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Abstract: The central (surface) energy-density, E0 (ER), which appears in the expression of total static and spherical mass, M 

(corresponding to the total radius R) is defined as the density measured only by one observer located at the centre (surface) in 

the Momentarily Co-moving Reference Frame (MCRF). Since the mass, M, depends only on the central (surface) density for 

most of the equations of state (EOSs) and/or exact analytic solutions of Einstein’s field equations available in the literature, the 

central (surface) density measured in the preferred frame (that is, in the MCRF) appears to be not in agreement with the 

coordinate invariant form of the field equations that result for the source mass, M. In order to overcome the use of any 

preferred coordinate system (the MCRF) defined for the central (surface) density in the literature, we argue for the first time 

that the said density may be defined in the coordinate invariant form, that is, in the form of the average density, (3M/4πR
3
), of 

the configuration which turns out to be independent of the radial coordinate r and depends only on the central (surface) density 

of the configuration. In this connection, we further argue that the central (surface) density of the structure should be 

independent of the density measured on the other boundary (surface/central) because there exists no a priori relation between 

the radial coordinate r and the proper distance from the centre of the sphere to its surface [1]. In the light of this reasoning, the 

various EOSs and analytic solutions of Einstein’s field equations in which the central and the surface density are 

interdependent can not fulfill the definition of central (surface) density measured only by one observer located in the MCRF at 

the centre (surface) of the configuration. 
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1. Motivation 

The metric for the static and spherically symmetric mass 

distribution can be written in the curvature coordinates as 

ds
2
 = e

ν
dt
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 − e

λ
dr
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 − r

2
(dθ

 2
 + sin

2
θdφ

2
)                   (1) 

where G = c = 1 (we are using geometrized units) and ν and λ 

are functions of ‘r´ alone. 

The Einstein’s field equations for the metric given by (1) 

can be 

written as 

Rik − (1/2)gik R = −8πTik                          (2) 

where Rik is the Ricci tensor, R is the curvature scalar, Tik is 

the stress- energy tensor and gik is the metric tensor. The 

symbols i and k run from 0 to 3 such that gik = 0 if i ≠ k. The 

T 
00

 component of the stress-energy tensor represents the 

energy-density, E, and T 
11

 = T 
22

 = T 
33

 = −P denote the 

isotropic pressure of the prefect fluid. 

It is well known that in the correspondence limit (the case 

of weak field and slow motion) the field equations given in 

(2) reduce to the classical Poisson Equation 

 ��� � 4��                                            (3) 

Recalling that we have taken G = c = 1, �  is the 

Newtonian gravitational potential and � is the density of 

‘mass’. The solution of (3) for a ‘point’ particle of mass ‘M
´
 

is given by 

� = −M/ 	                                            (4) 

Thus the source of the gravitational field in the Newtonian 

Gravitation Theory (NGT) is the mass density, �, which is 

approximately equal to the rest-mass density, � 0. Thus it 

seems likely that the general relativistic generalization of this 

mass density should be the density of total energy including 

the rest-mass which is called the energy-density, E. However, 
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since E is the energy-density as measured only by one 

observer located in the MCRF which represents the T 
00

 

component of stress-energy tensor T (in index-free form) of 

the perfect fluid given by (2). This would introduce a 

preferred coordinate system (that is, MCRF) in which T 
00

 

was evaluated. In order to avoid the use of preferred 

coordinate systems and to keep intact the coordinate invariant 

form of the field equations (2), it is argued in the literature [1] 

that the whole of the stress-energy tensor T (that is, all the 

components T 
00

, T 
11

, T 
22

 and T 
33

 of T) act as the source of 

gravitational field (or the curvature of the space-time as 

given in the left hand side of (2)). 

2. Methodology 

The TOV Equations ([2]; [3]) resulting from the field 

equations (2) for the metric (1) can be written as 

P´ = −(P + E)[4πPr
3
 + m]/r(r − 2m)                 (5) 

ν´/2 = −P´/(P + E)                             (6) 

m´(r) = 4πEr
2
                                      (7) 

where the prime denotes derivative with respect to ‘r’ and the 

mass function m (r) is given by 

e
−λ

 = 1 − [2 m (r)/ r]                              (8) 

or 


(	)  = 
 4��
�

�
2
dr                                (9) 

The coupled equations (5) - (7) may be solved for an assumed 

EOS or exact analytic relation connecting the radial coordinate 

‘r’ with any of the four parameters appear in (5) - (7), subject to 

the following boundary conditions at the surface, r = R: 

P = P (R) = 0; e
ν(R)

 = e
−λ(R)

 = (1 - 2M/R) = (1 - 2u) that 

ensure the continuity of mass at the surface, m(R) = M, which 

appears in the exterior Schwarzschild solution, viz.; e
ν
= e

−λ
 = 

(1 - 2M/r), for 	 ≥ �. Thus, the total mass as measured by an 

external observer is given by 


(�) = M = 
 4��
�

�
r

2
dr                  (10) 

Equation (10) is analogous to the definition of total mass in 

the NGT. But this analogy is termed as rather ‘deceptive’ in 

the literature [1], because the energy-density, E, is measured 

locally whereas the integral over the volume element, 4πr
2
dr, 

is non local. The external observer measures the total mass-

energy which also includes the (negative) gravitational 

potential energy. The possibility of the removal of this 

‘deception’ is discussed below under the section discussion. 

3. The Exact Analytic Solutions and 

EOSs in the Framework of Einstein’s 

Field Equations 

There are number of EOSs and exact analytic solutions of 

Einstein’s field equations available in the literature [2, 4-7] 

which may be categorized among three categories as given 

below 

Category (A): The total mass, M, of the configurations in 

this 

category depends only on the central density. The EOSs and 

analytic solutions have a positive finite density at the centre 

(e
λ
 = 1) which decreases outwards (so called the ‘regular’ 

solutions) and terminates at the surface together with 

pressure. The well known examples of EOSs in this category 

are polytropic EOSs [8] whereas the analytic solutions in this 

category correspond to Tolman’s VII solution with vanishing 

surface density [2] and Buchdahl’s gaseous model [9]. The 

expression of total mass, for example, for Tolman’s VII 

solution with vanishing surface density is given by 

M = 8πE0R
3
/15 

where E0 represents the central energy-density of the 

structure. 

Category (B): The total mass, M, in this category depends 

only on the finite (positive) value of the density at the surface 

where the pressure vanishes. In such configurations the 

central density becomes infinity (together with pressure and 

e
λ
 ≠ 1) which decreases outwards together with pressure. The 

total mass, M, however remains finite and becomes 

independent of the (infinite) central density. The examples of 

such exact analytic solutions are Tolman’s V and VI 

solutions [2] and the EOS in this category belongs to the well 

known case of non-interacting ideal Fermi gas considered in 

their pioneering work by Oppenheimer & Volkoff [3]. The 

total mass, M, for example, for Tolman’s VI solution is given 

by the simple expression: 

M = 4πERR
3
 

where ER represents the surface density of the structure. 

Category (C): The total mass, M, in this category depends 

on the central/surface density in such a manner that the 

central and surface densities have become interdependent. 

Such structures have a positive finite density at the centre (e
λ
 

= 1) which decreases outwards with pressure and remains 

finite positive at the surface where the pressure vanishes. The 

examples of exact analytic solutions in this category are 

Tolman’s IV solution [2] and the solutions obtained in [10-12] 

etc. (see, for example, [13] for more references and 

discussion), whereas the examples of EOSs in this category 

belongs to the case of stiffest EOS [14], dP/dE = 1 (in 

geometrized units) and the EOSs of strange quark matter (see, 

for example [15] and references therein). The total mass, M, 

for example, in the solution [12] is given by the expression: 

M = 8X(3 + X)R/14(1 + X)
2
 

where X = CR
2
, C is a constant, and the central and surface 

densities are connected by the relation 

(ER/E0) = (9 + 2X + X
2
)/9(1 + X)

3
 

This interdependent feature between the central and the 
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surface densities is clearly in contradiction with the argument 

mentioned in the literature that “there is no a priori relation 

between the radial coordinate ‘r’ and the ‘proper’ distance 

between the centre to the surface of the configuration” [1] 

which was never realized till to date. Because it clearly 

follows from this definition that measurements of two local 

observers located at different boundaries (centre and surface) 

cannot be connected simply through the radial coordinate ‘r’. 

However, the author reached to the same conclusion on the 

basis of a different argument [16]. He showed that if the 

central and surface densities have become interdependent, the 

total mass, M, resulting from the configurations discussed 

under category (C) will be different from the total mass M 

which appears in the exterior Schwarzschild solution. 

4. Discussion 

In the light of the above findings, it follows that the total 

mass, M, obtained for the solutions and EOSs belong to the 

categories (A) and (B) depends only on the central (surface) 

density (and turns out to be independent of the surface 

(central) density) of the configurations. This feature is fully 

consistent with the definition of centre (surface) density 

mentioned in the literature that - it is the density measured 

only by one observer (MCRF) located at the centre (surface) 

of the configuration. The total masses M of the 

configurations belong to category (C), on the other hand, are 

found to be interdependent of the central and the surface 

densities. This feature, therefore, cannot be considered to be 

consistent with the definition of the locally measured values 

of the central and the surface densities which should be 

independent of each other as argued above in sec. 3. This fact 

follows from the definition mentioned above which states 

that “there is no a priori relation between the radial 

coordinate ‘r’ and the proper distance between the centre and 

the surface of the configuration” [1]. 

Yet the dependence of the total mass, M, only on the 

central (surface) density further needs explanation, because 

the central (surface) density which is measured in the 

preferred coordinate system (the MCRF at the centre/surface) 

would become inconsistent with the coordinate invariant 

form of the field equations (5 - 7). Therefore, in order to keep 

the definition of the central (surface) density intact which 

follows from the literature [1] and to express it in the 

coordinate invariant form consistent with the field equations, 

we argue for the first time that the central (surface) density of 

the configuration may be defined in the coordinate invariant 

form of the ‘average (mean) density’, Eave, of the structure, 

(3M/4πR
3
), that turns out to be independent of the radial 

coordinate r and depends only on the central (surface) 

density of the structure. Except the category (C), this feature 

is common in the structures belong to the category (A) and 

(B). Furthermore, the use of the ‘average’ density in (10) of 

the total mass M would also resolve the ‘deception’ related 

with the analogy of the total mass as defined in the NGT. 

The ‘equivalent’ homogeneous density (average density 

Eave) sphere of total mass M and radius R as measured by an 

external observer, corresponding to (10) is given by 


(�) � � � 
 4�
�

�
Eave r

2
dr                         (11) 

By using the relation connecting the rest-mass density, ρ₀, 
to the energy- density, E [17] and remembering that the rest- 

mass density is approximately equal to the mass density 

defined in the NGT [1], [5] we get 

ρ₀ = (P + E)e
(ν − ν(R))/2

                               (12) 

Applying the boundary conditions at the surface (P = 0, e
ν
 

= e
ν(R)

), for homogeneous density (Eave) sphere (12) yields 

ρ₀= Eave                                           (13) 

The substitution of (13) into (11) yields 


(�) = � = 
 4�
�

�
ρ₀ r2 dr                         (14) 

which is completely analogous to the form of total mass as 

defined in the NGT. 
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