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Abstract: Positioned as an alternative to equation-based methods, agent-based modelling (ABM) has shown notable 

promise in dealing with cases where the latter has proven inadequate. One of the areas where the limitations of traditional 

approaches are most pronounced is that of consumer behaviour research. A primary trait encountered within this scope is that 

of adaptability, and agent-based methods appear to be ideally suited to the task of capturing this dimension. It therefore 

follows that marketing researchers are likely to gain novel and extensive insight by way of constructing large-scale, complex 

ABMs. However, the computational cost of complex simulations can be prohibitive. Furthermore, the literature makes little 

effort to elucidate means of making such ABMs feasible, beyond relying on natural hardware evolution. Unfortunately, the 

latter source of growth has grown stagnant, and the only avenue for the continued expansion of performance appears to be the 

move to parallel platforms and programming. The present research presents a cross-section of the current state-of-the-art in 

high-performance ABM frameworks, and proposes a novel approach to levering the as of yet untapped potential of cheap, 

ubiquitous Graphics Processing Units (GPUs). This insight is mapped into the space of consumer behaviour research, and a 

consistent argument is made in favour of larger, more detailed, ABMs, both as alternatives to current approaches as well as a 

development of prior forays into this area. In conclusion, a call to action is formulated, both to marketing researchers as well 

as computational economists, emphasizing the interdisciplinary requirements of ABM usage in the field of marketing. 
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1. Introduction 

One of the many challenging tasks faced by the yet 

young science of marketing is that of modelling and, 

ultimately, comprehending consumer behaviour. Indeed, it 

could be argued that this is actually one of the most 

difficult endeavours in economics research in general. This 

observation stems from the fact that the mathematical 

apparatus that economists in general, and marketers in 

particular, have come to rely on is woefully inadequate 

when it comes to representing the dynamics of complex 

adaptive systems[1]. Whilst it is commonly accepted that 

systems made up from humans fully qualify for being 

included in this category, few if any comprehensive tools 

exist that allow one to gain notable insight into their inner 

workings. In the complicated balancing act between 

tractability and informational entropy brought about by a 

particular modelling exercise, the casualty ends up being 

the latter aspect. Through the enforcement of overly 

restrictive assumptions (e.g. hyper-rationality, 

omniscience[2]) or very high-level abstract concepts (e.g. 

broad scope latent variables in Structural Equation Models 

(SEM)[3], approximation as a hydraulic system in System 

Dynamics[4]), models become solvable, albeit not 

necessarily very realistic. Agent-Based Modelling (ABM) 

proposes an alternative, generative approach, which focuses 

on the micro-specification of purposive agents (e.g. 

consumers, firms, managers – roles are not mutually 

exclusive), which through their free, uncontrolled 

interaction generate the dynamics of interest. Members of 

the scientific community seems increasingly keen on 

pointing out that ABM has the potential to greatly expand 

the scope of economics modelling, whilst at the same time 

increasing its depth and thus removing age-old 

limitations[5],[6],[7],[8]. 

A primary bound on the evolution of ABM in economics 

is due to high computational costs. Indeed, part of the surge 

in interest for ABM is attributed to the exponential growth 
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in processor performance associated with the steadfast 

progress of manufacturing technologies, as conjectured in 

Moore's Law[9]. More often than not, authors tend to brush 

the topic of performance aside, and express the conviction 

that the performance scaling will continue its natural course, 

thus making increasingly complicated ABMs tractable[10], 

[11], [12]. This view is mirrored in the frameworks 

commonly employed by researchers: NetLogo[13], 

MASON[14] or Repast[15]. Whilst holding the lion's share 

of applications encountered in the literature, they are all 

geared towards usability, at the expense of performance, 

being written in higher level, interpreted languages (i.e. 

Java, or, more recently, C#), with no aggressive tuning in 

place. A common moniker for the sustained and constant 

growth of single-processor performance has been that of a 

“free lunch”. This captures the basic idea that programs 

could be written sub-optimally, with hardware evolution 

picking up the slack and ensuring that they would 

eventually achieve sufficient levels of performance. 

Unfortunately, whilst relying on the “free lunch” was 

adequate up until early in the 21st century, as outlined in 

the first chapter of[16], power and thermal limits have all 

but stopped single-processor scaling. In an aptly named 

essay[17], Herb Sutter deals with this topic in a 

comprehensive manner, and indicates concurrency / 

parallelism as the new performance vein to be mined. 

Reference[18], due to the same author, fully fleshes out the 

sources of parallel throughput, and the various forms in 

which the latter can be leveraged, with emphasis being 

placed on heterogeneous solutions as being endowed with 

the most potential. Very recent research[19],[20] match this 

description, in recent years Graphics Processing Units 

(GPU) have emerged as cheap, ubiquitous solutions 

available to researchers from all fields. In this context, it is 

not unreasonable to look to GPUs and, by extension, the 

General Programming of GPUs (GPGPU) paradigm as 

future avenues for supporting ABM development. 

Intriguingly, the literature on the topic is relatively sparse, 

and it would appear that in spite of a series of advantages, 

beyond sheer processing throughput, GPUs remain largely 

unexploited by ABM researchers. The juxtaposition of this 

latter dynamic and the high computational costs of 

large-scale ABMs leads to a dearth of such constructs. We 

conjecture that this is a constraint that must be ultimately 

removed, if ABMs are to deliver on their initial promise as 

a solution to problems that have proven intractable with 

traditional modelling tools. In this context, a valid 

observation is that neither of the aforementioned ABM 

specific frameworks is supportive of GPGPU acceleration 

at the time of this writing and, furthermore, the 

opportunities for even basic parallel acceleration are 

limited, in spite of attempts of retro-fitting it: 

1. MASON (uses JAVA) can spawn multiple parallel 

schedulers that can execute concurrently, however it is most 

difficult to ensure race-free execution, thus leading do 

difficult to debug errors – no provisions for GPGPU or 

massive parallelism are present; 

2. the Repast developers have opted for providing a 

separate version focused on high-performance parallel 

computing named Repast HPC (uses C++) – adoption rates 

have been low, because it is more difficult to use by 

non-expert programmers (most synchronization is directly 

under modeller control) – as was the case with MASON, 

GPGPU support is absent; 

3. NetLogo (uses Scala and Java) is purely serial. 

This article pursues two concurrent goals: investigating 

approaches to using GPGPU to accelerate ABM presented 

in the literature, and proposing an alternate, potentially 

superior approach to using GPUs for ABM in general, and 

consumer behaviour research in particular. We note that the 

latter is more demanding on the researchers, mandating an 

inter-disciplinary approach, but is likely to yield more 

comprehensive benefits in the long-run. Clearly, it would 

be folly to aim for an all encompassing analysis, as there is 

a breadth of applications of ABM in economics. As such, 

and as already hinted in the opening phrase, we focus on 

marketing specific models, primarily on those that study 

the dynamics of consumer behaviour. 

We structure our work in the following manner:  

• first, a non-exhaustive literature review is 

presented, aiming to analyse marketing specific 

ABM applications; 

• to explore how to optimally exploit the parallel 

throughput offered by GPUs in the context of 

ABM based marketing research, we study the two 

main solutions demonstrated in the literature, 

which is to say either adhoc implementation of a 

model in one of the Application Programming 

Interfaces (API) currently available or using 

GPGPU accelerated ABM frameworks; 

• we propose an alternative, more involved process 

in which the software implementation is developed 

by the researchers, but instead of directly using 

APIs and thus being forced into a low-level, 

non-portable paradigm, we focus on using 

high-level, hardware agnostic libraries; we argue 

that this latter approach is more supportive of 

novel research that cannot be easily cast within the 

confines of existing frameworks and, at the same 

time, tends to be conducted by non-expert 

programmers; 

• in conclusion, we outline directions for future 

development and potentially optimal patterns for 

minimising friction induced by the uptake of ABM 

in marketing research in general and, more 

specifically, the use of GPGPU accelerated ABM. 

It is our contention that this work, coupled with future 

developments, that will move from broad level overview 

into tangible implementations, will serve to “stoke” the fire 

under ABM based marketing research, thus making good 

on the initial promise of higher explanatory power made in 

the de facto manifest of ABM in social sciences due to 

Joshua Epstein and Rob Axtell[21]. 
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2. Literature Review 

It can be argued that Thomas Schelling's seminal 

work[22], which is generally accepted as the literary birth 

of ABM in social sciences, does include some marketing 

specific work in its 3rd chapter, wherein Akerlof's 

investigation into the market for “lemons”[23] is 

considered from a different, heterogeneous agent angle. 

Another important strand of research, that had notable 

impact on subsequent works, was that conducted into the 

allocative efficiency of markets when the traders are so 

called Zero-intelligence agents[24]. The latter serves as an 

early outline of the power of ABM, and in the sorts of 

insights that can be gained from conducting such analyses, 

as it shows that high market efficiency can be achieved 

even in the absence of elaborate behaviour such as active 

pursuit of optimality through inter-period optimisation. 

Further in the same vein, ABM's applicability to the study 

of complex phenomena such as the self-organization 

property of various markets has been researched as far back 

as the early 1990s[25]. 

Two data-points serve to illustrate the benefits of ABM 

in the analysis of consumer behaviour. Reference[26] 

studies the key phenomenon of “lock-in”, in which 

supremacy on a particular market is achieved by a single 

competitor, making it difficult for consumers to switch to 

another product. Contrary to Zero-intelligence experiments, 

agents are endowed with psychologically plausible decision 

processes, derived from behavioural theories such as those 

of social comparison and imitation. Such traits would be 

difficult to embed in a traditional mathematical model, 

although they do come at an increased computational cost, 

which might be one of the reasons for which a population 

of only 900 agents is used in the simulations. 

Reference[27] is a relatively recent, in-depth into look at 

consumer behaviour through the ABM lens, from a 

different angle, that of the impact of quality variability on 

consumers' confidence, and, by extension, its potential for 

seriously damaging a market. It is also worth noting that 

the social network is taken into account (structure varies in 

accordance to multiple parametrizations spanning the two 

extremes of full connectivity and lack of connectivity), and 

identified as a primary determinant of market stability. The 

authors give substance to a frequently encountered, but 

seldom quantitatively supported claim in marketing science, 

that of the tree-like propagation of consumer experiences 

(e.g. a single unsatisfied customer generates 15 / 20 / 25 

lost sales etc.). Thus, it is shown that aggregating group 

experience through social information leads to more 

balanced assessments and avoids the over-biasing due to 

singular bad experiences. This is yet again a sort of analysis 

that would be difficult to cast into a traditional modelling 

mould, as there is little room for such heterogeneity and 

granularity within the confines of an aggregate 

mathematical construct. 

It is opportune to also point out that the Morgan 

Kaufmann's long-running and widely appreciated 

“Handbooks in Economics” series includes a volume 

entirely dedicated to ABM[28], which dedicates ample 

spaces to discussing topics most relevant to marketing such 

as the modelling of learning processes[29], endogenous 

interactions[30] or market design[31]. 

Table 1. Some marketing research application areas suitable for ABM, reproduced after[10] 

Area Advantage of ABM 

Diffusion of information and innovations Allows individual-level heterogeneity within both adoption decisions and social networks. 

Retail location decisions. Enables integration of individual-level behaviour patterns with geographic information systems. 

Inter-firm relationships, strategy and 

competition. 

Facilitates as many firms as necessary, each firm with firm-level characteristics, and the ability for 

firms to adapt their strategies over time 

Marketing mix models 
Allows the examination of individual-level behaviour patterns and reactions to the various elements of 

the marketing mix. 

Retail and servicescape design. 
Can be used to model individuals moving about and making decisions in a complex retail 

environment. 

 
Possibly the most impressive use of ABM is embodied in 

EURACE[32], which is, to the authors' best knowledge, the 

largest-scale ABM constructed, and aims to represent in 

extensive detail the economy of the European Union. Three 

types of learning agents are included (households, firms 

and banks), interacting through five types of markets 

(consumption goods, investment goods, labour, credit and 

financial assets). Agent counts are orders of magnitude 

higher than what is commonly present in the literature (e.g. 

the upper bound on household count is 107). EURACE is 

intended to be holistic, and to study economic interactions 

as they occur in the context of an over-arching, inclusive 

system. This clearly presents novel opportunities for 

marketing researchers, who could leverage findings from 

multiple threads of investigation and organically integrate 

them in the same analytical tool. A limitation of EURACE 

was that in its fully fledged form it relied on parallel 

acceleration through large-scale computing clusters (local 

or distributed), which limits its usability to researchers that 

can access such constructs. In theory, GPGPU acceleration 

of ABM would lead to such large-scale models becoming 

feasible on local machines equipped with the right 

(comparatively inexpensive) hardware, thus making 

explorations in this directions even more opportune if not 

outright mandatory. Given spatial constraints, we must 

limit the more verbose analysis, however we will point the 

interested reader towards a recent, comprehensive 

cross-section of the topic, due to Rand and Rust[10]. We 

reproduce below, in Table 1, the abbreviated synopsis of 

marketing research areas suitable for ABM: 
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3. ABM and GPGPU 

An in-depth discussion of programming or, more 

specifically, GPGPU, is beyond the scope of this work. We 

direct the interested reader to Chapter 4 from[16] for an in 

extenso treatise of the hardware architecture and to[33],[34] 

for programming paradigms and directions for the software 

side. In a nutshell, GPUs are many-core machines (e.g. up 

to 32 cores on a modern high-end processor[35]), which 

use relatively wide (i.e. 32 or 64 elements in the two 

dominant GPU architectures) Single Instruction Multiple 

Data (SIMD[36]) execution on vector units attached to each 

core to achieve high computational density, and implicitly 

throughput. High-end GPUs are also endowed with 

high-speed memory attached to wide buses, thus offering 

an order of magnitude higher memory bandwidth than most 

CPUs. Finally, in spite of the very impressive theoretical 

performance (e.g. 4 single-precision TeraFLOPs), GPUs are 

available as consumer devices, and thus both widely 

available and competitively priced. This serves to explain 

the explosive interest in levering them as general-purpose 

programmable devices, capable of accelerating a wide array 

of scientific applications. 

Table 2. ABMs using GPGPU[10] 

Reference ABM implemented API / Framework 

[40] 
SugarScape (simplified), 

StupidModel. 
OpenGL. 

[41] 
Mood Diffusion, Conway's Game 

of Life. 
OpenGL. 

[42] Crowd simulation. OpenGL. 

[43] Crowd simulation. Direct3D. 

[44] Crowd simulation. CUDA. 

[45] Crowd simulation. CUDA. 

[46] Crowd simulation. CUDA. 

[47] Crowd simulation. OpenGL, CUDA. 

[48] 
Conway's Game of Life, 

Leadership Model (LDR). 
CUDA. 

[49] Spatial opinion diffusion. CUDA. 

Parallel programming is generally accepted as a 

challenging task, with an extensive span of specific 

challenges that are not apparent when writing serial code. 

In the case of GPUs, this is compounded with the 

heterogeneity of the system, as the GPU is a separate 

processing platform, an accelerator, that has its own 

discrete memory and executes asynchronously. The fact 

that GPUs employ wide-SIMDs serves to further raise the 

challenge, as the extraction of optimal performance implies 

consideration for control flow coherence or independent 

execution across multiple elements. In order to tackle this 

difficulty, most if not all GPU compute APIs, such as 

CUDA, OpenCL or C++ AMP, follow a Single Instruction 

Multiple Thread (SIMT) or Single Program Multiple Data 

(SPMD) paradigm, abstracting away much of the 

complexity[37],[38],[39]. We will not delve into the 

differences between the above listed 3-tuple, beyond noting 

that on a basic level all can be used with success and with 

varying degrees of difficulty, as is evidenced by the 

ever-growing literature on GPGPU. We note, however, that 

outside of the scope of numerical work such as linear 

algebra or image processing, success in using GPGPU has 

been limited. By extension, this also applies to ABM. In 

Table 2, we list the main cases of GPGPU use in ABM 

literature: 

It is easy to observe that the scope of the implemented 

models is rather narrow, and that there is no exploratory 

modelling work. Whilst this observation is not intended 

to diminish the merits of the research into optimal 

parallel implementations of existing models, it is clear 

that there is a rather noticeable gap by comparison with 

the complexity of the models we listed in section 2. 

Indeed, in certain cases the number of agents is up to 

three orders of magnitude higher in the GPGPU 

accelerated case, but these are too simple agents 

engaging in too simple interactions. Excluding the case 

of the zero-intelligence experiments, it appears that the 

needs of marketing researchers are notably more 

complex in what regards agent specification. We outline 

what we consider to be the two causes for this 

discrepancy: 

1. Programming GPUs is challenging: it is unlikely 

that non-specialists, researchers without a specific 

background in Computer Science, are going to invest the 

time into acquiring a skill that is not certain to augment 

their chances for publications and directly support their 

core work; in this context, the use of dedicated 

frameworks is more appealing, as it allows the 

(economics, marketing) specialist to focus on areas 

where his expertise lies, without having to fight what 

seems like an uphill programming battle; 

2. Many data-structures (e.g. linked lists) and 

approaches commonly used by serial ABMs (e.g. 

centralized pseudo-random number generation) do not 

map well, if at all, to the GPU; moreover, at this time, 

GPUs support only a restricted subset of the full set of 

features available on CPUs (e.g. no dynamic allocation / 

deallocation of memory, no runtime polymorphism) it is 

therefore impossible to merely “pilfer” existing code, and 

new code has to be written, however the first constraint 

makes that a seldom feasible solution. 

Clearly, the goal should be a feasible combination of 

the usability of existing and widely used ABM 

frameworks, and the throughput made possible by 

levering GPUs. Otherwise, and somewhat more 

prosaically stated, we aim to have (at least some of) the 

new “free lunch” afforded by the sustained growth in 

parallel throughput, whilst abstracting the latter's 

complexity to the greatest extent possible. We envision 

two approaches capable of reaching this goal: 

1. New frameworks are built by 3rd parties that have 

the programming knowledge required; 

2. Higher-level libraries are used by the researcher(s) 

in order to implement a particular model. 

Out of the two approaches, we expect the first to serve 

as the main vehicle for expanding the uptake of GPGPU 
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accelerated ABM by marketing researchers who are not 

keen on programming (historically, this has been the case 

for serial ABMs too). The second approach, whilst 

decidedly more involved, is also the one that yields 

maximal flexibility and thus is the most supportive of 

highly exploratory work – models that do not fit well 

within what is expressible with a general-purpose 

framework can only be analysed by manually 

implementing them. In what follows, we will detail both 

cases, GPGPU accelerated ABM frameworks as 

represented by FLAMEGPU[50], as well as autonomous 

development and implementation, based on our 

experiences with the latter.  

4. The FLAMEGPU Framework 

FLAMEGPU is the moniker under which GPU 

acceleration is being added to the FLAME framework. The 

initial goal for FLAME was to support molecular / cellular 

level modelling as required by, for example, computational 

biologists. It has grown into a generic ABM framework and 

has been used with some success outside of its initial scope, 

being, quite notably as the baseline for the EURACE 

implementation. 

At the time of this writing, FLAME uses NVIDIA's 

proprietary CUDA API to access the GPU, thus binding it to 

the company's hardware. Work on an OpenCL 

implementation is on-going, so it can be theorised that at 

some point in the future the vendor lock-in will be removed. 

Whilst there are valid reasons for using CUDA (e.g. optimal 

exposure of the hardware, mature tool-chain), we consider 

the requirement for a particular brand of GPU an unfortunate 

constraint that limits the usability of FLAMEGPU to some 

extent. 

Researchers are not exposed to these low-level details 

(unless they choose to): the simulation code is generated 

based on specification written by the modeller in XML with 

extendible schemas. Agents are formally specified as state 

machines with internal memory (dubbed X-Machines). 

Message passing and behaviour are defined through 

functions that rely on state. A set of XSLT code templates are 

used, in conjunction with the model specified in XML, 

during the parse phase in order to generate compilable 

simulation code that is linkable against C based agent 

function scripts. From the perspective of the researcher, the 

latter steps tend to be opaque, therefore insulating him from 

programming details he may have no interest in. An 

exhaustive analysis of FLAME's inner workings cannot be 

fit into the space allocated for this article, but fortunately this 

has already been presented in the literature[51]. It is 

important to note that the performance increases yielded by 

the use of GPUs are very high[50],[51], although we must 

remain wary of potential sub-optimality in the CPU baseline, 

which is rather frequently encountered in such analyses[52].  

To the best of the authors' knowledge, no marketing 

focused ABMs have been implemented using FLAME in 

general of FLAMEGPU in particular, therefore it is difficult 

to forecast how successful such an endeavour would be. We 

note that specifying a model in FLAME is still somewhat 

more involved than in, for example, NetLogo, which might 

serve as a mild deterrent. Moreover, knowledge of its 

existence and features is still scarce, if at all existent, within 

the marketing community. Extensive experimentation will 

be needed before the match between the needs of the 

marketing researcher and the facilities offered by FLAME 

can be gauged. 

5. Developing GPU Accelerated ABMs 

As evidenced in Table 2, on-the-spot implementation of 

ABMs in a GPU API has constituted the main conduit for 

exploiting this new vein of computational performance. 

However, all the enumerated works (excluding the ones that 

use FLAME, which was discussed in section 4) opt for a 

rather low level of abstraction, remaining too close to the 

hardware (e.g. use of primitive containers such as C arrays, 

manual implementations of primitives such as parallel prefix 

scan / sum). In our work we have found this to yield an 

increase in complexity and a decrease of generic power, 

without major benefits in what regards performance (the 

main claimed benefit of avoiding abstraction). In effect, we 

conjecture that the optimal approach to the manual 

implementation of ABMs must rely on higher level 

abstractions, such as the containers and algorithms included 

in the C++ standard library[53]. When new Abstract Data 

Types (ADTs) or algorithms need to be put together, we 

align ourselves with the principles expressed in[54], and 

seek to draw out the most generic characteristics, as opposed 

to tailoring solutions to a single application / problem. For 

this we have found the C++ programming language, and 

especially its template mechanism[55] to be a particularly 

good fit, and have used it extensively. 

Undoubtedly, at this point it becomes important to point 

out that a GPU accelerated equivalent of the C++ standard 

library, or, more specifically, its full complement of 

containers and algorithms, is not available. The closest 

approximation is probably the Thrust library[56], which is 

NVIDIA specific. A second, notably less developed, option 

is represented by the Bolt library[57], which has the 

advantage of vendor agnosticism. We note that even the 

latter, less fleshed out library, offers all the “ingredients” 

required by the GPGPU accelerated ABMs from Table 2, 

and it is straightforward to port them. We will not detail how 

such a port could be carried out, as we deem such an exercise 

merely interesting practice, but rather explore how one 

manually implement an ABM for studying consumer 

behaviour using C++ AMP. The latter represents a library 

and minimal language extension of the C++ language that 

makes GPUs accessible with minimal friction. We use C++ 

AMP as it supports all the C++ language constructs and 

idioms we require, and is aligned with the latest C++11 

standard. 

Let us start from the skeleton of the ABM presented 

in[58], which we modify to consider the propagation of 
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product perception and, implicitly, purchase behaviour. In 

good ABM tradition, our construction commences from the 

bottom up, with the agents, in our case consumers: We 

represent them through an ADT, in effect a class template: 

template<typename Decision_rule, Neighbourhood N>class Consumer { // Member functions and data. };      (1) 

Through the Decision_rule type parameter we 

parametrize the agent's behaviour, going from simple, 

zero-intelligence decisions to elaborate ones based on 

rigorous models such as the Bush-Mosteller[59]. The 

Neighbourhood ADT defines the extent of the agent's 

interaction area and can expose it to queries through public 

member functions. Obviously, this layout also supports 

heterogeneity amongst agents, as nothing prevents a mix of 

agents from co-existing, with differing decision rules and 

neighbourhoods (e.g. leaders / trend setters might have a 

wider neighbourhood and more elaborate decision making). 

Of course, since we use compile-time polymorphism 

through the use of templates, which leads to different 

parametrizations being, in effect, different types as far as 

C++ is concerned, a heterogeneous population would 

require the use of multiple containers, but that hardly poses a 

major problem. All that we require of our Consumer ADT is 

that it exposes a public update() member function, and a set 

of public member functions that provide external, 

non-mutable visibility of agent's state. We use the former to 

update the state of the simulation within each iteration, and 

the latter to compute various statistic quantities necessary 

for deriving insight from the simulation. The agent 

populations are packaged in std::vector<Consumer<DR, N>> 

containers[53], where DR stands for class matching the 

Decision_rule constraints, and N plays the similar role for a 

class matching the Neighbourhood constraints. To pass them 

to the GPU for processing, we wrap the containers in 

instantiations of the array_view class template[39], and then 

schedule parallel execution for the entire set of agents. 

For brevity, we defer going into in-depth programming 

details for an upcoming, yet unpublished work. However, it 

is difficult to regard the traversal of the above listed steps as 

overly challenging. Still, we have found that it is optimal to 

decouple model conception with its effective 

implementation. The former phase is better entrusted to 

dedicated marketing researchers, with limited input from 

computational economists to prevent the elaboration of 

models that are outright infeasible. On the contrary, the 

implementation phase should be undertaken by 

computational economists. Correctness checking and the 

actual experiments are, as is easy to conclude, a mixed effort. 

In closing, we note that if the abstraction level is kept high, 

the resulting ADTs and algorithms can be reused across a 

wide span of models – our Consumer class template can also 

be used to instantiate agents in Sugarscape, or other ABMs. 

6. Conclusions 

In this paper, we have conducted a broad-level analysis of 

the topic of ABM uses in marketing research and the 

emerging field of GPGPU acceleration of such models. 

Whilst there are a number of applications of ABM in 

marketing presented in the literature, we could find no works 

that considered the problem of performance improvement 

through use of parallel programming in general or, GPU 

programming in particular. We identified this as a weakness, 

as the expectation of sustained single-processor 

performance progression is no longer aligned with current 

realities. In this context, we have identified two paths for 

leveraging the parallel throughput of modern GPUs to 

accelerate ABM: using a framework, in this case 

FLAMEGPU, or manually implementing the model by 

using higher level abstractions and libraries. For the latter 

case we provide an overview of how the process could be 

carried out by inter-disciplinary teams that include both 

marketing researchers and computational economists. 

Considering the growing number of opinions that position 

ABM as the next big step in economics modelling, as well as 

the wide scope of applications that have already been 

published in the field of marketing, it would be most 

unfortunate if the potential for development is hampered by 

lack of computational support for larger-scale complex 

ABMs. As such, we hope that our high-level work will 

spawn interest within the marketing community for GPGPU 

usage to speed up ABM. These endeavours should be carried 

out in an interdisciplinary fashion. In our future works, we 

will detail the procedural aspects, as well as demonstrate a 

series of implementations, which we expect to provide 

consistent proof of ABM's merits in the context of marketing 

research, as well as supporting evidence for the approaches 

we studied in this paper. 
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