis of FLAME's inner workings cannot be

fit into the space allocated for this article, but fortunately this

has already been presented in the literature[51]. It is

important to note that the performance increases yielded by

the use of GPUs are very high[50],[51], although we must

remain wary of potential sub-optimality in the CPU baseline,

which is rather frequently encountered in such analyses[52].

To the best of the authors' knowledge, no marketing

focused ABMs have been implemented using FLAME in

general of FLAMEGPU in particular, therefore it is difficult

to forecast how successful such an endeavour would be. We

note that specifying a model in FLAME is still somewhat

more involved than in, for example, NetLogo, which might

serve as a mild deterrent. Moreover, knowledge of its

existence and features is still scarce, if at all existent, within

the marketing community. Extensive experimentation will

be needed before the match between the needs of the

marketing researcher and the facilities offered by FLAME

can be gauged.

5. Developing GPU Accelerated ABMs

As evidenced in Table 2, on-the-spot implementation of

ABMs in a GPU API has constituted the main conduit for

exploiting this new vein of computational performance.

However, all the enumerated works (excluding the ones that

use FLAME, which was discussed in section 4) opt for a

rather low level of abstraction, remaining too close to the

hardware (e.g. use of primitive containers such as C arrays,

manual implementations of primitives such as parallel prefix

scan / sum). In our work we have found this to yield an

increase in complexity and a decrease of generic power,

without major benefits in what regards performance (the

main claimed benefit of avoiding abstraction). In effect, we

conjecture that the optimal approach to the manual

implementation of ABMs must rely on higher level

abstractions, such as the containers and algorithms included

in the C++ standard library[53]. When new Abstract Data

Types (ADTs) or algorithms need to be put together, we

align ourselves with the principles expressed in[54], and

seek to draw out the most generic characteristics, as opposed

to tailoring solutions to a single application / problem. For

this we have found the C++ programming language, and

especially its template mechanism[55] to be a particularly

good fit, and have used it extensively.

Undoubtedly, at this point it becomes important to point

out that a GPU accelerated equivalent of the C++ standard

library, or, more specifically, its full complement of

containers and algorithms, is not available. The closest

approximation is probably the Thrust library[56], which is

NVIDIA specific. A second, notably less developed, option

is represented by the Bolt library[57], which has the

advantage of vendor agnosticism. We note that even the

latter, less fleshed out library, offers all the “ingredients”

required by the GPGPU accelerated ABMs from Table 2,

and it is straightforward to port them. We will not detail how

such a port could be carried out, as we deem such an exercise

merely interesting practice, but rather explore how one

manually implement an ABM for studying consumer

behaviour using C++ AMP. The latter represents a library

and minimal language extension of the C++ language that

makes GPUs accessible with minimal friction. We use C++

AMP as it supports all the C++ language constructs and

idioms we require, and is aligned with the latest C++11

standard.

Let us start from the skeleton of the ABM presented

in[58], which we modify to consider the propagation of

38 Alexandru Voicu et al.: Large-Scale Agent-Based Models in Marketing Research:

The Quest for the Mythical Free Lunch

product perception and, implicitly, purchase behaviour. In

good ABM tradition, our construction commences from the

bottom up, with the agents, in our case consumers: We

represent them through an ADT, in effect a class template:

template<typename Decision_rule, Neighbourhood N>class Consumer { // Member functions and data. }; (1)

Through the Decision_rule type parameter we

parametrize the agent's behaviour, going from simple,

zero-intelligence decisions to elaborate ones based on

rigorous models such as the Bush-Mosteller[59]. The

Neighbourhood ADT defines the extent of the agent's

interaction area and can expose it to queries through public

member functions. Obviously, this layout also supports

heterogeneity amongst agents, as nothing prevents a mix of

agents from co-existing, with differing decision rules and

neighbourhoods (e.g. leaders / trend setters might have a

wider neighbourhood and more elaborate decision making).

Of course, since we use compile-time polymorphism

through the use of templates, which leads to different

parametrizations being, in effect, different types as far as

C++ is concerned, a heterogeneous population would

require the use of multiple containers, but that hardly poses a

major problem. All that we require of our Consumer ADT is

that it exposes a public update() member function, and a set

of public member functions that provide external,

non-mutable visibility of agent's state. We use the former to

update the state of the simulation within each iteration, and

the latter to compute various statistic quantities necessary

for deriving insight from the simulation. The agent

populations are packaged in std::vector<Consumer<DR, N>>

containers[53], where DR stands for class matching the

Decision_rule constraints, and N plays the similar role for a

class matching the Neighbourhood constraints. To pass them

to the GPU for processing, we wrap the containers in

instantiations of the array_view class template[39], and then

schedule parallel execution for the entire set of agents.

For brevity, we defer going into in-depth programming

details for an upcoming, yet unpublished work. However, it

is difficult to regard the traversal of the above listed steps as

overly challenging. Still, we have found that it is optimal to

decouple model conception with its effective

implementation. The former phase is better entrusted to

dedicated marketing researchers, with limited input from

computational economists to prevent the elaboration of

models that are outright infeasible. On the contrary, the

implementation phase should be undertaken by

computational economists. Correctness checking and the

actual experiments are, as is easy to conclude, a mixed effort.

In closing, we note that if the abstraction level is kept high,

the resulting ADTs and algorithms can be reused across a

wide span of models – our Consumer class template can also

be used to instantiate agents in Sugarscape, or other ABMs.

6. Conclusions

In this paper, we have conducted a broad-level analysis of

the topic of ABM uses in marketing research and the

emerging field of GPGPU acceleration of such models.

Whilst there are a number of applications of ABM in

marketing presented in the literature, we could find no works

that considered the problem of performance improvement

through use of parallel programming in general or, GPU

programming in particular. We identified this as a weakness,

as the expectation of sustained single-processor

performance progression is no longer aligned with current

realities. In this context, we have identified two paths for

leveraging the parallel throughput of modern GPUs to

accelerate ABM: using a framework, in this case

FLAMEGPU, or manually implementing the model by

using higher level abstractions and libraries. For the latter

case we provide an overview of how the process could be

carried out by inter-disciplinary teams that include both

marketing researchers and computational economists.

Considering the growing number of opinions that position

ABM as the next big step in economics modelling, as well as

the wide scope of applications that have already been

published in the field of marketing, it would be most

unfortunate if the potential for development is hampered by

lack of computational support for larger-scale complex

ABMs. As such, we hope that our high-level work will

spawn interest within the marketing community for GPGPU

usage to speed up ABM. These endeavours should be carried

out in an interdisciplinary fashion. In our future works, we

will detail the procedural aspects, as well as demonstrate a

series of implementations, which we expect to provide

consistent proof of ABM's merits in the context of marketing

research, as well as supporting evidence for the approaches

we studied in this paper.

Acknowledgements

This work was cofinaced from the European Social Fund

through Sectoral Operational Programme Human Resources

Development 2007-2013, project number

POSDRU/107/1.5/S/77213 „Ph. D. for a career in

interdisciplinary economic research at the European

standards”.

References

[1] J. H. Holland, “Complex adaptive systems,” Daedalus, vol.
121, no. 1, pp. 17–30, 1992.

[2] K. J. Arrow and G. Debreu, “Existence of an equilibrium for
a competitive economy,” Econ. J. Econ. Soc., pp. 265–290,
1954.

[3] W. T. Bielby and R. M. Hauser, “Structural equation models,”
Annu. Rev. Sociol., vol. 3, pp. 137–161, 1977.

[4] J. W. Forrester, Industrial dynamics, vol. 2. MIT press
Cambridge, MA, 1961.

[5] M. Buchanan, “Economics: meltdown modelling,” Nature,

 International Journal of Business and Economics Research 2013; 2(3): 33-40 39

vol. 460, no. 7256, pp. 680–682, 2009.

[6] J. D. Farmer and D. Foley, “The economy needs agent-based
modelling,” Nature, vol. 460, no. 7256, pp. 685–686, 2009.

[7] D. Colander, M. Goldberg, A. Haas, K. Juselius, A. Kirman,
T. Lux, and B. Sloth, “The Financial Crisis and the Systemic
Failure of the Economics Profession,” Crit. Rev., vol. 21, no.
2–3, pp. 249–267, 2009.

[8] D. Colander, “The Failure of Economists to Account for
Complexity,” Causes of the Crisis, 12-Sep-2009. .

[9] G. E. Moore, Cramming more components onto integrated
circuits. McGraw-Hill, 1965.

[10] W. Rand and R. T. Rust, “Agent-based modeling in
marketing: Guidelines for rigor,” Int. J. Res. Mark., vol. 28,
no. 3, pp. 181–193, 2011.

[11] R. Axtell, “Why agents? On the varied motivations for agent
computing in the social sciences,” 2000.

[12] K. L. Judd, “Chapter 17 Computationally Intensive Analyses
in Economics,” in in Handbook of Computational Economics,
vol. Volume 2, Elsevier, 2006, pp. 881–893.

[13] “NetLogo User Manual (version 5.0.1).”[Online]. Available:
http://ccl.northwestern.edu/netlogo/faq.html.[Accessed:
25-Jun-2012].

[14] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G.
Balan, “MASON: A Multiagent Simulation Environment,”
SIMULATION, vol. 81, no. 7, pp. 517–527, Jul. 2005.

[15] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos, “The
repast simphony runtime system,” in Proceedings of the
Agent 2005 conference on generative social processes
models and mechanisms, 2005, pp. 151–158.

[16] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach. Elsevier, 2011.

[17] H. Sutter, “The free lunch is over: A fundamental turn toward
concurrency in software,” Dr Dobb’s J., vol. 30, no. 3, pp.
202–210, 2005.

[18] “Welcome to the Jungle,” Sutter’s Mill.[Online]. Available:
http://herbsutter.com/welcome-to-the-jungle/.[Accessed:
09-May-2013].

[19] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik,
and O. O. Storaasli, “State-of-the-art in heterogeneous
computing,” Sci. Program., vol. 18, no. 1, pp. 1–33, Mar.
2010.

[20] J. J. Dongarra and A. J. van der Steen, “High-Performance
Computing Systems: Status and Outlook,” Acta Numer., vol.
21, pp. 379–474, 2012.

[21] J. M. Epstein and R. L. Axtell, Growing Artificial Societies:
Social Science from the Bottom Up, First Edition. A Bradford
Book, 1996.

[22] T. C. Schelling, Micromotives and macrobehavior. WW
Norton & Company, 2006.

[23] G. A. Akerlof, “The market for‘ lemons’: Quality uncertainty
and the market mechanism,” Q. J. Econ., pp. 488–500, 1970.

[24] D. K. Gode and S. Sunder, “Allocative efficiency of markets
with zero-intelligence traders: Market as a partial substitute

for individual rationality,” J. Polit. Econ., pp. 119–137, 1993.

[25] N. J. Vriend, “Self-organization of markets: An example of a
computational approach,” Comput. Econ., vol. 8, no. 3, pp.
205–231, 1995.

[26] M. Janssen and W. Jager, “An integrated approach to
simulating behavioural processes: A case study of the lock-in
of consumption patterns,” J. Artif. Soc. Soc. Simul., vol. 2, no.
2, pp. 1–29, 1999.

[27] S. S. Izquierdo and L. R. Izquierdo, “The impact of quality
uncertainty without asymmetric information on market
efficiency,” J. Bus. Res., vol. 60, no. 8, pp. 858–867, 2007.

[28] L. Tesfatsion and K. L. Judd, Handbook of Computational
Economics: Agent-Based Computational Economics.
Elsevier, 2006.

[29] T. Brenner, “Agent learning representation: Advice on
modelling economic learning,” Handb. Comput. Econ., vol. 2,
pp. 895–947, 2006.

[30] N. J. Vriend, “ACE models of endogenous interactions,”
Handb. Comput. Econ., vol. 2, pp. 1047–1079, 2006.

[31] R. Marks, “Market design using agent-based models,” Handb.
Comput. Econ., vol. 2, pp. 1339–1380, 2006.

[32] C. Deissenberg, S. van der Hoog, and H. Dawid, “EURACE:
A massively parallel agent-based model of the European
economy,” Appl. Math. Comput., vol. 204, no. 2, pp. 541–552,
Oct. 2008.

[33] V. Pallipuram, M. Bhuiyan, and M. Smith, “A comparative
study of GPU programming models and architectures using
neural networks,” J. Supercomput., pp. 1–46.

[34] B. R. Gaster and L. Howes, “FUNDAMENTAL
PROBLEMS,” 2012.

[35] AMD, “AMD Graphics Core Next (GCN) Architecture.”
AMD, 28-Jun-2012.

[36] M. J. Flynn, “Some Computer Organizations and Their
Effectiveness,” Ieee Trans. Comput., vol. C–21, no. 9, pp.
948–960, 1972.

[37] A. Habermaier and A. Knapp, “On the correctness of the
SIMT execution model of GPUs,” Program. Lang. Syst., pp.
316–335, 2012.

[38] I. Buck, “GPU computing with NVIDIA CUDA,” in ACM
SIGGRAPH 2007 courses, New York, NY, USA, 2007.

[39] B. Gaster, D. R. Kaeli, L. Howes, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL. Morgan Kaufmann,
2011.

[40] K. Gregory and A. Miller, C++ AMP: Accelerated Massive
Parallelism with Microsoft Visual C++. Microsoft Press,
2012.

[41] M. Lysenko and R. M. D’Souza, “A framework for
megascale agent based model simulations on graphics
processing units,” J. Artif. Soc. Soc. Simul., vol. 11, no. 4, p.
10, 2008.

[42] K. S. Perumalla and B. G. Aaby, “Data parallel execution
challenges and runtime performance of agent simulations on
GPUs,” in Proceedings of the 2008 Spring simulation
multiconference, San Diego, CA, USA, 2008, pp. 116–123.

40 Alexandru Voicu et al.: Large-Scale Agent-Based Models in Marketing Research:

The Quest for the Mythical Free Lunch

[43] P. Richmond and D. M. Romano, “A high performance
framework for agent based pedestrian dynamics on gpu
hardware,” Proc. Eurosis Esm, 2008.

[44] J. Shopf, J. Barczak, C. Oat, and N. Tatarchuk, “March of the
Froblins: simulation and rendering massive crowds of
intelligent and detailed creatures on GPU,” in ACM
SIGGRAPH 2008 classes, New York, NY, USA, 2008, pp.
52–101.

[45] H. Li, A. Kolpas, L. Petzold, and J. Moehlis, “Parallel
simulation for a fish schooling model on a general-purpose
graphics processing unit,” Concurr. Comput. Pr. Exp., vol. 21,
no. 6, pp. 725–737, 2009.

[46] U. Erra, B. Frola, V. Scarano, and I. Couzin, “An Efficient
GPU Implementation for Large Scale Individual-Based
Simulation of Collective Behavior,” in International
Workshop on High Performance Computational Systems
Biology, 2009. HIBI ’09, 2009, pp. 51–58.

[47] E. B. Passos, M. Joselli, M. Zamith, E. W. G. Clua, A.
Montenegro, A. Conci, and B. Feijo, “A bidimensional data
structure and spatial optimization for supermassive crowd
simulation on GPU,” Comput Entertain, vol. 7, no. 4, pp.
60:1–60:15, Jan. 2010.

[48] A. R. D. Silva, W. S. Lages, and L. Chaimowicz, “Boids that
see: Using self-occlusion for simulating large groups on
GPUs,” Comput Entertain, vol. 7, no. 4, pp. 51:1–51:20, Jan.
2010.

[49] B. G. Aaby, K. S. Perumalla, and S. K. Seal, “Efficient
simulation of agent-based models on multi-GPU and
multi-core clusters,” in Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques, ICST,
Brussels, Belgium, Belgium, 2010, pp. 29:1–29:10.

[50] W. Tang and D. A. Bennett, “Parallel agent-based modeling
of spatial opinion diffusion accelerated using graphics
processing units,” Ecol. Model., vol. 222, no. 19, pp.
3605–3615, Oct. 2011.

