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Abstract: In Quantum Mechanics, one knows that the wave function interpretation is probabilistic. We previously 

established that any particle scalar field is the cause of its existence. Here, one examined the plane solution regarding a moving 

particle in vacuum, through the relativistic formalism. It appeared the following. (i) The solution presents four alternatives, like 

in Dirac unified formalism; when searching stationary solutions of the system vacuum-particle or the system vacuum-

antiparticle. (ii) Considering the former, each spinner component shows the interaction of one particle charge with three 

vacuum fermions of spin-½; each oriented along one space direction. Furthermore, this allows deducting the triple nature of 

any gauge fermion. (iii) Each solution case is definable with a same wave front width. This determination became possible 

from the vector companion of that wave function one introduced before. Here, this points out the existence of transverse time. 

(iv) Both functions let emphasizing the existence of a third fundamental field of long range, which is identifiable to the 

fundamental spin field. (v) This unites the particle spin and orbital momenta and bears in addition a magnetic-like field, which 

is yet unknown. (vi) According to the charge, a particle field is observable in wave phenomena, from the manifestations of its 

gauge fermions or gauge bosons; when ejected from their stationary states by a perturbation… At last, the results highlight the 

quantum composition of wave functions, the spin-field patency, and the wave nature manifestation from five differentiable 

fields. 

Keywords: Duality Field-Matter, Klein-Gordon Equation, Quantum Mechanics, Quantum Vacuum, Spin Field,  

Transverse Time, Wave Front, Wave Function, Wave Nature 

 

1. Introduction 

The wave function of Schrodinger equation became 

effective since the dawn of Quantum Mechanics. It is the sole 

uniting the wave nature of particles, whatever the tested field 

is (see [1, 2]). This explains its importance in modern 

physics, owing to its remarkable predictions (see [3-5]). 

Nevertheless, its probabilistic interpretation hides the 

physical reality one can expect to find out from the simplest 

case of a free particle. The same function appears in Klein-

Gordon equation, which takes count of the relativistic 

relation energy-momentum [6, 7]. The equation has the form 

of any classical wave equation (see [8]). This should suggest 

that the related wave must necessarily correspond to a 

physical field. In classical physics, the elastic field 

propagation is often understandable from successive elastic 

shocks between unit cells of the host medium. One should 

take count of this reality since this is the seat of wave 

propagation. One can understand that such a process did not 

seem applicable at the time, without recalling the former and 

hypothetical existence of the aether. For some reasons 

however, P. A. M. Dirac established a more adapted equation 

for a wave function having four components [9-11]. The 

equation solution brought out the existence of fermions and 

antifermions. These lasts permitted to foresee antimatter 

existence for the first time. This result suggested 

reconsidering the aether existence at the new light [12, 13]. 

Nowadays, this is surely what one can call “quantum 

vacuum”. In this context, Dirac fermions should represent 

vacuum unit cells. However, one does not yet know the 

relatable field. 

From both field equations of Duality Field-Matter [14], 

such fermions appear too. They are describable by the 

components of both scalar and vector gauge fields satisfying 
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these equations. This allows obtaining four gauge couplings. 

The differentiation conditions of fields at cell interfaces, in 

the model of vacuum lattice, led to identifying the common 

four fundamental fields. Because of this, we qualified the 

original field by the unified field. In the duality occurrences 

[15], it already appeared that each differentiated field 

originates a couple of scalar and vector wave functions. In 

addition, a fifth gauge coupling appeared which suggests the 

existence of a fifth fundamental field. In this paper, one then 

aims to emphasize this existence and the nature of Dirac’s 

fermions from both wave functions exploration. 

Hence, it will be useful to examine the evolution stages of 

the scalar wave function, while researching to complete the 

missing information. Then one will discuss the approach 

consequences. 

2. Notable Occurrences in Quantum 

Mechanics 

One considers here a perfect particle of mass m that moves 

freely at the speed	�� along abscissa axis in quantum vacuum. 

The method here consists in reexamining the wave function 

solutions from the classical formalism to the relativistic one, 

while applying the elementary mathematics rigor 

emphasizing physical events. 

2.1. In Classical Formalism: Information Loss 

The Hamiltonian and impulse are the main operators in 

Quantum Mechanics. These originate quantization in linked 

systems. If the vector column	�����, �, 	
, ��

� designates the 

spacetime position in the particle atmosphere, they 

respectively read. 

� = �ℏ ��� ; 	� = −�ℏ∇���                         (1) 

If E is the particle energy and ����, 

 is the wave function 

that describes vacuum perturbations, one writes the equation 

�� = ��                                   (2) 

This solution is 	����, 

 = ����
 exp�−��
/ℏ
. For a free 

particle of momentum	 �� ! ,  " ,  #
, one has in general 

�� =  �� 

That is 

$%&
%'− (ℏ ��! ����
 =  !����
− (ℏ ��" ����
 =  "����
− (ℏ ��# ����
 =  #����


                           (3) 

From the method of variable separation, this yields the 

determination of	����
 and one finally obtains 

����, 

 = �)*+,ℏ�-�+.�/�
; �) ∈ ℂ                      (4) 

This corresponds to the simplest plane wave. In x-

direction, one has 	 ��� =  !� . Note hence that the second 

member does no longer depend on the variables y and z. 

There is information loss in both directions transverse to the 

motion. Consequently, the operator definitions are surely 

incomplete! 

2.2. In Relativistic Formalism 

By calculating the quantity 	��2 − �2
� , one obtains 

Klein-Gordon equation from energy-momentum relation, i.e. 

3∆ − 567 �7��78� = 396ℏ 82�                       (5) 

This classical analysis allows completing the previous 

formalism, as one can expect. One can also remark that the 

relation of energy-momentum is not valid only for 

elementary particles; Special Relativity does not imply such a 

constraint. That is, the action quantum could be different. In 

Duality Field-Matter indeed, one showed that both usual 

operators (1) are redefinable to near a constant. In that 

equation, this comes to substituting the particle real mass by 

an effective mass; which can be different than the former. 

One implies this here. 

2.2.1. Information Gain 

Remark that the previous equation also obtains with the 

opposite operators, such that, in principle, one must consider 

the definitions 

� = ±�ℏ ��� ; 	� = ∓�ℏ<��                       (6) 

which take count of antiparticle existence (sign – in H). This 

means that the wave equation is valid for four combinations 

of operators. The four possible wave functions could have 

suggested Dirac to linearize the previous equation in four 

dimensions. 

With respect to the motion direction (Ox), that equation 

becomes equivalent to the system 

=3 �7�!7 − 567 �7��78� = 396ℏ 82�3 �7�"7 + �7�#78� = 0	                     (7) 

One often forgets the second one, perhaps for 

simplification. Here, the solution must combine progressive 

and regressive components. For the Hamiltonian of the 

particle defined with the positive sign, this takes the form 

����, 

 = ���, 	
�@A*(B! + @+*+(B!
	e+CD�E = -ℏ ; F = .Gℏ 	 ;        (8) 

The wave propagates in one sense or another at de Broglie 

celerity 	�H = E/F  i.e. 	�H = �2/� . If the progressive 

component was expectable from the classical formalism, the 

regressive one was not. However, this can become manifest 

in particle backward emissions, e.g. during the so-called 

braking radiation, when an electron passes close to a nucleus. 

That solution is then inevitable. After substituting the 

expression in the second equation of (7), the method of 
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variation separation allows setting 	���, 	
 � �"��
. �#�	
 , 

such as one gets 

�7JK�"7 > �7JL�#7 � 0                         (9) 

Thence it suits deducting that 

�7JK�"7 � M;	�7JL�#7 � �M; 	M ∈ 1                (10) 

After integrations, the solutions can write under the forms 

N�"��
 � >MO�� � �)
2 > P"Q�#�	
 � �MR�	 � 	)
2 � P#S               (11) 

For a perfect particle, space is homogenous around. One 

must have 	�"��
 � �#�	
. One gets the circle equation of 

center (�), 	)) and radius	T, such as 

N�� � �)
2 > �	 � 	)
2 � T2
T � UP# � P"	               (12) 

This lets writing 

��V
 � y) � T. cos�V
; 	�V
 � z) � T. sin�V
       (13) 

where in θ is a parameter, which cannot depend on the usual 

time t (see next section). To reduce the number of integration 

constants to the necessary ones, it is enough to note the 

dependence of both constants defining the radius; the origin 

consideration as well. One must then set 

�) � 0;		) � 0;	P" � 0	 ⇒ P# � T2               (14) 

The solution (8) finally reads 

����, 

 � M2�2�T2 � 	2
�@A*(B! > @+*+(B!
	e+CD�    (15) 

with 	�2 > 	2 � T2 . There are three remaining integration 

constants, accordingly to the number permitted by the system 

of both differential equations. The wave front width is 2R. It 

will appear that the radius is equal to the wavelength. In 

practice, a wider wave front implies some harmonics of the 

most general solution; that given here corresponds to the 

fundamental one. 

2.2.2. Wave Function Having Components 

Given that the particle must not radiate energy so that its 

motion remain uniform, its suits considering stationary 

solutions. One obtains these for both conditions 

@+ � >@A or	@+ � �@A                       (16) 

Since both cases are independent, the pure solution is 

translatable by the vector 

_�A���, 

�+���, 

` � �a _	b. α2cos	�F�
	�d. α2sin	�F�
	` e+CD�            (17) 

The first member represents the particle state in Dirac 

sense; expressible in an abstract base of Hilbert space. Each 

component is relatable to the probability to find the particle 

inside a given interval of abscissas. If necessary, one should 

find that the amplitudes go to zero with the interval 

extension. For illustration, Figure 1 shows for instance the 

relative amplitude of the second component. One can 

remark that the particle must be inside the cylinder defined 

by the oscillating amplitude envelope, whose diameter is 

the wave front width. 

 

Figure 1. Amplitude of the wave function component	�+���, 

 in space: in 

each case (see	F� interval∀ n ∈ ℕ), the set of curves try to indicate the 

amplitude (A) envelope. The projection of curves on the plane (Oyz) is a 

circle (see 2nd and 4th cases). The different curves are symmetric with 
respect to y and z. These 4-dimension representation shows the way the 

amplitudes vary on one space period, i.e. one wavelength; the arrows 

indicate these increasing and decreasing, about the function	g�h�F�
. 
In addition, note now that the Hamiltonian of the relatable 

antiparticle, defined with the negative sign, also produces 

two analogous solutions into	�>�E
). The four solutions are 

then relatable to Dirac wave function in his unified 

formalism. As one already knows, what is findable with the 

particle is deductible for its opposite. 

2.2.3. Wave Function as Spinner 

When applying the stationariness conditions above, both 

independent solutions can write under the initial form of 

spinner 

_�A���, 

�+���, 

` � α2ya 3b 	bd �d8ijjkjjlm
_e+C�D�+B!
e+C�D�AB!
`           (18) 

The indicated matrix is writable as the following linear 

combination of Pauli’s matrixes	n( and the identity matrix o	, 
such as 

n � p+q2 ��n! > o
 > pAq2 rn" > n#s                 (19) 
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Here, one has to choose the axis orientations such as 

n! = 30 ��� 	0 8 , n" � 31 	00 �18 ; n# � 30 11 08  

These matrixes correspond to fermions-½ relatively to 

both possible orientations of each. Such fermions can only 

constitute vacuum unit cells mentioned in the introduction, 

while o identifies the particle (see result section). In the 

expression of σ in addition, the matrix combinations are 

striking. These express the fact that the interaction is 

different in the motion direction and in both perpendicular 

directions. Like in material media, vacuum must be 

submitted to compression stresses and to shear stresses 

respectively. This implies the existence of both 

longitudinal and transverse fields (see below); manifestly, 

the latter must originate the wave front. Consequently, it 

is deductible that one must physically have (d u :b) in 

general. 

Because of this and in order to reduce the number of 

integration constants (see (17)), one can set 

=p+q2 � sin2�v

pAq2 � cos2�v
 	⇒ wb � 1													d � cos�2v
               (20) 

When assuming that	v ∈ R0, yS in complement to the angle 

θ above, one can infer that both angles would define an 

angular quantity in spherical coordinates. With regard to the 

spin implication here, this should match the particle angular 

momentum (see result section). 

Moreover, inasmuch as there is no privilege direction for 

such a vector, it is expectable that this rotates in course of 

time. That is, both angles should vary in function of a non-

standard time (see below). However, because of a value, the 

second angle only implies the component	�+���, 

, which is 

more probable. This is the microscopy of the scalar wave 

function. 

3. Other Dualistic Occurrences 

This section completes the previous formalism in allowing 

determining the wave front radius, from the wave function 

companion already notified. Then it deals with both functions 

connection. Here, the origin of that companion is introducible 

otherwise for continuity reasons. 

From the general solution of plane waves indeed (see for 

instance (4)), one can define the wave planes by	��
 �  ���
/� � 2yz;	∀z ∈ { . When taking the differentials of both 

members, one gets to 

 � |/�|� � �                                   (21) 

Along the motion direction (Ox), de Broglie celerity 

defines by 	�H � }�/}
 , such as 	 !�H � � . Both other 

derivatives being non-zero, a transverse celerity should exist 

(see spinner solution above). This must match with the 

existence of vector wave function. Figure 2 shows both 

relatable transverse waves, with respect to the longitudinal 

one. 

Given that both wave functions must be independent in 

behavior (they must respect different equations), the last one 

is definable with a new spacetime. This must only differ from 

the first, considered by default, through transverse time. The 

transverse space coordinates must however be identical to the 

longitudinal ones, owing to both functions coexistence (see 

below). 

 

Figure 2. Three kinds of wave propagation along x-direction: the sphere 

represents the particle at a given position; its size is only illustrative and the 

associated arrows try to indicate the resulting vector between the spin 

momentum (horizontal) and the orbital one (transverse), foreseeable from 

the wave function microscopy. The short vertical lines represent the case of 

one longitudinal wave. The vertical or horizontal sinusoids delimit the cases 

of transverse waves. The arrows indicate the possible propagation senses in 

interference case. 

3.1. De Broglie-like Transverse Celerity 

With regard to the deductions (13) excluding the default 

time, one has to assume the existence of transverse time t’, 

such as 

}�/}
′ � �TV� sin�V
; }	/}
′ � TV�cos	�V
        (22) 

This defines the celerity of module 

�9 � TV�                                    (23) 

On the other side, this is certainly the one already 

emphasized by Duality Field-Matter for the field-theorem 

demonstration. It is relatable to any particle charge and is 

definable by the ratio between the kinetic energy ( � ���2�� � 1
) and the momentum ( ! � ���), i.e. 

�9 � 67� �1 � 5�
                             (24) 

Contrarily to de Broglie wave packet which corresponds to 

a normal dispersion (� � �H), the corresponding wave packet 

corresponds to an abnormal dispersion (� � 	 �9), which can 

imply other transverse components. For photons or gravitons 

(� � � ⇒ �9 , �H � �
, there is no dispersion while the wave 

front exist! 

3.2. Wave Front Radius 

Since the related motions of vacuum fermions is not 

always on a plane but unrolls in course of transverse time, the 

relation (23) has no connection with a plane motion; the 
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speed	V�  is then interpretable as the frequency with regard to 

the particle kinetic energy. It suits putting	� = ℎV� ; where h is 

Planck’s constant. With the previous definition of	�9 , one 

then deducts that 

T = 2�B                                 (25) 

That is, the wave front radius is equal to the wavelength 

(see solution (15)). 

3.3. Connection Between Wave Functions 

If	�����, 
�
	designates the wave function companion of ψ, 

one already showed that both form the 4-vector (��, ��/�), at 

cell interfaces of vacuum lattice, where occur differentiations 

(see relation (10) in [15]); both relatable gauge fields are 

there proportional and one should have here 	
’ ≡ 
 . With 

adaptation of the former relations to any particle (substitution 

of c by	�H), this vector then respects the gauge relations 

N�H2<���� = ����	���� = �<��� 	with w∂� = ∂/ ∂t� ≠ ±1	                  (26) 

The special case where	� = +1 corresponds to gravitation 

while that of	� = −1 is to electromagnetism; Lorentz’s gauge 

appears besides for the electric charge conservation. When 

substituting ψ by the spinner solution, one obtains a vector 

spinner solution. From the second equation, it appears that	� 

composition is also that of each	�� component. By taking in 

addition the suitable derivatives of either equation in time or 

space then subtracting the results, one gets to the equation 

system 

w□� = 0□�� = 0�� ; 	□ = ∆ − 56�7 �7��7                         (27) 

A similar result is obtainable with the differentiations of 

both gravitational and electromagnetic fields (see Table 2 in 

[16]). These are equivalent to Klein-Gordon equation for 

stationary solutions. Because of this new differentiation, 

there exists a third fundamental field of long range; if η is 

unique (see result section). 

3.4. Extending Gauge Coupling in the Current Duality 

Out of cell interfaces however, the complete equations of 

both previous quantities are derivable from the gauge 

relations of Duality Field-Matter [14]. These become 

generalizable by substituting the alternative ± by	±�, at the 

end of a procedure of gauge obtainment; in order to take 

count of the new differentiation; one could introduce this 

before but the reason did not seem obvious at the time. One 

must then have the following relations in gauge fields	��〉 =����, ���/�
 and	��〉 = ���� , ���/�H
. 
N ∂���� ± �<���� = 0��	<����� ± ������/c�2 = 0 ; 	� ∈ ℂ∗                (28) 

These combinations define from now on five fundamental 

fields. One can show that the choice of two different 

coefficients � does not match a free particle case. Therefrom, 

it suits setting the relations 

N��� = ∓�@�<���	�� = +@����	 ;	N��� = ∓�@������	�� = +@���2∇�����	 	 ; 	@� ∈ ℂ∗       (29) 

These show for any field that the scalar gauge field (g) is 

the cause of the scalar wave function variations in spacetime; 

the vector one (�) is that of its companion variations. One 

can see that in spinner representation, one obtains two 

possible expressions of each component of gauge field. Each 

one must correspond to either spin-½ projection of related 

fermions. 

4. Results and Discussion 

This section brings out the happenings of previous 

sections. It screens the relatable consequences, with regard to 

the particle field-nature alias its wave nature. 

4.1. General Occurrences 

One determined the expression of the scalar wave function 

along with its front as detectable in experiments (see sub-

subsection 2.2.1). When considering a non-radiating particle 

in vacuum, one obtained Dirac-like solution in stationary 

waves (see sub-subsection 2.2.2). The four possible 

components are separable into two of the test particle and 

two others of this antiparticle. Regarding the particle itself, 

the relatable spinner allows understanding the microscopy of 

that function. 

From the expression (19) indeed, Pauli’s matrices must 

necessarily represent vacuum fermions, such as these 

correspond to vacuum excitation at the particle presence (see 

identity operator). For instance, if one considers that the 

particle is electrically charged, the identity operator should 

represent this characteristic. It would excite vacuum in the 

motion direction, which spontaneous generate three photon 

fermions; each oriented along one space direction. Hence, the 

operator identity must indicate one of the particle 

characteristics. The causalities defined by the relations (29) 

sustain this and show that the scalar gauge field (���, ���/�) of 

the particle originates the wave function. Each spinner 

component then defines either a fermion or an antifermion. 

This applies in both perpendicular directions too (see 	�� 
meaning from (26)). Thence, note that either particle is 

finally a triplet of vacuum fermions. Certainly, this reveals 

the enigma origin of gauge-fermion triplicity. 

4.2. The Fifth Fundamental Field 

One also showed that a wave front width of the scalar 

wave function is determinable when emphasizing otherwise 

its vector companion (see subsection 3.2). This lets deducting 

the existence of a new field of long range (see subsection 

3.3). To identify this, one can refer to the missing 

fundamental characteristic of particles in fundamental field, 

i.e. the spin. Indeed, one knows that a particle can have an 

orbital momentum, in addition to its intrinsic spin (see [17, 

18]). This is transverse to the motion direction and is then 
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linkable here to the vector wave function, or better to the 

vector gauge field	|��〉; the preceding one being to the scalar 

gauge field	|��〉 (see above). 

Indeed, contrarily to both other fields of long range (η=1), |��〉 admits an electric-like field, which is definable by the 

expression below; the signs correspond to those of the 

deductions (29). 

���� = −<���� ∓ ����� 	⇒ ���� = −@��1 − �
��<���	      (30) 

The magnetic-like field 	���� = <�� 	× ���  is zero. It suits 

defining ����  as the spin momentum, i.e. such as	[E�] = [ℏ]. 
The orbital momentum must as well be definable from the 4-

vector of 	���  such that 	[E�] = [ℏ] . The magnetic-like 

field 	���� = <�� 	× ���  exists of course. This originates the 

particle rotation, which attests an internal activity; therefore 

its eventual compositeness. This sustains the triplicity of 

fermions indicated above. In addition, this vector unit 

is 	[��] = [�bgg][}�g
bh�*]  and is understandable as 

originated in time by a transverse momentum. Until now, one 

does not yet know this transverse quantity. However, this 

surely justifies the adopted concept of spin, postulated early 

by Pauli. One can hence infer that the new differentiation 

certainly corresponds to the spin field. 

Moreover, this regards, not only the indicated vector, but 

also the dualistic scalar fields given by, in regard to the same 

deductions. 

= � = ±<����� + 567 ����	 � = ±<����� + 56�7 ����� ⇒ ¡ � = @� 3−�∆� + 567 ��2�8 � = @��−� + 1
���r<����s	  (31) 

The second one ( �) is deductible by analogy from the first 

in transverse time t’ one perhaps does not yet know in 

common theories. The spin field has then more components 

than the other fields, because of the coefficient η to be 

determined. Its scalar behavior is surely that remarkable in 

anisotropic media as spin waves one knows since long. 

However, the concept of fundamental spin field does not 

appear in other quantum field theories, one already knows 

incomplete, though remarkable in many other works (see 

[19-21]). Here, its notable existence sounds theoretically 

explicit. In absence of other characteristics, this is surely the 

first subtle field, which precedes the manifestations of 

gravitational, electromagnetic, weak and strong fields. For 

instance, it allows understanding that the particle proper 

rotation must originate the first field. 

4.3. Manifested Particles in Wave Phenomena 

Recall now that though the particle field nature, 

explainable by the wave function, comes from the sole scalar 

gauge field, the transverse one is implied. That is, both scalar 

and vector gauge fermions, or their host bosons, must be 

observable in experiments, e.g. from the diffraction 

phenomenon through a hole. Accordingly to the dualistic 

gauge couplings of fermions/antifermions, gravitons are 

couples (−, −), photons are couples (+, +), weak bosons are 

couples (−, +) and strong bosons are couples (+, −). Hence, 

the complete description of the wave nature must imply a 

specific charge. From the wave front content, the 

manifestable particles are then either gauge fermions or 

gauge bosons. It sounds obvious that the formers are only 

possible if the field originating the phenomenon is instable, 

like the weak or strong field. 

In the current duality, those sub-particles are fundamental 

if the particle speed 	�  is equal to that of light 	�  (case of 

photons); otherwise, they are non-fundamental. Their 

manifestations are only understandable when they go out of 

their brief stationary states, after the wave front perturbation. 

With an electron for instance, massive photons must produce 

a diffraction image, if this particle electromagnetism was 

disturbed. As well, non-fundamental weak bosons must 

produce such an image, if the electron weak field was 

disturbed. However, given that weak bosons are instable, one 

could observe, after these decays, a diffraction image in the 

motion direction and surely fermion emission in the 

perpendicular direction! The first event should come from 

scalar fermions, which are non-fundamental antileptons. The 

second should come from vector fermions, which are non-

fundamental leptons. It is also expectable that the particle 

wave nature be observable from spin bosons; which are 

surely stable, like those of gravitation or electromagnetism. 

This is surely the case, when any other field is credible. 

5. Conclusion 

From a free particle in motion, one showed that the 

relativistic wave function emphasizes enough information. 

The stationary solution of the system particle-vacuum allows 

deducting four Dirac-like solutions; two regard the particle 

while two others regard its antiparticle. Each alternative 

component of spinner represents the particle interaction with 

three fermions of quantum vacuum, owing to the three 

Pauli’s matrices in the solution. However, the complete 

determination of the common wave front width required 

considering the vector companion of the scalar wave 

function. This represents the transverse interaction with 

quantum vacuum in transverse time. In addition, both 

functions express a new differentiation of gauge coupling, 

which implies an additional field of long range. 

By examining the result, it also appeared the following. (i) 

The particle interacts with vacuum via its fields or charges. 

This medium reacts accordingly to each by fermion triplets, 

oriented in the three space directions; these must surely 

oscillate. (ii) Such fermions are surely those of the unified 

field, which structures quantum vacuum; this governs both 

field equations of Duality Field-Matter. (iii) Furthermore, it 

appears that each scalar or vector gauge fermion of the 

particle field originates these vacuum fermions. This allows 

deducting the triplicity origin of any manifested gauge 

fermion; this constituted an enigma in physics. (iv) That new 

differentiation corresponds to the spin field. Both intrinsic 

spin and orbital momenta of any particle match electric-like 

fields. (v) They have a magnetic-like companion one does not 

yet know! This sustains in addition the existence of 

transverse time. (vi) The complete description of the particle 
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wave nature is observable through manifestations of gauge 

fermions or gauge bosons of disturbed field. The formers 

should be manifest with instable fields. 

This study completed the previous one on the physical 

origin of wave functions. It raised the number of fundamental 

fields to five, with regard to the known characteristics of 

particles. However, it seems that another fundamental field of 

long range may exist! These are our findings. 
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