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Abstract: This paper compares the post-Newtonian approximation (PNA) to general relativity (GR) for the relativistic 

perihelion shift calculations. Nelson’s PNA predicts 5/6 of GR’s perihelion shift. Using the original Universal Time (UT), 

Shapiro’s accurate, highly elliptical orbit for Icarus corroborates PNA while GR exceeds the error boundary. The Icarus result 

was λ = 0.75 ± 0.08 where λ=1 for GR and λ=0 for Newtonian theory. Studies of Mercury’s perihelion shift used timescales 

equivalent to lunar Ephemeris Time (ET) with the present Système International (SI) second, the basic time unit for all atomic 

timescales like International Atomic Time (TAI). Atomic timescales run faster than UT, because the SI second is 2.468E-8 s 

shorter than the original UT second. This is confirmed by the two observational reports using the original calibration data of 

1955-1958, by the Improved Lunar Ephemeris used in the original calibration, by the linear divergence of TAI versus UT 

during 1958-1998, and by the 2.1 ms mean excess between a UT day and TAI day during 1958-1998. Time dilation was not 

included in the lunar theory, which is confirmed by timekeeping authorities. So, the undilated lunar ET second is shorter than 

Earth’s proper UT second. An ET timescale creates an additional, artificial perihelion shift for Mercury of 6.433”/cy. Other 

renowned relativists used a 1973 update for Earth’s general precession that now excludes the GR prediction while including 

the PNA prediction if the artificial Mercury shift is included in the calculations. Apparently, Nelson’s PNA is more accurate 

than GR. 
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1. Introduction 

Einstein derived his special theory of relativity by 

assuming that the laws of physics are the same in every 

inertial reference frame and the speed of light in every 

direction is constant [1]. This theory maintains the same 

equations for electrodynamics with the Lorentz 

transformations for all inertial reference frames. Maxwell’s 

equations predict that the speed of light in vacuum is a 

universal constant, but the Galilean transformation would 

predict different speeds of light between an absolutely 

stationary reference frame and a uniformly moving (i.e. 

inertial) reference frame. Einstein took a crucial step to 

construct a relativistic theory of gravitation when he 

introduced the Principle of Equivalence of Gravitation and 

Inertia [2, 3, 4]. He used it to calculate the red shift of light in 

a gravitational field. He became dissatisfied with his progress 

and began collaboration with Marcel Grossman around 1913. 

Einstein incorporated the Principle of Equivalence with the 

metric tensor formalism by requiring the physical equations 

be invariant under a general coordinate transformation, not 

just by a Lorentz transformation [5]. During the next two 

years, Einstein presented to the Prussian Academy of Science 

various papers that gave the metric tensor and calculated the 

solar deflection of light and the precession of Mercury’s 

perihelion [5, 6] and later summarized his work in 1916 [7]. 

Einstein developed three tests of his general relativity 

(GR): {1} perihelion shift of a planet, {2} the solar deflection 

of light and {3} the gravitational red shift of light. There can 

be various relativity theories based on various metrics. The 

Parameterized Post-Newtonian (PPN) theories rely on ten 

parameters that were developed by Will and Nordtvedt [8, p. 

98-99] and are denoted as γ, β, ξ, α1, α2, α3, α4, ζ1, ζ2, ζ3, 

and ζ4. If one applies the full conservative laws to any PPN 

theory (i.e. energy, momentum, angular momentum and 

center-of-mass motion), then every α and ζ term must be 

zero [8, p. 113]. Thus, only three parameters vary between 
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PPN theories if conservation laws are applied to PPN 

gravitational metrics. For example, Einstein’s GR theory has 

γ = β = 1 and ξ = 0 in the PPN formalism [8, p. 115]. The 

gravitational red shift experiment is a test of Einstein’s 

Principle of Equivalence, and it does not specifically test GR 

as all PPN theories are based on the Equivalence Principle [8, 

p. 166].  

However, one can derive the red shift formula for the 

Pound-Rebka experiment without relativity with ∆v ≈ gh/c 

where g is Earth’s local gravitational acceleration of 9.8 

m/s2, h is the height between the photon emission and 

absorption (i.e. the four-story physics building in Harvard), 

and c the speed of light in a nongravitated vacuum [9]. It has 

been shown that all freely-falling reference frames are 

noninertial due to tidal forces existing in any finite domain of 

such frames [10]. This means the laboratory was accelerated, 

and the actual speed of light is altered slightly with ∆v ≈ ∆c 

due to the local gravity. With λ as the wavelength, ν as the 

frequency, h as Plank’s constant, then ∆c/c ≈ ∆(λν)/λν ≈ ∆ν/ν 

≈ h∆ν/hν ≈ ∆E/E ≈ gh/c
2
. This is the red shift that was 

observed in the Pound-Rebka test.  

The solar deflection of light from a distant star has been 

observed to be 1.75”, with high precision using pulsars, 

which verifies the GR prediction [11]. Classical physics, 

when properly derived, can obtain the same prediction for the 

solar deflection as GR [12]. This leaves the perihelion shift 

as the last “classical” test of relativity. The precession of the 

orbital perihelion using a Schwarzschild solution [5, p. 197] 

is  

∆φ = 6π �ʘ�
	(��
�)                                   (1) 

where a and e are the semimajor axis and eccentricity of the 

orbit, respectively, G is Newton’s gravitational constant, and 

Mʘ  is the mass of the Sun as the planetary masses are 

insignificant contributors. I. I. Shapiro wanted to test (1) 

using a highly elliptical orbit to verify the eccentricity 

dependence within the prediction.  

2. Relativistic Determination of the 

Orbital Fits of Icarus 

Shapiro et al [13] chose Icarus for its large orbital 

eccentricity and period with its close approaches to Earth to 

observe how well its orbit compared to the predicted 

relativistic effects on perihelion advance. All calculations 

were performed in a coordinate system whose origin was at 

the solar barycenter with the axes set by the mean equinox 

and equator of 1950.0. The day was chosen as the unit of 

coordinate time (CT) with CT = 32.15 sec + A1, where A1 

was the atomic time kept at the U. S. Naval Observatory 

(USNO). The second was 1/86400 of a CT day. The model 

for Earth’s rotational motion included the accepted 

international nutation and precession matrices for that period, 

the rotation model included the polar motion offsets for the 

rotation axis, and the values of Universal Time (UT) were 

related to A1 through the USNO time service bulletins. 

Shapiro converted all observations into UT, since many 

photographic observations from various observatories were 

time tagged in Greenwich Mean Time (GMT)—a earlier 

designation for UT. A dimensionless parameter λ was used to 

determine how well the orbital motion conformed to the 

predicted effect with the perihelion (unity for GR and zero in 

Newtonian theory). The researchers received 342 

photographs taken by 17 observatories, and the photographic 

plate accuracy typically achieved 0.1 sec of arc or better. 

In the first solution, only the orbital elements of Icarus and 

λ factor were estimated with all other parameters and initial 

conditions held fixed. The λ factor, estimated at 0.75 ± 0.08, 

was allowed to only influence Icarus’ orbit while the Earth’s 

orbit for the observer was based on the correctness of GR (λ 

= 1). The formal standard error was obtained by assuming 

each declination and right ascension observation had a 

standard error of 1 arc sec, although most observers believed 

the plates were not worse than a few tenths of an arc second. 

As Shapiro et al wrote,”… either GR was incorrect or 

something in the theoretical model or observations differed 

from their presumptions”.  

So, the search went on to look for the source of the 

deviation in λ from being the ideal 1. Solutions were 

obtained with a variety of different subsets of data included 

in the analysis. When essentially all of the 1968 data were 

omitted, the result for λ changed. Solutions 2 and 3 as shown 

in Table 1 are typical of those results, which are not near 1.  

The estimated parameter set was widened to include the 

initial conditions of Earth’s orbit. Solution 4 was λ = 1.10 ± 

0.20. The error was increased mainly by the high correlation 

(-0.8) between the estimate for λ and that for the Earth’s 

semimajor axis, a⊕. Note that the correlation of increasing λ 

means a decrease in a⊕. A smaller orbit means a smaller 

period, which, if divided up in the same number of time 

units, results in shorter seconds. (This possibility agrees with 

the fact that the atomic second was calibrated to coordinate 

time with an undilated second, rather than the UT proper 

timescale and its average UT second.) Shapiro et al estimated 

a partial set of Earth’s orbital elements including its 

semimajor axis with Icarus’ orbital parameters. Solutions 5 

and 6 are given in Table 1. However, Earth’s orbital 

parameters are far less well determined through the Icarus 

data than with the combined radar and optical observations 

provided by other sources to Shapiro et al. So, other error 

sources were examined for the low value in λ. One 

hypothesis was Icarus could be a comet fragment that had 

outgassing or dust emissions that might perturb its orbit. As 

no visible evidence revealed a comet’s tail and a 

nongravitational model would be hard to test, this possibility 

was not pursued.  

The plausible source was the FK4 star catalogue may be 

severely distorted with respect to a truly inertial system. To 

test this assumption, three additional parameters were 

included: equator, equinox and declination biases. Solution 7 

includes the equator and equinox parameters added to the 

original set of seven, which the Icarus data were expressed. 

Solution 8 included all three reference system parameters 
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with the original set of seven. Additional variations in the 

data set did not affect the results significantly from the results 

of Solutions 7 and 8. As a further check on λ results, radar 

and optical observations of the Sun and inner planets were 

added to the Icarus data and appropriate initial conditions and 

parameters were added to the estimated parameters. In 

particular, the mass of Mercury was estimated and separate 

constants of λ were introduced for Icarus’, Mercury’s, and 

Venus’ orbital motions. Solutions 9 and 10 for λ for Icarus 

are in Table 1 with the three Icarus reference system 

parameters excluded or included, respectively. Shapiro et al 

concluded that the anomalously low value for λ was due 

virtually to distortions of the FK4 reference system to get the 

positions of Icarus. 

Table 1. Solutions for λ Parameter Using Different Estimation Criteria. 

Solution λ parameter Estimated Parameters or Solution sets 

1 0.75 ± 0.08 Icarus’ 7 orbital parameters (all data) 

2 0.79 ± 0.08 Icarus’ 7 orbital parameters (subset data) 

3 0.73 ± 0.08 Icarus’ 7 orbital parameters (subset data) 

4 1.10 ± 0.20 Icarus’ 7 orbital parameters Earth’s 7 orbital parameters 

5 0.89 ± 0.19 Icarus’ 7 orbital parameters Some of Earth’s orbital parameters including Earth’s semimajor axis 

6 01.23 ± 0.20 Icarus’ 7 orbital parameters Some of Earth’s orbital parameters including Earth’s semimajor axis 

7 0.85 ± 0.08 Icarus’ 7 orbital parameters Equator and equinox of reference frame 

8 0.95 ± 0.08 Icarus’ 7 orbital parameters Equator, equinox and declination biases 

9 0.80 ± 0.08 Icarus’ 7 orbital parameters Add Sun, Mercury and Venus data Exclude reference frame biases 

10 0.96 ± 0.08 Icarus’ 7 orbital parameters Add Sun, Mercury and Venus data Include reference frame biases 

 

Since that report, FK5 and other star catalogues have been 

developed. One major concern was to correct the FK4 catalog 

for any possible distortions in the stellar locations. However, 

the transformation between FK4 and FK5 star catalogues is a 

simple rotation matrix that is an equinox correction of +0.035” 

in right ascension at B1950 for all stars in the FK4 system to 

the FK5 system [14, p. 167-169, 505]. The FK5 also corrected 

the FK4 catalog for proper motions of 0.085”/cy and 

precession by 1.10”/cy. The reference frames for each 

catalogue have orthogonal axes with no distortions found in 

the FK4 catalogue in any major sectors. Thus, the last four 

solutions are discounted as the severe FK4 distortion in 3 

coordinates does not exist to explain the lower fit of λ. Shapiro 

et al had an initial result of λ = 0.75 ± 0.08, because UT was 

the proper timescale used in that study. Shapiro el at did not 

use the A1 timescale (i.e. identified by Shapiro as coordinate 

time C. T. with a constant offset) in the analysis.  

Shapiro and his team are expert relativists and 

observational astronomers. They crosschecked their results of 

Icarus to be consistent. Solutions 4, 5, and 6 in Table 1 

involve the change in Earth’s semimajor axis, which is 

heavily correlated (-0.8 per [13]) to the parameter λ, meaning 

if one decreases Earth’s orbital period with a shorter 

semimajor axis in these fits by dividing the orbital year with 

the same number of second time units, one obtains a closer fit 

of the Icarus observations to GR’s prediction of the 

perihelion shift using shorter seconds. It will be shown later 

in this paper that using shorter second time units (e.g. C. T. or 

equivalently the lunar Ephemeris Time or atomic seconds) 

than the required proper second time unit (i.e. the original UT 

second) will obtain an artificial increase in the predicted 

perihelion advance for Mercury.  

3. Brief History of Universal and 

Ephemeris Timescales 

The timescale standard used by all civilizations prior to 

1900 was apparent solar time that was refined into mean 

solar time. The Earth’s rotation made the length of day vary 

by the observer’s latitude due to the 66.5° tilt of the Earth’s 

rotational axis with respect to the ecliptic plane and due to 

the elliptical orbit of Earth revolving around the Sun, which 

requires the equation of time. Sundials determine apparent 

solar time, and the variation of the day is corrected for the 

local latitude and equation of time with an analemma. John 

Flamsteed, the first Astronomer Royal of the Greenwich 

observatory, had determined tables of the equation of time 

around 1667, but delayed publication until 1672. In July 

1676, he resided at the Greenwich observatory, and 

Greenwich Mean Time (GMT) was begun. Flamsteed later 

determined the Earth’s rotation with his tables was more 

accurate than his best pendulum clocks at Greenwich. So, 

Earth’ rotation was the time standard for over 2 centuries to 

maintain GMT by taking meridian transits of the stars to 

obtain the sidereal day and adjusting that with the equation of 

time to obtain the mean solar day. Pendulum clocks were 

calibrated and updated regularly to maintain the mean solar 

day, as Earth’s rotation was the standard time regulator. The 

second was exactly 1/86400 of a mean solar day as the basic 

time unit. It was assumed that Earth’s rotation rate was 

always uniform. 

The term Universal Time (UT) was officially documented 

at the International Meridian Conference of 1884 [15] 

through a US congressional act, which called for a “standard 

of time-reckoning throughout the globe”. Resolution 5 stated 

“That this universal day is to be a mean solar day”, and 

Resolution 4 states that the initial meridian for measuring 

longitude would be Greenwich. Thus, mean solar time at 

Greenwich and Universal Time would be synonymous with 

GMT relative to midnight.  

Simon Newcomb, the chief astronomer of the USNO, 

suspected that Earth’s rotational rate was variable, especially 

when Chandler documented that Earth’s spin axis wobbled 

[16]. Eventually, Earth’s rotation was determined to be 

variable against a few very precise pendulum clocks, and 
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later, quartz oscillators. Using over 60000 observations of the 

solar longitude from 1750 through 1892, Newcomb 

published the Tables of the Sun [17]. After obtaining the 

mean solar longitudes by adjusting for the equation of time 

and the Chandler wobble and fitting a parabola through the 

data, Newcomb gave the following expression [18] for the 

geometric mean longitude of the Sun (referred to the mean 

equinox of date): 

2
279 41'48.04" 129602768.13" 1.089"L T T= ° + + .    (2) 

T in the formula is measured in Julian centuries of 36525 

ephemeris days since 1900. The length of the UT second is 

calculated as a fraction of the tropical year beginning at 1900 

January 0, 12h ET, together with the fact that this particular 

year contained:  

���×��×��
���������.�� × 36525 × 86400 = 31556925.9747	seconds. (3) 

Divide 86400 UT seconds per solar day into this number 

of seconds to get 365.2421987 solar days in the year 1900. 

The solar day is based on Earth’s rotation with respect to the 

mean Sun, which varies around the average of 361.01456+ 

degrees. Sidereal days are in actual 360 degree rotations from 

fixed star to fixed star. There is exactly one more sidereal day 

per year than there are solar days, which results in the 

sidereal day of 1900.0 having 86164.09055+ s. It is noted 

that the true of date rotation rate of 7.292115855E-5 rad/sec 

is derived from (3). For the rotational rate, divide 2π radians 

by the number of seconds in a sidereal day from 1900.0. The 

important point is time in (2) is UT, because the times were 

equivalent to GMT, there was no other worldwide time 

standard, and the observations were compiled over 142 years 

to fit the frequency term in (2) to that level of precision. It 

should be noted that (2) includes the tidal friction effect that 

slowly decelerates Earth’s rotational rate, since it was a 

polynomial fit of observations after correcting for Earth’s 

elliptical orbit through the equation of time. When the stellar 

meridian transits for UT are adjusted for polar motion (i.e 

Chandler wobble), the resulting timescale UT1 is obtained. 

(Hereafter, UT designates the technical timescale UT1.) 

In 1948, Clemence published a specific proposal [19] to 

use (2) as the fundamental standard of UT that would be 

smoother than direct observations via stellar transits between 

adjacent days. The International Astronomical Union (IAU) 

approved (2) as the definition for Ephemeris Time (ET) with 

its epoch of 1900.0 at the 1958 General Assembly in 

Moscow. This solar ET is synonymous with UT. Equation (2) 

is Newcomb’s parabola between the solar mean longitudes 

and UT time tags. A few minor problems with the solar ET 

are related to technical issues in the determination of a 

tropical year and a sidereal year, which depend upon the 

adopted system of astronomical constants, particularly the 

constant of precession and the constant of aberration [20, p. 

82]. The far larger practical issues made it difficult to observe 

ET by the motion of the Sun and impractical to get a timely 

precise determination of ET, which may take years after the 

observations, to set a precise ET time tag. Despite the 

Moon’s highly complicated, perturbed orbit, the Moon has 

13.37 orbits per year and is easily observed against the stellar 

background for direct determinations of a lunar ET.  

Because the behavior of the analogous residuals in the 

mean longitudes of Mercury, Venus, and the Moon were all 

correlated with those of the Sun, Spencer Jones and other 

astronomers and geophysicists became convinced that the 

error was not in the theories but was connected to UT, as 

Newcomb and other before him has suspected [21]. Through 

the efforts of de Sitter and Spencer Jones, the time 

corrections for the mean longitudes were documented [22, 

23] with the tidal friction effect of 22.44”/cy
2
 (as determined 

from their work by Clemence) was added to the lunar orbit 

[19]. The Earth’s rotational deceleration has been determined 

independent of timescales, and the first-order calculations of 

the lunar tidal friction effect is very close to this lunar orbital 

deceleration term [24]. 

Brown’s lunar theory, which was derived strictly from 

Newtonian principles with all the modifications listed by 

Clemence [19], was soon adopted as a second form of ET. To 

keep this section brief, refer to Deines and Williams [25, 

Sections 1 & 2] for details of all the modifications to 

Brown’s lunar theory, which eventually became the Improved 

Lunar Ephemeris (ILE) [26] used to calibrate the cesium 

clocks. It fell to Markowitz and Hall of the USNO to obtain, 

from lunar observations, the values of ET needed to calibrate 

the cesium atomic clocks that were maintained by Essen and 

Parry at the National Physical Laboratory (NPL) in England. 

The calibration effort lasted between 1955.0 through 

1958.25. In 1967, the IAU approved the result as the 

definition of the Système International (SI) second, which is 

the basic time unit in International Atomic Time (TAI) [27]. 

Markowitz et al wrote, “A determination of the frequency of 

cesium in terms of the second of Ephemeris Time (E. T.) was 

made jointly by the National Physical Laboratory, 

Teddington, and the U. S. Naval Observatory, Washington. 

The frequency is 9,192,631,770±20 cycles s
-1

 of E. T. The 

second of E. T. is identical with the prototype unit of time 

defined by the International Bureau of Weights and Measures 

in 1956” [27]. So, the current SI second matches the lunar ET 

second and provides continuity between the lunar ET and 

TAI timescales [20]. It was later shown that the lunar ET 

second and the SI second differed by less than 1E-10 second 

after 30 years of the calibration [28]. So, for all practical 

purposes, the author considers the lunar ET second identical 

to the SI second. 

Because Brown’s lunar theory was derived strictly from 

only Newtonian laws including the Newtonian gravitational 

law, time dilation was never included in the Improved Lunar 

Ephemeris (ILE). ]. “There was no consideration of 

relativistic effects in the first applications of the new atomic 

standards in establishing an atomic time scale.” [29]. Deines 

and Williams computed the time dilation effect that is 

missing in the ILE and computed the dilated second (alias the 

original UT or Earth’s proper second) is 2.4676E-8 seconds 

longer than the undilated second (alias the lunar ET or 

Earth’s coordinate second) [25]. The ILE itself corroborates 
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this fact [26]. The proof is documented in [25] and repeated 

here for the convenience of the reader. Two expressions for 

the Moon’s mean longitude are LM and *L, which are based 

on time in Julian centuries of UT and ET, respectively. It is 

clearly stated in the ILE that the determination of ephemeris 

time would be based on *L, not LM, in almost all 

calculations. Considering two lunar positions separated by 

the sidereal period of the lunar orbit, then LM(UT2) – 

LM(UT1) = 2π =*L(ET2) - *L(ET1). Only considering the 

linear terms expressed in LM and *L, one obtains 

approximately the mean motion equation: 

n�
UT� , UT�� � n
ET� , ET��
∗ .                  (4) 

As nM > *n, the time interval ET2 – ET1 must be 

numerically larger than UT2 – UT1. Since both intervals 

represent an identical span of time between these two events, 

the unit of ET must be smaller than the unit of UT to make 

the time count ET2 – ET1 larger. For arbitrary time intervals, 

(∆ET - ∆UT)/∆ET = (nM -*n)/nM = 2.292E-8. This is close to 

the calculated time dilation, since (4) considers only linear 

terms. The conclusion made in [25] is that the lunar ET has a 

shorter second than the original mean UT second, and the 

explanation is that time dilation was not compensated in the 

ILE. The solar ET was defined by a polynomial fit using 

direct transit observations tagged with the original UT, but 

the lunar ET ephemeris theory was derived strictly from 

Newtonian physics that makes no allowance for time 

dilation. 

The very team that precisely calibrated the lunar ET 

second for the SI (or atomic) second later reported from the 

same data of lunar observations, cesium frequencies and UT 

observations that the UT second was longer than the lunar ET 

second [30, 31]. The calibration for the cesium clock to the 

ILE started January 1955 and lasted 3 ¼ years. (For brevity, 

only [30] will be discussed.) Figure 1 illustrates that the 

average UT second is longer than the ET second as compared 

to the standard cesium frequency, which is defined as 

9192631770 cycles [27]. (UT2 in Figure 1 is the adjustment 

made to UT1 for the seasonal changes in the length-of-day 

interval compared to the mean UT day, but this periodic 

compensation averages out over a year.) Note that UT 

seconds are all larger than that standard cycle number for SI. 

 

Fig. 1. Frequency of the caesium resonance in terms of UT2. 

One can extrapolate some interesting relationships. The 

UT second is longer than the lunar ET second, so it would 

take fewer UT seconds than ET seconds to span a given time 

interval, and the total UT count decreases proportionally to 

the total ET seconds as the time span increases. The cycles 

per UT2 second will increase linearly as shown in Figure 1. 

Between 1955.0 and 1958.25, the elapsed cycles increase for 

each UT2 second that is accumulated. If 1958.25 (the end of 

the calibration operation) represents the final UT2 second 

count, then (1+2.468E-8) x 9192631770 = 9192631997, 

which is about 47 c/s off of the extrapolated 1958.25 

intercept in Figure 1.  

The size difference between the original UT (alias GMT or 

solar ET) second and the SI (alias lunar ET or atomic) second 

can be found in at least 9 different timing anomalies. Again, 

for brevity, the simplest example is found in the divergence 

between TAI and UT during the interval of January 1958 

through December 1998. TAI was 32 seconds ahead of UT, 

so there were inserted 32 seconds in the atomic timescale 

called Coordinated Universal Time (UTC) so that UTC 

remained within 0.9 seconds of UT. The TAI epoch was set 

initially to be identical with UT on 0 Jan 1958, but it became 

readily apparent that TAI was steadily diverging ahead of UT. 

With 32 seconds over 41 years, the divergence rate is 2.473E-

8 s/s, which is within 0.2% of the calculated size difference 

of 2.4676E-8 s/s due to time dilation [25]. Also, the size 

difference between the UT and SI seconds also explains the 

excess LOD. The mean excess LOD has been 2.1 ms 

between 1958 and 1998. Multiply the number of seconds per 

day by the predicted size difference to get 86400 x (-

2.4676E-8 s/s) = 2.132 ms. It has been assumed incorrectly 

that tidal friction was the cause [20], but Deines and 

Williams confirmed that tidal friction was accurately 

compensated within the ILE after showing first-order 
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calculations of the conservation of angular momentum 

transfer to the Moon are nearly the empirical adjustment of 

the lunar orbital deceleration [24]. So, the cause must lie 

elsewhere. The divergence of TAI compared to UT between 

1958 and 1998 is based on the daily meridian transits of the 

stars to complete a mean sidereal day, and the meridian 

transit observations using Photographic Zenith Tubes (PZT) 

at Washington, DC, and Richmond, FL, are completely 

described in the processing by Markowitz [32]. The 

important point is the operational epoch for UT was 

advanced daily except for very infrequent cloudy conditions 

at both locations. This allowed the daily observations in the 

UT excess length-of-day (LOD) beyond an atomic day over 

decades, which periodic variations were found in daily, 

weekly, semimonthly, monthly, bimonthly, seasonal, 

semiyearly, yearly, and decadal intervals. Deines and 

Williams determined that tidal friction would be 12 orders 

too small to be detected in daily data (2E-15 s in Earth’s 

rotation after 1 day compared to the mean 2.1 ms LOD 

difference between UT and TAI). The International Earth 

Rotation Service changed the processing of UT by adopting 

Very Long Baseline Interferometry (VLBI) data from radio 

telescopes and new formulas and processing in 1999 to 

replace the PZT meridian transit operations. Unfortunately, 

no overlap of operations was allowed due to budget cuts to 

verify that the new VLBI processing ever replicated the 

accuracy of the PZT meridian transit operation for 

determining UT. 

When one uses TAI as the timescale instead of the original 

UT timescale, there will be 77.87 s difference between the 

timescales after a Julian century (36525 UT days x 

86400/day x -2.4676E-8 s/s). This will cause an artificial 

perihelion shift for Mercury to advance 6.433”/cy more, 

which will be explained in Section 5.  

4. Post-Newtonian Approximation 

Compared to General Relativity 

Initially, the observed Mercury perihelion shift of 

42.56”/cy reported by Clemence [33, 34] in 1943 and 1947 

nearly fits the 43.03”/cy predicted by GR. Clemence wrote 

[34], “T is the time required for one revolution of the 

planet… and T [is] measured in seconds.” Unfortunately, he 

was completely silent in both papers whether he used UT or 

Ephemeris Time (ET) for the timescale. The most likely 

option was Clemence used ET for his analysis. In 1948, 

Clemence presented the formulation and theory that defined 

ephemeris time as a timescale (although he initially called it 

Newtonian Time) by using Newcomb’s formula for the mean 

motion of the apparent Sun that was calibrated from decades 

of observations [19]. The empirical formula predicted the 

Sun’s apparent position with the independent parameter as 

time, which the formula was actually Earth’s ephemeris 

revolving around the Sun in the solar system reference frame 

with the origin at the solar barycenter (i.e. center of mass). 

The formula could be used in reverse to assign a time given 

the observed position of the Sun, hence the name Ephemeris 

Time (ET).  

The PNA that is appropriate for an observer on Earth’s 

surface [35] is compared with GR for evaluating a key 

relativistic test—perihelia shift. Weinberg [2, p. 230-232] 

gave a proof that his Einstein term (9.5.17) produces the 

identical result as GR for the precession of perihelia, which 

he designated as φ0. Equating his (9.5.16) to the final result 

of (9.5.17), the precession per revolution is: 

∆/� = 0 123
14

15
16 7/�8

� = 69 :ʘ;
<                      (5) 

where L is the semilatus rectum of the orbit, G is the 

gravitational constant, and Mʘ is the mass of the Sun [2, 

p.232]. Weinberg wrote, “Since /�  changes slowly, the 

change in /�  in one revolution can be determined by 

integrating 7/� 7=⁄  over one period, keeping φ0 fixed in the 

integrand, and using for 7/ 7=⁄  the Keplerian formulas.” [2, 

p.232]. The integration of dφ over one revolution is relative 

to a fixed inertial frame, but 7/� 7=⁄  is positive in 

observations of Mercury’s perihelion. Integration over one 

orbit may be tiny, but integration spanning a century of 415 

orbits of Mercury is not insignificant. Weinberg also wrote, 

“If 	7/� 7=⁄  is positive, then the precession is in the same 

sense as the direction of the planet’s motion” [2, p.231]. This 

confirms 7/� 7=⁄  advances in the same direction as dφ/dt, 

which Weinberg’s proof strictly means 	∆/ ≡ / − /� <69AʘB/D. This means the PNA is strictly less than the GR 

prediction. The perihelia value from the post Newtonian 

approximation will be evaluated next.  

5. Relativistic Time Dilation Using a  

Post-Newtonian Metric 

Nelson derived the general relativity (GR) space-time 

metric and equation of motion with respect to an accelerated, 

rotating frame of reference in the presence of a gravitational 

field in a post-Newtonian approximation (PNA). He applied 

the results to obtain a test particle’s motion with many mass 

points as generalized by the Einstein-Infield-Hoffmann (EIH) 

equation of motion for a noninertial observer. The complete 

metric combined gravitational and inertial effects as a 

solution to the field equations. The gravitational terms are not 

simply added, due to the gravitational-inertial coupling. The 

metric was fully derived without a simple rotation of axes 

used in other post-Newtonian approximations. This metric 

fully applies to an observer on Earth’s surface. There is no 

restriction, rotational or translational, on the motion of the 

observer’s coordinates [35]. Nelson derived the relativistic 

equation of motion, but not time dilation for a rotating, 

accelerated observer.  

Two timescales found in Einstein’s theory of special 

relativity are proper time, τ, that is, the time kept by an 

observer, and coordinate time, t, the uniform independent 

variable of the equations of celestial mechanics. According to 

Einstein, an inertial frame is a coordinate system where 

Newton’s mechanical laws hold and is equivalent to 



 International Journal of Applied Mathematics and Theoretical Physics 2017; 3(3): 61-73 67 

 

Einstein’s definition of a resting frame [36]. In celestial 

mechanics, the barycenter of the solar system usually 

represents the origin of the nonaccelerating reference frame 

to which orbital motions are referred. If Einstein is correct, 

the Newtonian equations of Mercury’s solar orbit are correct 

for a closed orbit (without external perturbations) in 

Mercury’s inertial frame using Mercury’s proper time. An 

Earth observer’s proper time would not match Mercury’s 

proper time, which would cause an apparent shift in 

Mercury’s perihelion due to the difference in time units due 

to the difference in gravitational potentials, dynamical 

accelerations and orbital velocities.  

Adapt the work of Nelson [35] to establish the proper time 

of the observer. Nelson developed a post-Newtonian metric 

with signature (+,+,+,-), which sets g00<0. Following 

Ohanian & Ruffini [37, p. 322], take ds
2
 = - c

2
 dτ2

, where s is 

the space-time arc length and c is the speed of light in a 

vacuum. Nelson established the components of the metric 

tensor for an observer undergoing translational and rotational 

accelerations and subject to both scalar and vector 

gravitational potentials. These conditions are typical for an 

observer on the surface of the Earth orbiting around the 

barycenter of the solar system.  

Nelson used an iterative solution of Einstein's field 

equations to obtain directly the generalized metric containing 

gravitational, inertial and mixed gravitational-inertial terms. 

In this generalized derivation, space-time was assumed to be 

locally curved and gravitational effects of local matter were 

explicitly described in terms of the Newtonian potential and 

standard post-Newtonian scalar and vector potentials. The 

resulting post-Newtonian space-time metric gαβ  to order 4 

is: 

( ) ( )2 41 2 / for a Cartesian frameij ijg cφ δ ε= − + Ο  

( ) ( ) ( )2 3 5

0
1 2 / / /

j jj
g c r c cφ ω ε= − × + + ΟU  

( ) ( )( )
( ) ( ) ( ) ( )

2 22 2 2 4 4 2 2

00

2 4 4 6

1 / 2 / 2 / 4 / 1 2 / /

2 / 4 / /

g c c c c c c

U c c c

ϕ ϕ ϕ

ϕ ε

− = + ⋅ + + + Ψ − − ×

− × ⋅ + ⋅ + ⋅ + Ο

W r ω r

ω r W r W grad χ

 

where W is the time-dependent translational, acceleration of 

the observer's frame relative to an inertial frame, 

ω  is the time-dependent angular velocity vector of the 

observer's spatial frame rotating relative to the inertial frame,  

φ is the classical Newtonian gravitational potential external 

to the observer, and 

r is the range vector from the accelerated observer's origin 

to any object. 

In the accelerated, rotating frame, the potentials U, χ, and 

Ψ are further defined in Nelson’s paper [35], but these terms 

do not contribute to second order of c to develop the time 

dilation equation.  

Let the inertial frame be at the solar barycenter where the 

gravitational potential φ = -µ/r with the reduced mass µ by 

ignoring the other gravitational perturbations due to other 

bodies in the solar system. The translational centripetal 

acceleration is W = -µr/r
3
. Retain the first and second order 

terms with three fourth order terms to get the following 

metric: 

( ) ( ) ( )2 4 21 2 / 1 2 /ij ij ijg c cϕ δ ε ϕ δ= − + Ο ≈ −  [Only 
ij ij

g δ≈  actually contributes.] 

( )( ) ( ) ( )2 3 5

0
1 2 / / / /

j jj j
g c c c cϕ ε= − × + + Ο ≈ ×ω r ω rU  

( ) ( ) ( ) ( )
( )

2 22 2 2 4 2 4 4

00

22

2 2

1 / 2 / / / 2 /

1

g c c c c c

c c

ϕ ϕ ϕ ε

ϕ

− = + ⋅ + + − × + ⋅ + Ο

×⋅ + ≈ + − 
 

W r ω r W r

ω rW r
 

Substitute the above metric directly into the metric equation.  

( ) ( ) ( )22

2 2 0 0 0

2 2

2
1 2 / 1i j j

ij j

x
ds c dx dx x dx dx dx dx

c c c
ϕ δ

 ⋅ + Φ  = − + − + −    

ω rW r
ω r  

Substitute 0dx cdt=  and apply the chain rule. 

( ) ( ) ( )
22

2 2 2 2

2 2 2 2

2
1 1 2 /

j i j
ij

j

x dx dx dx
ds x c c dt

dt dt dtc c c c

δϕ ϕ
 ⋅ +  = − + − − − −  
   

ω rW r
ω r  

Note again that ,

j jdr dx

dt dt

  = 
 

 and 

2

0 .
i j

ij

dx dx dr
for i

dt dt dt
δ  = ≠ 

 
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( )
2 2

2 2 2 2 2 2

2 2

1
1 1 2 /

d
ds c c x dt c d

dtc c

ϕ ϕ τ
 ⋅ +    = − + − − − − = −    
     

W r r
ω r  

Divide by c
2
 and use the relationship for the rate of change of a vector, 

inertial body

inertial body

d d
x x

dt dt

   = = + = +   
   

r r
v ω r v ω r  

Ignore all fourth order terms, which are numerically 

insignificant to the second order terms in the weak 

gravitational potential and with low velocities. The above 

equation is reduced to  

2 2
2 2

2 2
1

v
d dt

c c

ϕτ
 ⋅ +  = + −  
   

W r
 

Take the square root approximation to second order and 

obtain: 

2

2 2 2

0

1
2

T

Gravity v
dt

c c c

ϕ
τ

⌠



⌡

 ⋅= + + − 
 

W r
            (6) 

Several assumptions are adopted to simplify Equation (6): 

1. the origin of the inertial frame is at the center of mass of 

the Sun by ignoring the planetary masses and any planetary 

perturbations to the orbits, 2. Mercury is reduced to a point 

mass located at Mercury’s center of mass, 3. the scalar 

potential is evaluated using the Sun’s gravity field only, and 

4. a Keplerian ellipse is the model for W. From the last 

assumption, E = FG = −μF/r�  and E ∙ F = φ = −μ/r , 

where µ is the reduced mass between the Sun and Mercury. 

For the elliptical orbit, integration is best done using the 

eccentric anomaly E. The pertinent equations after solving 

Kepler’s problem for an elliptical orbit are: 

v� = L
	
�M
	NOPQ
��
	NOPQ , R L

	S Tt − tV
WXY
ZXO[\ = E − e	sinE , and 

r = a(1 − e	cosE)	where a is the semimajor axis and e is 

eccentricity. Substitute v
2
, r and the derivative of E with 

respect to t. Take the definite integral over one anomalistic 

period with τ0 = tperihelion at 0 radians and t = 1 orbital period 

at 2π radians to get: 

τ − t = 	− `
�
√L	
N� Eb�

�c = −5π √L	
N�                (7) 

Using the heliocentric gravitational constant for µ (since 

Earth’s mass is 6 orders smaller than the Sun’s) and the mean 

distance of Earth’s orbit (1 Astronomical Unit in meters) 

[20], the Earth’s time dilation is -0.77875 s per anomalistic 

year as published [25]. Adjusting the result by the standard 

tropical year (365.24219/365.25964), the time dilation for 

Earth is -0.77871 s of lunar ephemeris time per tropical year 

[25]. Use (7) to calculate Mercury’s time dilation for an Earth 

observer, which causes the observable perihelion shift that 

Newtonian physics does not include. The semimajor axis for 

Mercury is 0.387098 A. U., and Mercury’s τ − t =

−0.48449 P
OWdXe = −6.3744E − 8 revolution/orbit as Mercury 

has a period of 87.96925 days in terms of Earth’s tropical 

year (365.2421987 days) [20].  

τ − t = −4.0052E − 7 rad
orbit ×

1	Mercury	orbit
87.96925d × 86400	s/d 

τ − t = −5.2696E − 14	 rads × 180°
π	rad ×

3600"
1° × 100	yr

cy
× 365.2422	d

yr × 86400	s
day  

(τ − t)�
WNkWl = −34.30	"/cy	or	(t − τ)�
WNkWl =34.30	"/cy                            (8) 

Weinberg gives the general relativistic shift of perihelia (1) 

as ∆φ = �πm
	(��
�)	where the gravitational radius R = ��

N� = o
p�. 

Kepler’s third law provides a parameter change by μ =
4π�a�/T�. Substitute for µ to get the resulting equation [38]: 

∆/ = �q8Sr�
s�p�(��t�)                             (9) 

The PNA in Equation (7) is modified by replacing the 

expression for µ. The undilated time interval will cause the t 

timescale to run faster than the τ proper timescale, so: 

= − u = 10	9�v�
wx�  

Use the relationship of mean anomaly versus orbital 

period, where 2π radians of mean anomaly = T in seconds for 

orbital period. The time dilation can be converted to an angle 

of precession by: 

∆φ = φ− Φ = (t − τ) �cy = ��	cS	�
y�N�             (10) 

Except for eccentricity, which is near zero for Mercury’s 

orbit, the ratio of the PNA (10) to the GR prediction (9) is 

5/6. The PNA for an Earthbound observer will predict a 

perihelion shift that is 5/6 of the GR prediction, as actually 

proven by Weinberg.  

This is significantly less than the GR prediction of 42.98 

“/cy for Mercury {40]. Clemence reported that the observed 

excess in Mercury’s perihelion was 42.56”/cy in two separate 

papers in 1943 and 1947, but he was silent on which 

timescale he used to compile the data [33, 34]. Clemence 

used Newcomb’s general precession value with an 1850.0 

epoch [33, 34], but the updated masses of the planets since 

his publications have changed that term. Misner, Thorne and 

Wheeler, three renown relativists, updated Clemence’s result 
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using the 1973 value for the general precession, which 

produces a result of (41.4±0.90)”/cy [39, p. 1113]. However, 

they did not discuss what timescale was used. It is also 

interesting that they did not remark why the GR prediction is 

outside their error bounds other than quote Clemence’s 

remark, “The observations…are affected by the precession of 

equinoxes, and the determination of the precessional motion 

is one of the most difficult problems of observational 

astronomy, if not the most difficult” [39, p. 1113].  

Morrison and Ward, two excellent observational 

astronomers, reported that Mercury’s perihelion shift was 

(41.9±0.5)”/cy by using observations between 1677 and 1973 

[40]. They discussed in complete detail that “the observed 

times of contact are reduced to Universal Time (UT), 

whereas the argument of time in the dynamical theories of 

the orbital motions of the Earth and Mercury is nominally 

Ephemeris Time (ET)”. They used the notation ET(Sun) to 

indicate explicitly ephemeris time in terms of the Sun’s mean 

longitude and the term ∆T(Sun) = ET(Sun) – UT. This 

∆T(Sun) is expected, because UT has many periodic 

variations (daily, weekly, semimonthly, monthly, bimonthly, 

seasonal, yearly, decadal) that deviate from the mean motion 

of the Sun and average out over the long term. Newcomb had 

developed the mean motion formula from the Sun’s mean 

longitudes tagged in UT [18] that Clemence recommended as 

a smoothed timescale, later designated ET(Sun) [19]. As 

already covered in Section 2, the mean UT timescale and 

ET(Sun) are the same over the short term (less than 2 

centuries). In the tidal friction analysis that the rotational 

deceleration was 59.358E-8 rad/y
2
 [24], the excess sidereal 

LOD produces an angular divergence of 1.3359E-2 rad, and 

it would take 212 years for tidal friction to overtake that 

linear divergence [25].  

Morrison and Ward also denoted that ∆T(Moon) = 

ET(Moon) – UT. They stated the following correction for 

∆L, derived from Spencer Jones’s corrections, were added to 

the ILE to bring the timescale of the lunar ephemeris, 

ET(Moon), to agree with the solar ephemeris, ET(Sun). 

∆L = 	−8.72 − 26.74T − 11.22"T�                   (11) 

where T denotes Julian centuries (36525 UT days) since the 

epoch at noon of 0 January 1900 Greenwich. As explained by 

Deines and Williams [25], equation (11) is ∆L = *L - LM that 

was discussed in Section 2 of this paper to generate the ILE. 

In the early 20
th

 century, the best theories were from S. 

Newcomb for the Sun and four inner planets [17] and from E. 

W. Brown for the Moon [41]. In 1926 and again in 1939, 

Spencer Jones analyzed the residuals between these theories 

and observations and presented the formulae for the 

correction of the calculated mean lunar longitudes compared 

to the solar mean longitudes [25].  

Morrison and Ward performed a comparison between 

∆T(Sun) and ∆T(Moon). Their observational equation of 

condition could not be solved because the constant and secular 

parts of ∆T(Sun) were highly correlated with two parameters 

that needed to be solved. They avoided this by substituting 

(11) for the values of ∆T(Moon) for ∆T(Sun). They assumed 

that the constant and linear parts of (11) were correct and 

introduced an unknown variable for T
2
. They hoped the lunar 

deceleration term would be more negative than -22.44”/cy
2
 

and started with the value -42.44”/cy
2
, which Ward had 

obtained from earlier research. The increase in the sum of 

squares for the loss of one degree of freedom was significant, 

so they concluded that the most likely result from all the data 

for the Moon’s tidal acceleration is in the range of (-

26±2)”/cy
2
. They also admitted that there are systematic biases 

in the timing of the observations, but the timing of the transits 

with the increase resolving power of telescopes would tend to 

alter the timing of the contacts by changing the observed 

duration, but not the overall mean time. Those data could not 

be reconciled with a value of tidal acceleration, and changes in 

the values of the orbital elements of Mercury and Earth did not 

alter their conclusion [40]. They used an updated value for the 

planetary masses [40] and for the general precession 

determined by Fricke [42] than the values used by Clemence 

[33, 34]. In the final result, they used the lunar ephemeris 

timescale, as it was smoothed compared to the nonuniform UT 

timescale when reducing the observations. 

It is interesting to note that the linear term in (11) can be 

compared to the sidereal mean motion of the Moon 

(2.661699489E-6 rad/s) [14]. The term -26.74”/(Julian cy) = 

4.108E-14 rad/s. The ratio between this term and the sidereal 

mean motion of the Moon is 1.543E-8 s/s, which is close to 

the time dilation effect between the two seconds that has 

been calculated [25]. The problem is that Morrison and Ward 

substituted (11) for ∆T (Sun) to solve for the observational 

equation, which means that the ET(Sun) timescale has been 

replaced by ET(Moon). Morrison and Ward have 

inadvertently replaced the original UT timescale (alias 

ET(Sun)) with the lunar ET timescale, which has a shorter 

second for a time unit.  

The earliest observation of Mercury’s perihelion shift 

came from Urban Le Verrier, director of the Paris 

Observatory, who announced in 1857 that the Mercury 

perihelion was off by 38”/cy after analyzing several decades 

of observations of Mercury [43]. Le Verrier also predicted in 

1846 the location of Neptune based on the perturbations seen 

in the orbit of Uranus. Although one may argue that the 

astronomical constants used in the 19
th

 century, including the 

planetary masses, were not accurate as today’s values, Le 

Verrier’s calculations could not be that far in error due to his 

precision to predict Neptune’s location. Newcomb confirmed 

the excess of 39”/cy in Mercury’s observed perihelion shift 

[18]. Newcomb was then the world’s leading astronomer and 

made many significant contributions to timekeeping, applied 

mathematics, and planetary astronomy. His results 

concerning Mercury’s perihelion are short of the predictions 

of GR, which points to a timing issue between timescales. 

When Morrison and Ward used the updated values for the 

planetary masses and general precession in Newcomb’s 

theoretical development while using a lunar ET timescale, 

their results were about 2”/cy less than Clemence’s results of 

42.56”cy. With those updated values, Newcomb would have 

probably obtained an excess of 37”/cy in Mercury’s observed 

perihelion shift with the original UT. 
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6. Artificial Increase in Mercury 

Perihelion due to Different Sized 

Seconds 

Morrison and Ward used ET as a smoothed timescale, but 

they replaced ET(Sun) for ET9Moon) when they solved for 

the operational equation of conditions. The timescale that 

Clemence used to publish his 1947 results for Mercury’s 

perihelion shift was probably in ET. He not only proposed 

ET(Sun) based on (2) as a smooth timescale for UT, but he 

also recommended the appropriate, detailed changes in the 

same publication to Brown’s lunar theory, which lead 

eventually to the ILE being used to calibrate the atomic 

second [19, 25]. Thus, the actual timescale used by 

Clemence, by Misner, Thorne and Wheeler, and by Morrison 

and Ward was the lunar ET timescale. 

Aoki [44] and Clemence and Szebehely [45] identified UT 

as one type of proper time, τ, and associated ET as coordinate 

time, t. Since the atomic clocks were calibrated to the lunar 

ET via ILE by 1958, the SI second of TAI is equal for all 

practicality (< 10E-10 s) to the lunar ET second after 30 

years [28].  

If the observer was using the undilated timescale with the 

shorter coordinate second (e.g. TAI) to observe Mercury 

instead of the proper timescale with the original second (i.e. 

original UT1), which was used in all observations prior to 

1955 before atomic clocks, then UT would be behind TAI by 

77.871 s per Julian century (excluding tidal friction that is 

eventually significant over the long term). The calculated 

perihelion from the formula would be further advanced than 

anticipated when using a shorter time interval than the 

average UT second for proper time. There would be more 

time units with a shorter second than the original second for a 

specific time span. Using (8), the addition shift is: 

∆(τ − t)�
WNkWl = −5.2696 × 10��qW	{P × ��.���	P
Nl

× ��.����`×��q��	P
�
WNkWl	OWdXe × ���°×����"

c	W	{×�°
 

∆
τ , t��
WNkWl � ,6.433"/cy	or	∆
t , τ��
WNkWl �

6.433"/cy	                            (12) 

The point is that the shorter second will produce a shift of 

6.433”/cy in addition to the actual perihelion shift for 

Mercury. Apply this additional shift to the PNA, and one 

obtains: 


t , τ��
WNkWl + ∆
t , τ��
WNkWl � 34.300	"/cy +

6.433"/cy � 40.73"/cy                   (13) 

This falls within the Misner, Thorne and Wheeler 

calculation of (41.4±0.90)”/cy [39, p. 1113] by modifying 

Clemence’s result with the updated Earth general precession. 

Clemence’s result was (42.56±0.94)”/cy, but his error 

boundary is far too optimistic, because he had computed with 

less accurate planetary masses and general precession, which 

have been subsequently replaced by 1973 with newer values. 

Clemence was instrumental in the theoretical development of 

the ILE, so he most likely used a lunar ET for a smooth lunar 

model, since Brown was working with USNO to improve the 

lunar model [25]. After subtracting (12), Morrison and 

Ward’s result would be (35.5±0.5)”/cy. However, they only 

expected that an error existed with the tidal friction value, 

which they computed from a least squares analysis of the 

quadratic term only. They did not anticipate a linear 

divergence between ET(Sun) and ET(Moon), although they 

did describe a consistent timing anomaly in their solution of 

the operational equation. So, their error boundary is also too 

small. Still, the modified result of 35.5”/cy is only 1.2”/cy 

different than the result of 34.3”/cy in (8). Finally, Shapiro’s 

result for the Icarus perihelion result was λ = (0.75±0.8), 

which Shapiro definitely used UT as the timescale. He 

defined λ as the ratio λ of the numerical result compared to 

GR where λ = 1 for GR and λ = 0 for Newtonian physics. 

The PNA is 5/6 of GR, which places it within Shapiro’s error 

bounds. Thus, two out of three studies concerning the 

perihelion shift in orbits agree with the PNA, which is 5/6 of 

the GR prediction. The study from Morrison and Ward would 

probably agree with the other studies and include the PNA if 

Morrison and Ward realized that the lunar ET second is 

shorter than the original UT second and if they used the 1973 

general precession update instead of their 1967 value. 

7. Conclusion 

Einstein’s general relativity (GR) theory predicts that an 

additional perihelion shift of an orbiting body rotating around 

the Sun that is not accounted by Newtonian physics will be 

∆ϕ = 6π G M
☼

/(1-e
2
)a, where G is Newton’s gravitational 

constant, M
☼

 is the Sun’s mass (as other masses in the solar 

system are insignificant in comparison), e is the eccentricity 

of the orbit, and a is the semimajor axis. Shapiro wanted to 

test the perihelion shift’s dependency from eccentricity and 

chose the asteroid Icarus with its highly eccentric orbit and 

good visibility to Earth. His team conducted an optical 

campaign and found that λ = 0.75±0.08 [11], which λ is the 

ratio of the observed extra perihelion shift compared to GR 

(i.e. λ = 1 for GR and λ = 0 for Newtonian physics). As 

Shapiro et al documented, ”either GR was incorrect or 

something in the theoretical model or observations differed 

from their presumptions” [11]. They concluded that the FK4 

star catalog was warped in the sectors that Icarus was 

observed against, so that the data would appear to be less 

than predicted by GR. However, subsequent star catalogs 

have been generated, including the FK5. There is only a 

simple rotation matrix between the FK4 and FK5 star 

catalogues due to Earth’s general precession and the 

difference in epochs, but no additional algorithms exist to 

correct for any warped sectors within the FK4 catalog to 

translate into the FK5. No warped sectors within the FK4 

catalog have been reported. Therefore, the forced 

modifications of Icarus observations to agree with GR due to 

a potentially warped FK4 catalog are rejected. Shapiro’s 

result using all observations for the relativistic perihelion 
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shift of the orbit of Icarus is λ = 0.75±0.08 [11]. This is a 

significant deviation of observations with GR. Shapiro 

documented in detail that this study used the original 

Universal Time (UT) that was smoothed over the months of 

observations, and this test neither used any ephemeris time 

(ET), which was also called coordinate time (CT), nor any 

atomic timescale, which was then designated as A1. He used 

USNO bulletins that gave ∆T = ET – UT to convert ET (or 

CT) to UT. 

A brief background of the various timescales is reviewed 

in this paper. Greenwich Mean Time (GMT) began when the 

Greenwich observatory was established in 1676 and was 

corrected for Earth’s elliptical orbit (requiring the equation of 

time in published tables). Pendulum clocks were 

synchronized to GMT, and it was assumed that Earth’s 

rotation was uniform, since pendulum clocks of that period 

were not as precise. The international conference in 1884 

recognized GMT as the international timescale and renamed 

it Universal Time (UT) [15]. Chandler discovered that 

Earth’s rotation axis slightly wobbled [16], which made UT 

vary due to the latitude of the observatory. The modification 

of UT due to the Chandler wobble produces the mean UT 

timescale denoted as UT1. In this paper, UT and UT1 are 

considered synonymous. Simon Newcomb compiled the 

mean longitudes of the Sun over 142 years and fitted a 

polynomial through the data to obtain a smooth timescale 

used for internal calculations of the orbits of the planets [18]. 

Clemence proposed that this formula could be used in reverse 

for a timescale, later called ephemeris time (ET) [19]. This 

solar ET is a smooth version of UT, because the time tags are 

exclusively UT (alias GMT), which this formula existed 60 

years prior to the invention of atomic clocks. In the early 20
th

 

century, the best theories were from S. Newcomb for the Sun 

and four inner planets [17] and from E. W. Brown for the 

Moon [41]. One problem with Brown’s lunar theory was the 

predictions were always ahead of lunar observations, so 

Brown incorporated a Great Empirical Term (GET). In 1926 

and again in 1939, Spencer Jones analyzed the residuals 

between these theories and observations and presented the 

formulae for the correction of the lunar mean longitudes 

compared to the solar mean longitudes [25]. In the same 

paper earlier quoted, Clemence documented how to alter 

Brown’s lunar theory with the appropriate corrections to 

account for Earth’s rotational deceleration (i.e. tidal friction) 

that Spencer Jones documented and remove the GET [19]. 

Clemence’s recommendations were the foundation for the 

Improved Lunar Ephemeris (ILE), which his proposals were 

approved in stages by the International Astronomical Union.  

Soon afterwards, cesium clocks were developed for long-

term ultraprecise timekeeping. It remained for Markowitz 

and Hall of the US Naval Observatory (USNO) and Essen 

and Perry of the National Physical Laboratory (NPL) to 

calibrate the cesium clocks to the ILE using lunar 

observations from the dual rate Moon camera [27]. The 

calibration was conducted from 1955.0 through 1958.25 and 

resulted in the definition of the Système International (SI) 

second, which is the basic time unit of International Atomic 

Time (TAI) [27]. The lunar ET second remained within 1E-

10 s of the SI second after 30 years of this calibration, so for 

all practical purposes, the atomic second (SI second) and the 

lunar ET second from the ILE are identical [28]. Even though 

TAI was set to be identical with UT on 0 January 1958, TAI 

steadily diverged ahead of UT. The very team that so 

precisely calibrated the SI second to the lunar ET second 

reported that the UT second was larger than the lunar ET 

second by using the same calibration data from 1955 through 

1958 [30, 31].  

It was incorrectly assumed that tidal friction was the 

source of the problem to make the UT second longer as time 

elapses [20]. Tidal friction was accurately compensated in the 

ILE through the research of Spencer Jones [21, 23] and de 

Sitter [22], and transformed correctly by Clemnce [19]. Later, 

Deines and Williams confirmed that the ILE had an accurate 

compensation for tidal friction by conservation of angular 

momentum transfer from lunar tides into the lunar orbit [24]. 

The UT second was already longer during the calibration 

effort, so it would not be getting significantly longer after 

1958 from tidal friction. The ILE itself shows from linear 

terms that the lunar ET second is shorter than the UT second 

by approximately 2.292E-8 s. No relativity effects were 

included in the ILE [29]. Deines and Williams calculated that 

time dilation would cause the undilated ET second to be 

2.468E-8 s shorter than the proper second (i.e. UT second) 

[25]. Many time anomalies can be explained by this size 

difference between the original UT second and the SI second 

(alias lunar ET second). The excess length-of-day between 

UT and TAI has been a mean value of 2.1 ms from1958 

through 1998. Simply multiply 86400 seconds (length of a 

day) by 2.468E-8. This size difference will cause a 

divergence of 0.7787 s over 1 year. From January 1958 

through December 1998 (41 years), there have been 32 leap 

seconds inserted to account for the nearly linear divergence 

between UT and TAI. The size difference between the UT 

and SI seconds will cause a divergence of 31.93 s in 41 years, 

which is within 0.2% of the inserted leap seconds. 

(Beginning 1999, the International Earth Rotation Service 

adopted different data standards and new equations for UT, 

but these other time anomalies still can be explained by the 

different second sizes; but such detailed explanations 

covering 8 time anomalies are outside the scope of this 

paper.) The atomic timescale (or lunar ET) will be ahead of 

the original UT by 77.87 seconds in a Julian century (exactly 

36525 UT days). With Mercury’s orbit of 87.96925 days 

[20], this would give an artificial advance of 6.433”/cy in the 

Mercury perihelion analyses. 

Nelson derived a PNA in the GR space-time metric and 

equation of motion with respect to an accelerated, rotating 

frame of reference in the presence of a gravitational field. He 

applied the results to obtain a test particle’s motion with 

many mass points as generalized by the Einstein-Infield-

Hoffmann (EIH) equation of motion for a noninertial 

observer. The complete metric combined gravitational and 

inertial effects as a solution to the field equations. The 

gravitational terms are not simply added, due to the 
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gravitational-inertial coupling. The metric was fully derived 

up to sixth order of c without a simple rotation of axes, which 

is often used in other PNAs. This metric fully applies to an 

observer on Earth’s surface. There is no restriction, rotational 

or translational, on the motion of the observer’s coordinates 

[35]. Unfortunately, Nelson did not derive the time dilation 

effect in his paper, but Deines and Williams derived it as the 

compensation that should have been included in the ILE [25]. 

For the convenience of the reader, that derivation is included 

in this paper. It is straightforward to calculate what the time 

shift would be for Mercury as viewed by an Earthbound 

observer. The effect is t - τ = 34.30”/cy. Since t is coordinate 

time with the shorter undilated time unit, the timescale t will 

run faster than proper time τ. It is shown in the paper to be 

exactly 5/6 of the GR prediction.  

Le Verrier reported in 1857 that Mercury had an 

unexplained perihelion shift of 38”/cy that exceed all 

Newtonian perturbations to its orbit [43]. Simon Newcomb 

later confirmed that Mercury’s perihelion advance was 

39”/cy [17]. Both of them used UT, but their calculations 

used an old estimate for Earth’s general precession and 

inaccurate planetary masses for the perturbations. Morrison 

and Ward [40, p. 201] listed that the planetary mass changes 

and general precession in 1967 would result in a net change 

of -.22”/cy and +1.81”/cy, respectively. This may result in a 

revision of Le Verrier’s and Newcomb’s results of 36”/cy and 

37”/cy. Le Verrier and Newcomb’s results are closer to the 

PNA prediction in (8) than GR, with or without these 

corrections.  

Clemence reported that the Mercury perihelion shift was 

(42.56±0.94)”/cy [33,34], but Misner, Thorne, and Wheeler, 

renown relativists, adjusted Clemence’s results withthe 1973 

value of Earth’s general precession. Their results for 

Clemence were (41.4±0.9)”/cy, which is slightly below the 

GR prediction of (43.03±0.03)”/cy [39, 46]. If one adds the 

6.43”/cy due to the artificial shift from using the equivalent 

of a lunar ET to the result of (8), then the PNA of 34.30”/cy 

+6.43”/cy = 40.73”/cy, which is within the adjusted 

Clemence error bounds. Morrison and Ward reported their 

result of (41.9±0.5)”/cy, which is just slightly above the 

40.73”/cy. However, their error boundary is most likely too 

small, because they wrote, “This does not exclude the 

possibility that systematic biases in the timing of the contacts 

may have distorted our result. We show later that there are 

biases in the [correction to the motion of the node] data 

which probably affect that result, but it is very difficult to 

imagine why these biases should tend to depart as T
2
 over the 

300-yr period. These data cannot be reconciled with a value 

of the tidal acceleration of the Moon…and possible changes 

to the values of the orbital elements of Mercury and the Earth 

do not alter this conclusion” [40, p. 173]. It is obvious that 

Morrison and Ward uncovered a timing issue within the data, 

but they did not quantify the effect. As the timing errors did 

not fit any of the standard models, the error bounds are 

probably too small and should be at least double or triple 

their published result. Still, their result of 41.9”/cy is closer 

to the combined result of (8) and (9) than GR.  

In summary, the perihelion shift of Icarus is found to be λ 

= 0.75±0.08 [11], which λ is the ratio of the observed 

relativistic perihelion shift compared to the GR prediction 

(i.e. λ = 1 for GR and λ = 0 for Newtonian physics). Nelson’s 

PNA that is appropriate for an observer on Earth is exactly 

5/6 of the GR prediction. The PNA falls within the error 

boundary found by Shapiro’s team, but their result excludes 

GR. As Shapiro et al documented, “either general relativity 

was incorrect or something in the theoretical model or 

observations differed from their presumptions” [11]. 

Shapiro’s research team strictly used the original UT 

timescale. In the Mercury perihelion studies of Clemence 

[33, 34] and Morrison and Ward [40], the lunar ET timescale 

(alias TAI or atomic time) was used to time events and to 

generate the orbital positions from the ephemerides. Because 

time dilation was not included in the ILE that was used to 

calibrate the atomic clocks, the lunar ET or SI second is 

shorter than the original UT second by 2.4676E-8 s [25], 

which will result in TAI being ahead of the original UT 

timescale by 77.87 s after a Julian century. A shorter second 

will cause the orbital ephemeris to create an artificial 

advance of the Mercury perihelion of 6.433”/cy. Misner, 

Thorne and Wheeler revised Clemence’s observed perihelion 

shift for Mercury to (41.4±0.9)”/cy after using an updated 

1973 value for Earth’s general precession [39]. Again, adding 

the artificial perihelion advance to the post-Newtonian result 

of 34.30”/cy makes the sum be 40.73”/cy, which places it 

inside the revised Mercury perihelion range that technically 

excludes GR. The Morrison and Ward result has a timing 

issue that they did not quantify, but they used a 1967 value 

for Earth’s precession, which could have caused their result 

to be slightly higher than Misner, Thorne and Wheeler’s final 

result, who used a 1973 finding for Earth’s general 

precession. If one strictly uses the original UT timescale, the 

PNA prediction is closer to the observed relativistic 

perihelion shift of Icarus and Mercury than GR’s prediction.  
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