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Abstract: In this research article, a set of dimensional physical quantities is transformed into a dimensionless group (or ratio). 

For a given set of dimensional variables, the physical variables represent the rows and their dimensions represent the columns of 

a dimensions-matrix. The dimensions-matrix is rearranged both column- and row-wise. The columns are sorted in ascending 

order based on the column sum and then on the largest negative entry (i.e., cell value). On the other hand, the rows are sorted in 

descending order based on the number of non-zero entries found in each row and then on the higher first entry. With the aid of 

MATLAB®, it was found that the proposed method leads to a permutation matrix that has an Eigen vector whose elements 

represent the exponent for each physical dimensional quantity such that, at the end, a dimensionless group (or ratio) can be 

formulated, like Schmidt, Nusselt, Reynolds, and Peclet number. The method, however, was found to work well with a set of 

physical quantities where each is raised to an exponent of ±1. 

Keywords: Dimensional Analysis, Reynolds, Nusselt, Schmidt, Peclet, Froude, Exemplification,  

Chemical Engineering Education, MATLAB, Eigen Vector 

 

1. Introduction 

In the first example, the physics behind models underlying 

mass transfer was portrayed for both gas and liquid world [1]. 

In the second example, the demarcation line between a finite 

and semi-infinite medium was made clear and the applications 

of the latter in real chemical engineering life were also 

demonstrated [2]. In the third example, simple yet reliable 

models to predict some physical properties of a hydrocarbon 

were introduced [3, 4]. In this methodological article, a 

computational approach will be presented to generate a 

dimensionless group (or ratio) as a function of some given 

physical dimensional quantities using the matrix approach. 

MATLAB® will be utilized to find the Eigen vector associated 

with the generated permutation matrix for the given 

dimensions-matrix. 

In engineering, applied mathematics, and physics, 

dimensional analysis is a technique that is used to analyze the 

relationships among different physical quantities by 

identifying their fundamental dimensions (such as length, 

mass, time, energy, power, temperature, and electric charge) 

and rearranging such dimensional physical quantities into a 

lump sum in the form of a dimensionless group or ratio. In 

general, such a technique is mainly used as a tool for obtaining 

information about a physical system that is complicated 

enough for a full mathematical solution to be feasible. For 

instance, the generated dimensionless groups serve as 

scale-independent quantitative indicators for characterizing 

the extent or intensity of phenomena occurring in systems that 

involve transport phenomena and chemical reactions, as well. 

The Buckingham π theorem [5, 6] is a key theorem in 

dimensional analysis. In simple terms, it states that an equation 

involving n number of physical variables which are expressible 

in terms of k independent fundamental physical quantities can 

be expressed in terms of p = n - k dimensionless parameters. 

Leona and Zhub [7] presented a dimensional analysis for 

determining the optimal discharge and penstock diameter in 

impulse and reaction turbines. They derived various 

dimensionless relationships between power production, flow 

discharge, and head losses. Those relationships were used to 

withdraw general insights on determining optimal discharge 

and optimal penstock diameter.  
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In the past, dimensional analysis was applied mostly to 

experimental research. Now, application of the analysis to 

model equations has become more important. Equations 

reformulated with the use of dimensional analysis are usually 

clearer and easier to handle computationally. 

Matuszak [8] demonstrated the principles of dimensional 

analysis on the problem of the second moment of area for a 

rectangle. The transformation of equations to 

unit-independent form was discussed on the example of 

concrete constitutive equations. The equation that related 

tensile and compressive strength of concrete was also 

analyzed. He suggested that any equation that represents a 

universal law should be independent of system of units. In his 

opinion, finding the universal law is often too difficult, but an 

equation could still be written in the form that is independent 

of units. Difficulties with finding such a form of equation may 

suggest model incorrectness or insufficient problem 

knowledge and may suggest some future research directions. 

Olmos et al. [9] studied the experimental characterization of 

particle suspension in orbital shakers. They performed a 

dimensional analysis approach, which led them to a 

correlation relating a Froude number (in which the critical 

agitation for a complete particle suspension is embedded) to 

four other dimensionless numbers. Their findings revealed 

that high orbital shaking diameters and large cylindrical 

vessels should be promoted to get micro-carriers into 

suspension at a minimized power dissipation per unit volume. 

Sollund et al. [10] examined the problem of an axially loaded 

pipeline resting on semi-infinite elastic supports on either side 

of a free span. A dimensional analysis of the problem was 

carried out, and it was demonstrated that the Eigen-frequencies 

and associated maximum modal stresses of the pipe could be 

uniquely represented as functions of only two non-dimensional 

parameters. Explicit analytical formulae for the modal response 

quantities were derived, with an improved accuracy and 

applicability range as compared to approximate expressions 

that were widely used in the pipeline industry. 

Finally, for further details on MATLAB® applications, 

please refer to [11]. 

2. Methodology 

The MATLAB®-based approach will be demonstrated here 

for the sake of generating a dimensionless ratio out of a set of 

dimensional physical variables via presenting different 

examples. It is worth-mentioning here that the approach was 

concluded after an exhaustive inspection of all possible 

permutations both row-wise and column-wise for a given set 

of physical variables (i.e., rows) with known dimensions (i.e., 

columns). For each permutation, the corresponding Eigen 

vector was calculated to see the best solution that gives a 

successful matching between the Eigen values and the 

physical quantities under study. Consequently, the postulated 

method was concluded after many failing scenarios. 

2.1. Example 1: Schmidt Number 

Consider the following physical properties: The density of a 

fluid, ρ, its viscosity, µ, and its diffusivity, D. Table 1 shows 

the dimensions of each physical quantity. 

Table 1. The dimensions matrix for physical quantities as a function of length, 

mass, and time. 

 Length [m] Mass [kg] Time [s] # of non-zero entries 

ρ  -3 1 0 2 

µ  -1 1 -1 3 

D  2 0 -1 2 

Column 

Sum 
-2 2 -2  

For the sake of implementing the proposed method, I will 

pinpoint the major steps: 

2.1.1. The First Step: Column Sorting 

The columns will be sorted in ascending order based on the 

column sum. If two column sums are equal, then the column 

with the largest negative entry (i.e., cell value) will be 

allocated first. For example, the sum of “Length” column is: 

-3-1+2=-2. On the other hand, the sum of “Time” column is: 

0-1-1=-2. Since the value of the column sum is the same, then 

we will assign the column with the largest negative entry as 

the first column, which will be in this case “Length” column 

because it has -3 as the largest negative value. The second 

column will then be reserved for “Time”, and finally the third 

column will be left for “Mass”. 

Therefore, the ascending order of columns will be: 

“Length”, “Time”, and “Mass” column. 

Table 2 shows the new ascending order of columns as far as 

the column sum is concerned. 

Table 2. Sorting columns in ascending order based on the column sum and if 

the two sums are equal we will go by the largest negative entry (or cell value). 

 Length [m] Time [s] Mass [kg] # of non-zero entries 

ρ  -3 0 1 2 

µ  -1 -1 1 3 

D 2 -1 0 2 

Column 

Sum 
-2 -2 2  

2.1.2. The Second Step: Row Sorting 

The rows will be sorted in descending-order based on the 

number of non-zero entries (i.e., cell values) found in each row. 

If the number of entries is the same for two rows, then the row 

with the higher first entry will be taken first. From Table 2, 

(“µ”) row has three non-zero entries; hence, it should be 

assigned first. (“ρ”) row and (“D”) row both have two 

non-zero entries; hence, we will reserve the second row for 

(“D”) as it has the higher first entry (i.e., 2>-3) and finally the 

third row will be left for (“ρ”), as shown in Table 3. 

Table 3. Sorting rows in descending order based on the number of non-zero 

entries and if the two numbers are equal we will go by the higher first entry. 

 Length [m] Time [s] Mass [kg] # of non-zero entries 

µ  -1 -1 1 3 

D  2 -1 0 2 

ρ  -3 0 1 2 

Column 

Sum 
-2 -2 2  
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2.1.3. The Third Step: Defining the Coefficient Matrix 

Let us define ASc as 3×3 matrix: 

��� = �−1 −1 12 −1 0−3 0 1�                 (1) 

2.1.4. The Fourth Step: Finding the Permutation Matrix, 

PSc 

>>[LSc, USc, PSc] = lu(ASc); 

This MATLAB® built-in function returns the unit lower 

triangular matrix LSc, the upper triangular matrix USc, and 

the permutation matrix PSc such that PSc*ASc = LSc*USc. 

For example, the permutation matrix, PSc, for ASc matrix, 

will be: 

��� = �0 0 10 1 01 0 0�                      (2) 

2.1.5. The Fifth Step: Finding Eigen Values for the 

Permutation Matrix 

>>EVSc = eig(PSc)  

This MATLAB® built-in function produces a column 

vector E containing the eigenvalues of the square matrix PSc. 

>> EVSc=eig(PSc) 

EVSc = 

-1 

1 

1 

2.1.6. The Sixth Step: Formulating the Dimensionless Ratio 

(or Number) 

The dimensionless group will be:  


������ = ��� = ����               (3) 

This basically represents the reciprocal value of Schmidt 

number in mass transfer, where  

��� = ��� = �� = ������ �	"#$$ %#&#�'�(%%	�#$$ %#&#�' . 

2.2. Example 2: Nusselt Number 

Consider the following physical properties: The heat 

transfer coefficient of a fluid, h, its thermal conductivity, κ, 

and some characteristic length, L. Table 4 shows the 

dimensions of each physical quantity. 

Table 4. The dimensions matrix for physical quantities as a function of power, 

length, and temperature. 

 
Power 

[W] 

Length 

[m] 

Temperature 

[°C] 

# of non-zero 

entries 

h  1 -2 -1 3 

κ  1 -1 -1 3 

L  0 1 0 1 

Column Sum 2 -2 -2  

The procedure, outlined in Example 1, will be traced a step 

by step but extra details will be gradually removed. 

2.2.1. The First Step: Column Sorting 

The columns will be sorted in ascending order based on the 

column sum. The ascending order of columns will be: 

“Length”, “Temperature”, and “Power” column. 

Table 5 shows the new ascending order of columns as far as 

the column sum is concerned. 

Table 5. Sorting columns in ascending order based on the column sum and if 

the sums are equal we will go by the largest negative entry (or cell value). 

 
Length 

[m] 

Temperature 

[°C] 

Power 

[W] 

# of non-zero 

entries 

h  -2 -1 1 3 

κ  -1 -1 1 3 

L  1 0 0 1 

Column Sum -2 -2 2  

2.2.2. The Second Step: Row Sorting 

The rows will be sorted in descending-order based on the 

number of non-zero entries (i.e., cell values) found in each row. 

From Table 5, (“h”) row and (“κ”) row both have equal 

number of non-zero entries; hence, we will reserve the first 

row for “κ” as it has the higher first entry (i.e., -1>-2) followed 

by “h” row, and finally the third row will be left for “L”, as 

shown in Table 6. 

Table 6. Sorting rows in descending order based on the number of non-zero 

entries and if the two numbers are equal we will go by the higher first entry. 

 
Length 

[m] 

Temperature 

[°C] 

Power 

[W] 

# of non-zero 

entries 

κ  -1 -1 1 3 

h  -2 -1 1 3 

L  1 0 0 1 

Column Sum -2 -2 2  

2.2.3. The Third Step: Defining the Coefficient Matrix 

Let us define ANu as 3×3 matrix: 

�� = �−1 −1 1−2 −1 11 0 0�                 (4) 

2.2.4. The Fourth Step: Finding the Permutation Matrix, 

PNu 

>>[LNu, UNu, PNu] = lu(ANu); 

The permutation matrix, PNu, for ANu matrix, will be: 

�� = �0 1 01 0 00 0 1�                (5) 

2.2.5. The Fifth Step: Finding Eigen Values for the 

Permutation Matrix 

The column vector EVNu, containing the eigenvalues of the 

square matrix PNu, is given by: 

>> EVNu=eig(PNu) 

EVNu = 

-1 

1 

1 
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2.2.6. The Sixth Step: Formulating the Dimensionless Ratio 

(or Number) 

The dimensionless group will be:  

)��ℎ�+� = ,-. = ��                  (6) 

This basically represents the Nusselt number in heat transfer, /�(�	�0(�%$�0	1'	���&���#��/�(�	�0(�%$�0	1'	���" ��#��. 

2.3. Example 3: Reynolds Number 

Consider the following physical properties: The density of a 

fluid, ρ, its viscosity, µ, its velocity, u, and pipe diameter, d. 

Table 7 shows the dimensions of each physical quantity. 

Table 7. The dimensions matrix for physical quantities as a function of length, 

mass, and time. 

 
Length 

[m] 

Mass 

[kg] 

Time 

[s] 

# of non-zero 

entries 

ρ  -3 1 0 2 

µ  -1 1 -1 3 

d 1 0 0 1 

u 1 0 -1 2 

Column Sum -2 2 -2  

2.3.1. The First Step: Column Sorting 

Table 8 shows the new ascending order of columns as far as 

the column sum is concerned. 

Table 8. Sorting columns in ascending order based on the column sum and if 

the sums are equal we will go by the largest negative entry (or cell value). 

 
Length 

[m] 

Time 

[s] 

Mass 

[kg] 

# of non-zero 

entries 

ρ  -3 0 1 2 

µ  -1 -1 1 3 

d  1 0 0 1 

u 1 -1 0 2 

Column Sum -2 -2 2  

2.3.2. The Second Step: Row Sorting 

Table 9 shows rows in the descending order. 

Table 9. Sorting rows in descending order based on the number of non-zero 

entries and if the two numbers are equal we will go by the higher first entry. 

 
Length 

[m] 

Time 

[s] 

Mass 

[kg] 

# of non-zero 

entries 

µ  -1 -1 1 3 

u 1 -1 0 2 

ρ  -3 0 1 2 

d 1 0 0 1 

Column Sum -2 -2 2  

2.3.3. The Third Step: Defining the Coefficient Matrix 

Let us define ARe as 4×3 matrix: 

�2� = 3−1 −1 11 −1 0−3 0 11 0 04               (7) 

2.3.4. The Fourth Step: Finding the Permutation Matrix, 

PRe 

The permutation matrix, PRe, for ARe matrix, will be: 

�2� = 30 0 1 00 1 0 01 0 0 00 0 0 14              (8) 

2.3.5. The Fifth Step: Finding Eigen Values for the 

Permutation Matrix 

The column vector EVRe, containing the eigenvalues of the 

square matrix Pre, is given by: 

>> EVRe=eig(PRe) 

EVRe = 

-1 

1 

1 

1 

2.3.6. The Sixth Step: Formulating the Dimensionless Ratio 

(or Number) 

The dimensionless group will be:  


��5�	��	6� =  �"� = �2�          (9) 

This basically represents Reynolds number in fluid 

mechanics, where �2� =  �"� = 7��0�#(	$�0��8#%�� %	$�0��. 
2.4. Example 4: Peclet Number 

Consider the following physical properties: The density of a 

fluid, ρ, its velocity, u, its thermal conductivity, κ, its heat 

capacity, Cp, and pipe diameter, d. Table 10 shows the 

dimensions of each physical quantity. 

Table 10. The dimensions matrix for physical quantities as a function of 

length, mass, time, and temperature. 

 
Length 

[m] 

Mass 

[kg] 

Time 

[s] 

Temperature 

[°C] 

# of non-zero 

entries 

ρ  -3 1 0 0 2 

Cp 2 0 -2 -1 3 

κ  1 1 -3 -1 4 

u 1 0 -1 0 2 

d  1 0 0 0 1 

Column Sum 2 2 -6 -2  

2.4.1. The First Step: Column Sorting 

Table 11 shows the new ascending order of columns as far 

as the column sum is concerned.  

Table 11. Sorting columns in ascending order based on the column sum and if 

the sums are equal we will go by the largest negative entry (or cell value). 

 
Time 

[s] 

Temperature 

[°C] 

Length 

[m] 

Mass 

[kg] 

# of non-zero 

entries 

ρ  0 0 -3 1 2 

Cp -2 -1 2 0 3 

κ  -3 -1 1 1 4 

u -1 0 1 0 2 

d  0 0 1 0 1 

Column Sum -6 -2 2 2  
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2.4.2. The Second Step: Row Sorting 

Table 12 shows rows in the descending order. 

Table 12. Sorting rows in descending order based on the number of non-zero 

entries and if the two numbers are equal we will go by the higher first entry. 

 
Time 

[s] 

Temperature 

[°C] 

Length 

[m] 

Mass 

[kg] 

# of non-zero 

entries 

κ  -3 -1 1 1 4 

Cp -2 -1 2 0 3 

ρ  0 0 -3 1 2 

u -1 0 1 0 2 

d 0 0 1 0 1 

Column Sum -6 -2 2 2  

2.4.3. The Third Step: Defining the Coefficient Matrix 

Let us define APe as 4×3 matrix: 

�9� = :;;
;<−3 −1 1 1−2 −1 2 00 0 −3 1−1 0 1 00 0 1 0=>>

>?
             (10) 

2.4.4. The Fourth Step: Finding the Permutation Matrix, 

PPe 

The permutation matrix, PPe, for APe matrix, will be: 

�9� = :;;
;<1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 0 10 0 0 1 0=>>

>?
              (11) 

2.4.5. The Fifth Step: Finding Eigen Values for the 

Permutation Matrix 

The column vector EVPe, containing the eigenvalues of the 

square matrix PPe, is given by: 

>> EVPe=eig(PPe) 

EVPe = 

-1 

1 

1 

1 

1 

2.4.6. The Sixth Step: Formulating the Dimensionless Ratio 

(or Number) 

The dimensionless group will be:  

)��@A���5�6� = BC� ". = � "� × BC�. = �2� × �90 = �9�  (12) 

This basically represents Peclet number in heat transfer, 

where �9� = BC� ". = B��&���#&�	,�(�	�0(�$�0B��" ��#&�	,�(�	�0(�%$�0. 
2.5. Example 5: Froude Number 

Consider the following physical properties: The velocity of 

an object, υ, its length, L, and the gravity constant, g. Table 13 

shows the dimensions of each physical quantity. 

Table 43. The dimensions matrix for physical quantities as a function of 

length, mass, and time. 

 Length [m] Time [s] # of non-zero entries 

υ 1 -1 2 

g  1 -2 2 

L  1 0 1 

Column Sum 3 -3  

2.5.1. The First Step: Column Sorting 

Table 14 shows the new ascending order of columns as far 

as the column sum is concerned.  

Table 14. Sorting columns in ascending order based on the column sum and if 

the two sums are equal we will go by the largest negative entry (or cell value). 

 Time [s] Length [m] # of non-zero entries 

υ -1 1 2 

g  -2 1 2 

L  0 1 1 

Column Sum -3 3  

2.5.2. The Second Step: Row Sorting 

The rows will be sorted in descending-order, as shown in as 

shown in Table 15. 

Table 15. Sorting rows in descending order based on the number of non-zero 

entries and if the two numbers are equal we will go by the higher first entry. 

 Time [s] Length [m] 
# of non-zero 

entries 

υ -1 1 2 

g  -2 1 2 

L  0 1 1 

Column Sum -3 3  

2.5.3. The Third Step: Defining the Coefficient Matrix 

Let us define AFr as 3×2 matrix: 

�E0 = �−1 1−2 10 1�                (13) 

2.5.4. The Fourth Step: Finding the Permutation Matrix, 

PFr 

The permutation matrix, PFr, for AFr matrix, will be: 

�E0 = �0 1 00 0 11 0 0�                 (14) 

2.5.5. The Fifth Step: Finding Eigen Values for the 

Permutation Matrix 

The column vector EVFr, containing the eigenvalues of the 

square matrix PFr, is given by: 

>> EVFr=eig(PFr) 

EVFr = 

-0.5000 + 0.8660i 

-0.5000 – 0.8660i 

1.0000 + 0.0000i 

2.5.6. The Sixth Step: Formulating the Dimensionless Ratio 

(or Number) 

Here, I would say that the approach did not work as 

expected to generate the dimensionless Froude number: 
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�E0 = FGH��+�� = FGH+ = IJKLMIN	OPLQKHLNFIMR	OPLQK = SFGSH+	= .#���#�	���0T'A�����#(U	���0T'             (15) 

3. Conclusion 

In brief, the proposed method is appealing and promising as 

it successfully hooks the power of each physical quantity with 

an Eigen-value out of the Eigen-vector found for the generated 

permutation matrix. The permutation matrix is basically a 

cosmetically treated dimensions-matrix that is subject to both 

column and row operation. The method, however, was found 

to work well with a set of physical quantities where each is 

raised to an exponent of ±1. 

Hopefully, this method will open up the doors for future 

work in this direction; in particular, how to reproduce more 

than one dimensionless ratio for a given set of dimensional 

physical quantities, or when a physical quantity is raised to a 

power other than ±1. 
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