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Abstract: The Rhind Mathematical Papyrus contains in the fragment known as the Recto Table the division of 2 by all the 

odd integer numbers from 3 to 101. This table hides the secret of how it was computed by its ancient Egyptian author because, 

till now, there is not a set of established known assumptions which allow compute all its values without any exception. In this 

paper, the algorithm which computes all the Recto Table is going to be established except three cases (denominators n = 35, 91 

ad 95) which are calculated using another formula and the final denominator n = 101 which is a rareness. 
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1. Introduction 

Rhind Papyrus is one of the most wonderful treasures of 

the History of Mathematics. The papyrus, very well 

described in sources as [9, 10, 15] or [20], was purchased by 

the Scottish antiquary Henry Rhind in the city of Luxor in 

later 1850's. A little introduction says that its author was 

Ahmes and it was copied around 1650 BCE from older texts 

dated two centuries before. Ahmes copied a series of eighty-

four mathematical problems written in hieratic script 

including different questions about Arithmetic, Algebra and 

Geometry, and a very interesting table known as the Recto 

Table which deals with the division of 2 by all the odd 

numbers from 3 to 101 (the remainder of the papyrus is 

known as the Verso). Ancient Egyptian scribes only used the 

commonly called "unit fractions" which indicates the 

reciprocal of a natural number and also the two-thirds 

fraction. Thus, where we write a fraction of numerator equal 

to 1 and any natural number in the denominator, Ahmes only 

wrote a dot over the natural number. Ahmes named "What 

part is 2 of n" [22] or "Call 2 out of n" [1] to doubling a unit 

fraction which was very important in the Egyptian algorithm 

of multiplication: it is well known that ancient Egyptians' 

product was based in doubling a number so many times as 

getting the desired result (for examples, see [15]). 

Furthermore, it seems that this table could be widely known 

by the ancient Egyptian scribes (why not?) since one part of 

it is also recorded in Kahun Papyrus (see [17], 15-16) known 

as Kahun IV, 2. In this mathematical fragment, another scribe 

reproduced exactly the same table for all the odd numbers 

from 3 to 21 and the coincidence between two tables let us 

think that the divisions were not the product of an unique 

moment in time but they were widely accepted by scribes in 

their mathematical purposes. 

The Recto Table can be seen in table 1 and it can be 

noticed that Ahmes did not copy directly the decompositions. 

For example, for case n = 41, Ahmes wrote: 

41 
1

24
 

2 1
1

3 24
+ +  

1

246
 

1

6
 

1

328
 
1

8
 

corresponding to decomposition 
2 1 1 1

41 24 246 328
= + + . 

The first number of the row is the denominator of the first 

fraction of the decomposition. Then, Ahmes computed 1
24

 of 

41 and obtained the result 
2 1
3 24

1+ + . Now, he proceeded to 

compute 1
246

 and 1
328

 of 7 and obtained, indeed, 1
6

 and 1
8

, 

respectively. Now, he would check that: 
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2 1 1 1
1 2

3 24 6 8

 + + + + = 
 

 

However, Ahmes should have noticed some singularity in 

two special cases: n = 35 and 91. According to reference [9] 

and [15], Ahmes made one unique special check in the first 

case and he wrote (numbers 6, 7 and 5 written in red color): 

35 
1

30
 

1
1

6
+  

1

42
 

2 1

3 6
+  

 7    

With these red auxiliary numbers (for more information 

about the red auxiliary numbers, see [15], 81-88), Ahmes 

would have checked that this decomposition was effectively 

correct: if 1
30

 of 210 is 7 and 1
42

 of 210 is 5, then 1 1
30 42

+  of 

210 is 12. On the other hand, 1
35

 of 210 is equal to 6 and its 

double is equal to 12, exactly the same result as 7 + 5. 

In case n = 91, Ahmes wrote the word "find" before 

computing 1
70

 of 91 (see details in [1]), so he also noticed 

something strange here. 

Hence, except these two commented cases, it would be 

very interesting if the values of the rest of the table had been 

computed following an unique algorithm of computation. If 

this idea was real it would have been discovered what can be 

considered a great achievement in ancient Egyptian 

Mathematics because there only are a few mathematical 

papyri which are extant nowadays. From here, it is 

understood and accepted that the text of Rhind Papyrus is not 

original from Ahmes but we are going to call his name here 

as the author for a simple exposure of the facts and the 

results. 

Table 1. The Recto Table. 

Decomposition Text on the papyrus D 1
d  

2
d  

3
d  

2 1 1
3 2 6

= +  1
2

 1
2

1 +  1
6

 1
2

 [Reconstructed value] 2 2 --- --- 

2 1 1
5 3 15

= +  1
3

 2
3

1 +  1
15

 1
3

     3 3 --- --- 

2 1 1
7 4 28

= +  1
4

 1 1
2 4

1+ +  1
28

 1
4

     4 4 --- --- 

2 1 1
9 6 18

= +  1
6

 1
2

1 +  1
18

 1
2

     --- --- --- --- 

2 1 1
11 6 66

= +  1
6

 2 1
3 6

1+ +  1
66

 1
6

     6 6 --- --- 

2 1 1 1
13 8 52 104

= + +  1
8

 1 1
2 8

1+ +  1
52

 1
4

 1
104

 1
8

   8 4 8 --- 

2 1 1
15 10 30

= +  1
10

 1
2

1 +  1
30

 1
2

     --- --- --- --- 

2 1 1 1
17 12 51 68

= + +  1
12

 1 1
3 12

1+ +  1
51

 1
3

 1
68

 1
4

   12 3 4 --- 

2 1 1 1
19 12 76 114

= + +  1
12

 1 1
2 12

1+ +  1
76

 1
4

 1
114

 1
6

   12 4 6 --- 

2 1 1
21 14 42

= +  1
14

 1
2

1 +  1
42

 1
2

     --- --- --- --- 

2 1 1
23 12 276

= +  1
12

 2 1
3 4

1+ +  1
276

 1
12

     12 12 --- --- 

2 1 1
25 15 75

= +  1
15

 2
3

1 +  1
75

 1
3

     --- --- --- --- 

2 1 1
27 18 54

= +  1
18

 1
2

1 +  1
54

 1
2

     --- --- --- --- 

2 1 1 1 1
29 24 58 174 232

= + + +  1
24

 1 1
6 24

1+ +  1
58

 1
2

 1
174

 1
6

 1
232

 1
8

 24 2 6 8 

2 1 1 1
31 20 124 155

= + +  1
20

 1 1
2 20

1+ +  1
124

 1
4

 1
155

 1
5

   20 4 5 --- 

2 1 1
33 22 66

= +  1
22

 1
2

1 +  1
66

 1
2

     --- --- --- --- 

2 1 1
35 30 42

= +  1
30

 1
6

1 +  1
42

 2 1
3 6

+      --- --- --- --- 

2 1 1 1
37 24 111 296

= + +  1
24

 1 1
2 24

1+ +  1
111

 1
3

 1
296

 1
8

   24 3 8 --- 

2 1 1
39 26 78

= +  1
26

 1
2

1 +  1
78

 1
2

     --- --- --- --- 

2 1 1 1
41 24 246 328

= + +  1
24

 2 1
3 24

1+ +  1
246

 1
6

 1
328

 1
8

   24 6 8 --- 

2 1 1 1 1
43 42 86 129 301

= + + +  1
42

 1
42

1+  1
86

 1
2

 1
129

 1
3

 1
301

 1
7

 42 2 3 7 

2 1 1
45 30 90

= +  1
30

 1
2

1 +  1
90

 1
2

     --- --- --- --- 

2 1 1 1
47 30 141 470

= + +  1
30

 1 1
2 15

1+ +  1
141

 1
3

 1
470

 1
10

   30 3 10 --- 

2 1 1
49 28 196

= +  1
28

 1 1
2 4

1+ +  1
196

 1
4

     --- --- --- --- 

2 1 1
51 34 102

= +  1
34

 1
2

1 +  1
102

 1
2

     --- --- --- --- 

2 1 1 1
53 30 318 795

= + +  1
30

 2 1
3 10

1+ +  1
318

 1
6

 1
795

 1
15

   30 6 15 --- 

2 1 1
55 30 330

= +  1
30

 2 1
3 6

1+ +  1
330

 1
6

     --- --- --- --- 

2 1 1
57 38 114

= +  1
38

 1
2

1 +  1
114

 1
2

     --- --- --- --- 

2 1 1 1
59 36 236 531

= + +  1
36

 1 1 1
2 12 18

1+ + +  1
236

 1
4

 1
531

 1
9

   36 4 9 --- 

2 1 1 1 1
61 40 244 488 610

= + + +  1
40

 1 1
2 40

1+ +  1
244

 1
4

 1
488

 1
8

 1
610

 1
10

 40 4 8 10 

2 1 1
63 42 126

= +  1
42

 1
2

1 +  1
126

 1
2

     --- --- --- --- 

2 1 1
65 39 195

= +  1
39

 2
3

1 +  1
195

 1
3

     --- --- --- --- 
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Decomposition Text on the papyrus D 1
d  

2
d  

3
d  

2 1 1 1
67 40 335 536

= + +  1
40

 1 1 1
2 8 20

1+ + +  1
335

 1
5

 1
536

 1
8

   40 5 8 --- 

2 1 1
69 46 138

= +  1
46

 1
2

1 +  1
138

 1
2

     --- --- --- --- 

2 1 1 1
71 40 568 710

= + +  1
40

 1 1 1
2 4 40

1+ + +  1
568

 1
8

 1
710

 1
10

   40 8 10 --- 

2 1 1 1 1
73 60 219 292 365

= + + +  1
60

 1 1
6 20

1+ +  1
219

 1
3

 1
292

 1
4

 1
365

 1
5

 60 3 4 5 

2 1 1
75 50 150

= +  1
50

 1
2

1 +  1
150

 1
2

     --- --- --- --- 

2 1 1
77 44 308

= +  1
44

 1 1
2 4

1+ +  1
308

 1
4

     --- --- --- --- 

2 1 1 1 1
79 60 237 316 790

= + + +  1
60

 1 1
4 15

1+ +  1
70

 1
3

 1
316

 1
4

 1
790

 1
10

 60 3 4 10 

2 1 1
81 54 162

= +  1
54

 1
2

1 +  1
162

 1
2

     --- --- --- --- 

2 1 1 1 1
83 60 332 415 498

= + + +  1
60

 1 1
3 20

1+ +  1
332

 1
4

 1
415

 1
5

 1
498

 1
6

 60 4 5 6 

2 1 1
85 51 255

= +  1
51

 2
3

1 +  1
255

 1
3

     --- --- --- --- 

2 1 1
87 58 174

= +  1
58

 1
2

1 +  1
174

 1
2

     --- --- --- --- 

2 1 1 1 1
89 60 356 534 890

= + + +  1
60

 1 1 1
3 10 20

1+ + +  1
356

 1
4

 1
534

 1
6

 1
890

 1
10

 60 4 6 10 

2 1 1
91 70 130

= +  1
70

 1 1
5 10

1+ +  1
130

 2 1
3 30

+      --- --- --- --- 

2 1 1
93 62 186

= +  1
62

 1
2

1 +  1
186

 1
2

     --- --- --- --- 

2 1 1 1
95 60 380 570

= + +  1
60

 1 1
2 12

1+ +  1
380

 1
4

 1
570

 1
6

   --- --- --- --- 

2 1 1 1
97 56 679 776

= + +  1
56

 1 1 1 1
2 8 14 28

1+ + + +  1
679

 1
7

 1
776

 1
8

   56 7 8 --- 

2 1 1
99 66 198

= +  1
66

 1
2

1 +  1
198

 1
2

     --- --- --- --- 

2 1 1 1 1
101 101 202 303 606

= + + +  1
101

 1 1
202

 1
2

 1
303

 1
3

 1
606

 1
6

 --- --- --- --- 

 

2. Previous Analysis of the Recto Table 

Hence, the Recto Table is very important in the History of 

ancient Egyptian Mathematics because it contains the results 

of doubling the reciprocals of all the odd numbers from 3 to 

101. However, Ahmes did not double each fraction with the 

logical addition: 

2 1 1

n n n
= +  

but decomposed each division 2
n

 into the sum of two, three 

or four different unit fractions. 

In the 19
th

 century, James Joseph Sylvester [21] found a 

general method to represent any fraction into the sum of a 

indeterminate number of unit fractions. In that paper, 

Sylvester recognized that he focused this matter after reading 

"Cantor's Geschichte der Mathematik which gives an account 

of the singular method in use among the ancient Egyptians 

for working with fractions". Sylvester's method applied to the 

fractions of the Recto Table always give the 2-terms 

decomposition: 

( )1 1
2 2

2 1 1
n n nn + +

= +                             (1) 

Thus, he did not get the desired ancient algorithm but an 

useful method to decompose any fraction. 

Some years later, Loria [19] also gave explanation to all 

the decompositions of the table but it can not be generalized 

any universal method from his study and the same thing can 

be said of August Eisenlohr's paper [12]. 

In Chace's edition of the Rhind Papyrus [9], he classified 

all the decompositions into six categories: 

A: when the author first takes 2
3

. 

B: when he simply halves. 

C: when at some step he gets a whole number and uses its 

reciprocal as a multiplier. 

D: along with A (category AD) or B (category BD) when 

he also uses 
1

10  or 
1
7 . 

E: for special cases of n = 35, 91 and 101. 

For cases A, Chace used n = 17 as a commented example 

arguing that Ahmes should have solved a completion 

problem (using the red auxiliary numbers) which we have 

three detailed examples in the Rhind Papyrus. After 

computing 1
12

 of 17 equal to 1 1
4 6

1+ + , Ahmes would have 

multiplied 17 by 3, getting 51, and it follows that 1
51

 of 17 is 

1
3

 and, in the same way, he would have calculated that 1
68

 of 

17 is 1
4

. Chace gave two possible ways of writing down this 

last step but he never stated how to choose the "correct" 

decomposition. In all cases, he only checked Ahmes's 

calculations with the known results. 

An interesting study of the Recto Table was carried out by 

Gillings ([15], 45–80) and concluded that there were five 

necessary precepts which Ahmes considered in his 

decompositions seeking the simplest possible combination: 

The first precept is that Ahmes preferred the smallest 

denominators of all the possible equalities and none of them 

had to be largest than 1.000. 

Secondly, Ahmes preferred an equality of only 2 terms to 

one of 3 terms, and one of 3 terms to one of 4 terms, but an 

equality of more than a 4-terms decomposition was never 

used. 

The third precept is that the unit fractions always had to be 
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set down in descending order of magnitude, so the smaller 

numbers came first, but never the same fraction twice. 

With the fourth precept, the smallness of the first 

denominator was the main consideration but Ahmes could 

accept slightly larger first denominator if it reduced the last 

one. 

Finally, Ahmes preferred even denominators to odd ones. 

According to Gillings, these five rules would have directed 

Ahmes' decisions in case of having some options to choose. 

Gillings computed all the possible combinations for each 

division 2
n

 and tried to agree Ahmes' election with them. 

Therefore, among the great number of possible combinations 

in 2, 3 or 4-terms decompositions which Ahmes could 

calculate, he followed the five precepts as the rules of a 

game. All this reasoning and the number of these possible 

combinations were analyzed and discussed later by 

Bruckheimer and Salomon [8], who checked Gillings' results 

with a computer program. They stated that there were 

approximately 28.000 possible combinations of unit fractions 

whose denominators are less than 1.000. Furthermore, they 

pointed out that Ahmes did not always use irreducible 

expressions although he usually did. Thus, in some 

decompositions it is possible to add two unit fractions to get 

a third unit fraction. For example, Ahmes decomposed: 

2 1 1 1

95 60 380 570
= + +  

but he could notice that: 

1 1 1 2 1 1

380 570 228 95 60 228
+ = ⇒ = +  

(this example will be seen later). 

Bruckheimer and Salomon also said that Ahmes could 

replace a single odd denominator by two even ones, and 

argued that the inclusion of these reducible expressions 

introduces a lot of "noise" in such a comparative study. 

Three years later, Van der Waerden [22] divided all the 

decompositions in five groups. The first one was based in 

decomposition: 

2 1 1 1 1 1

3 2 6 2 6q q q q

 = + = + 
 

                    (2) 

for each q = 1, ..., 33. This result is a direct consequence of a 

more general rule which states that every odd integer n can 

always be written in a 2-terms decomposition ([2] and [18]) 

corresponding to formula (1): 

( )1 1
2 2

2 1 1
n n nn + +

= +  

Therefore, if n = kp where p is a prime number and k is a 

natural number, then doubling the reciprocals of multiples of 

p = 3, 5, 7 and 11 Ahmes had to use this rule: 

( )1 1

2 2

2 1 1 1
p p pkp k + +

 
 = +
 
 

                   (3) 

The second group described by Van der Waerden contains 

all fractions decomposed using the Egyptian algorithm of 

division; the third derived from the second because all the 

results are computed from multiplying the decompositions of 

the second group by an appropriate number; the fourth was 

decomposed using the known as red auxiliary numbers and, 

finally; the fifth group only contained the non regular cases 

with denominators n = 35, 91 and 101. 

Another important check of the Recto Table was made by 

Milo Gardner [13], also based in previous studies, who stated 

that Ahmes should have computed mentally a formula like: 

2 2
·

A

p q A p q
=  

for an appropriate A. For example, for case 3p = , 7q = , 

then 1 4A p= + =  ad Ahmes obtained: 

2 2 4 1 3 1 1 1 1 1 1
·

21 4 21 2 21 21 2 7 21 14 42

   = = + = + = +   
   

 

However, in this case, as n = 21 is a multiple of 3, it seems 

more plausible that Ahmes would use a rule like (2) taking 

profit of previous results. 

Gardner also published in a blog [14] the explanation of 

his new theory which consisted in the multiplication of the 

original fraction by an appropriate "unity": 

0 1 2

1 2

...2 2 1 1 1 1
· ...t

t

A q q qA

n n A nA D d n d n d n

+ + + += = = + + + +  in 

which, first of all, 2A was additively portioned into t+1 

integers 0A , 1q , 2q , ..., tq . Furthermore, all these integer 

numbers divided nA. Thus, for example: 

2 2 4 7 1 1 1
·

7 7 4 28 4 28

+= = = + , 
2 2 12 23 1 1 1

·
23 23 12 276 12 276

+= = = +  

or 
2 2 20 31 5 4 1 1 1

·
31 31 20 620 20 124 155

+ += = = + +  

The existence of such number A is developed from Ahmes' 

resolution of problem RMP 36 of the Rhind Papyrus (see 

reference [14] and [15]). The problem consists in find a 

number x (written in modern algebraic notation) which 

satisfies that: 

3 1
3 5

x x
x + + =  

Ahmes thought this equation as: 

45 5 3 15
1

15 53

x x x
x

+ + = ⇒ =  

and using the red auxiliary numbers he computed: 
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15 15 4 60 53 4 2 1 1 1 1 1
·

53 53 4 212 212 4 53 106 212
x

+ + += = = = = + + +  

Gardner [14] refuses former studies about the election of A 

as Kevin Gong's [16] in which we can see the 3-terms 

decomposition: 

5 5 12 46 12 2 1 1 1
·

53 53 12 636 6 23 138

+ += = = + +  

because Gong's argument is not related with Rhind Papyrus 

in any way. But Gardner's reconstruction of the Recto Table 

(given in [14]) is based in an election of A which depends on 

Ahmes' mental calculus. Hence, with this argument it is 

impossible to know why Ahmes wrote: 

2 2 30 53 5 2 1 1 1
·

53 53 30 1.590 30 318 795

+ += = = + +  

and not: 

2 2 42 53 21 7 3 1 1 1 1
·

53 53 42 2.226 42 106 318 742

+ + += = = + + +  

Gardner did not explain why Ahmes chose 2, 3 or 4-term 

decompositions and the special cases of the table either so 

Gardner's method provides a very practical property of all the 

unit fractions of the Recto Table but did not assure an 

algorithm of election of each value. 

After all that, it seems that the historians of Mathematics 

changed their point of view to reconstruct of the Recto Table. 

In general, Ahmes computed three kinds of decompositions 

and in all them, the denominators were related to the initial 

one in some of the unit fractions. Thus, Ahmes considered 2-

terms decompositions: 

1

2 1 1

n D d n
= +                                     (4) 

and also 3-terms and 4-terms decompositions, which can be 

respectively considered as: 

1 2

2 1 1 1

n D d n d n
= + +                               (5) 

1 2 3

2 1 1 1 1

n D d n d n d n
= + + +                            (6) 

where D, 1d , 2d  and 3d  are appropriate numbers (see Table 

1, with D, 1d , 2d  and 3d  only given for prime denominators 

n). With these new assumptions, the general research has 

focused the study in the determination of the exact value of D 

which produces Ahmes' election. In this way. Abdulaziz [1] 

started his "modern methods for reconstructing the 2:n-table" 

dividing the entries of the table into two groups. The group 

G1 consisted of the 29 entries that are expressed as the sum of 

two unit fractions along with denominator n = 95, because it 

is a reducible decomposition as it has been already noticed. 

The group G2 consistd of the remaining 20 entries, which are 

expressed as a 3-term or 4-term decompositions. Using only 

techniques explicitly mentioned in the Rhind Papyrus, 

Abdulaziz's method did not distinguish between prime and 

composite numbers and the method of decomposing the 

elements of G2 tried to be a natural extension of the method 

used to decompose the elements of G1. First of all, Abdulaziz 

showed how the majority of the elements of G1 were 

decomposed using rule (4), where D is the largest number for 

which 

1

2

n D
Q

D

−= = , 
2

3
, 

4

5
, 

5

6
 or 

11

12
               (7) 

If decomposition (4) is considered (with 1d D= ), then M, 

R and Q are defined (in our own notation): 

n
M

D
= , 

2
2 2

n D n
R M

D D

−= − = − = ,

1 1 1
n n D

M Q Q M
D D

−= + ⇒ = − = − =            (8) 

If 3n q=  is a multiple of 3, then 1
2

Q R= =  and 2D q= , 

therefore decomposition (2) is obtained. In the same way, the 

case in which 2
3

Q =  and 1
3

R =  corresponds to the 

denominators 5n q=  multiples of 5 and then 3D q= , 

although cases n = 35, 55 and 95 were not calculated in this 

manner. But Abdulaziz explains that this procedure is a 

special case of a more general method which consists in 

starting from 1n −  downward, to consider D as the first 

number such that M is equivalent to 

1
1

k
M

k

−= + , for a certain k                (9) 

Using (9), Abdulaziz calculated case n = 15 as an example, 

and determined that only 10D =  ( 2k = ) and 9D =  ( 3k = ) 

yield two possible decompositions: 

2 1 1 1 1

15 10 2?15 10 30
= + = +  and 

2 1 1 1 1

15 9 3 15 9 45
= + = +

⋅
 

As it can be noticed, the second option has odd 

denominators (following the fifth precept) so, according to 

Abdulaziz, Ahmes chose the first one which could be 

calculated using (2). Abdulaziz also gave explanation to 

special cases n = 35, 55, 91 and 95. 

For group G2, Abdulaziz said that Ahmes kept the 

condition that Q is reducible but allowed R to be the sum of 

two or three unit fractions. If still no decomposition was 

found, then Ahmes allowed Q to be the sum of three or four 

unit fractions. Then, for each denominator n, Abdulaziz listed 

the possible 3-terms decompositions and then, if necessary, 

the 4-terms decompositions with denominators less than 

1.000. He stated that if the explained rules were applied, 

Ahmes' decompositions ere obtained in almost every case but 

he always needed Gillings' precepts to choose. For example, 
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in case n = 13 the fifth precept is necessary to choose Ahmes' 

decomposition of the two possible ones. For n = 17, 

Abdulaziz obtained three possible 3-terms decompositions 

but one was immediately rejected because 2 12d =  and 

Ahmes did not like 10jd >  for j = 1, 2 or 3 (we will talk 

about this upper bound below). Since the other two 

decompositions: 

2 1 1 1

17 12 51 68
= + +  and 

2 1 1 1

17 10 85 170
= + +  

have an odd fraction each, Ahmes preferred the one with the 

larger first denominator or the smaller last one. Thus, we are 

still under the supposed Ahmes' preferences and Abdulaziz 

could reduce the number of possible combinations to only 

1.225 (although if rule (2) is acceptable for denominators 

multiple of 3 then there only are 143 acceptable 

decompositions for the 32 nonmultiples of 3). Abdulaziz 

concluded that Ahmes did not need to consider every value of 

D since he would realize that a number with too few divisors, 

especially a prime number, does not make a good choice for 

D. In fact, D is always multiple of either 10 or 12 for every 

element of G2 except n = 13, 43, 97 and 101. In this sense, 

Dorsett [11] concluded in another paper that D had to be 

multiple of 4 or 6 starting with 12 for 7n ≥ . However, 

Dorsett arrived to this conclusion looking for an appropriate 

number u with which the last fraction of: 

2 1

· ·

n u u

n D n n D n

+= = +  

could be written as 1 2u q q= +  or 1 2 3u q q q= + + , with 1q , 

2q  and 3q  factors of D. Then, for example, Ahmes should 

had chosen D = 12 and u = 1 in case n = 23: 

2 23 1 1 1 1 1

23 12 23 12 12 23 12 276

+= = + = +
⋅ ⋅

 

But, why he did not choose D = 16 or 18, and the 

respective u = 16 or 18, in the same case? 

2 23 9 1 9 1 8 1

23 16 23 16 16 23 16 16 23

+ += = + = + =
⋅ ⋅ ⋅

 

1 8 1 1 1 1

16 16 23 16 23 16 2 23 16 23
+ + = + +

⋅ ⋅ ⋅ ⋅
 

2 23 13 1 13 1 9 3 1

23 18 23 18 18 23 18 18 23

+ + += = + = + =
⋅ ⋅ ⋅  

1 9 3 1 1 1 1 1

18 18 23 18 23 18 23 18 2 23 6 23 18 23
+ + + = + + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Dorsett got all the decompositions of the recto Table but he 

did not explain how to discard the rest of the possible 

decompositions in each case. 

Recently, a new analysis of the Recto Table has been 

carried out by Bréhamet [5] based upon his former papers 

([3] and [4]). Like Dorsett, Bréhamet focused his attention in 

a good election of D. The proposed method starts with three 

"operations": 

First operation: discovery of a unique 2-terms solutions, if 

n is a prime number. 

Second operation: for a sub-project from 9 to 99, realize 

that a mini-table (the "Mother-table"), with just four 

numbers, enables to derive all the composite denominators n 

by using a multiplicative operation (already suggested by 

[15]). This mini-table is: 

2 1 1 1 1

3 2 2 3 2 6
= + = +

⋅
, 

2 1 1 1 1

5 3 3 5 3 15
= + = +

⋅
, 

2 1 1 1 1

7 4 4 7 4 28
= + = +

⋅
, 

2 1 1 1 1

11 6 6 11 6 66
= + = +

⋅
 

Notice that this decompositions can be computed using 

formula (1). Thus, if n is composite, then formula (3) should 

be generally used. There also is the special case n = 23 which 

we will see below. 

Third operation: the rest denominators n from 13 to 97 

decompose into 3 (or 4 terms if necessary). 

Bréhamet's hypothesis has its initial point in finding an 

appropriate D in formula (5) and (6) and it seems to be 

"rather simple" if a table of odd numbers 2 1p + , for 1p ≥  is 

established, as a sum of two numbers 1 2q q+ , with 

1 22 p q q≥ > . The first possible candidate for D starts at an 

initial value 0 ( 1) / 2D n= +  and we can search for general 

solutions of the form: 

0nD D p= +                              (10) 

whence 

1 22 2 1nD n p q q− = + = +                 (11) 

Thus: 

1 2
1 2

1 2

2 1 1 1 1
2

· ·· ·

n

n n n n

q q
D n q q

n d n d nD D n D n D
− = + ⇒ = + + = + +  (12) 

where 1
1

nD
d

q
=  and 2

2

nD
d

q
= , and one of them must be odd 

and the other must be even (already stated by Bruins [6]). 

Hence, D must also be even. Bréhamet suggested that from 

this table of doublets 1q  and 2q , a new table of trials was 
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built where this time doublets were selected if 1q , 2q  divide 

1 2

2

n q q+ + 
 
 

                              (13) 

and this provided a possible nD  and the corresponding 1d  

and 2d . Now, for each given p, the table of trials defined by 

(11) where 1q  and 2q  divides nD  is bounded by a maxp  

since it can be proved that no solution can be found beyond 

( 3) / 2p n= − . For all that, the decompositions into 3-terms 

fractions lead to a total of trials with 71 possibilities and it 

seems that Ahmes' election would have been related to 

choose trials with a low difference 1 2q q q∆ = −  and with the 

imposition of a Top-flag
1
 10fT =  with which 1 2, fd d T≤  

(then, there only are 16 possible trials). It is true that this 

method explains all the possible 3-terms decompositions but 

leaves the election of the chosen trials to some unknown 

hypotheses. For example, in case n = 13, there are two 

possible combinations: 

1. If 1q∆ = , then 2 1 3p + = , 1p = , 1 2q = , 2 1q = , 

8nD = , and 
2 1 1 1

13 8 4 13 8 13
= + +

⋅ ⋅
. 

2. If 3q∆ = , then 2 1 7p + = , 3p = , 1 5q = , 2 2q = , 

10nD = , and 
2 1 1 1

13 10 2 13 5 13
= + +

⋅ ⋅
. 

In this case, Ahmes chose the first with lower q∆  although 

1d  and 2d  are respectively greater (4 > 2 and 8 > 5). 

However, it no seems to be a established criteria for the 

election of case n = 31, in which we have that if 1q∆ = , then 

there are two possible combinations with 10fT = : 

1. 2 1 5p + = , 2p = , 1 3q = , 2 2q = , 18nD = , and 

2 1 1 1

31 18 6 31 9 31
= + +

⋅ ⋅
. 

2. 2 1 9p + = , 4p = , 1 5q = , 2 4q = , 20nD = , and 

2 1 1 1

31 20 4 31 5 31
= + +

⋅ ⋅
. 

Ahmes chose the second case. If now the condition was 

that with the same lower q∆ , 1d  and 2d  had to be 

respectively smaller (4 < 6 and 5 < 9), what had happened 

with case n = 71? The only two possible combinations with 

1q∆ =  (and 10fT = ) are: 

1. 2 1 9p + = , 4p = , 1 5q = , 2 4q = , 40nD = , and 

2 1 1 1

71 40 8 71 10 71
= + +

⋅ ⋅
 

2. 2 1 13p + = , 6p = , 1 7q = , 2 6q = , 42nD = , and 

                                                             

1 This name for the upper bound is given by Bréhamet (2017). 

2 1 1 1

71 42 6 71 7 71
= + +

⋅ ⋅
. 

The election here was the first option although 1d  and 2d  

are respectively greater (8 > 6 and 10 > 7) and the Top-flag is 

reached. Bréhamet said that in case n = 71, "there is no 

convincing arithmetical argumentation, then the choice could 

have been the simplicity and direct observation". 

Another interesting observation is case n = 23 again. 

Bréhamet got the unique solution 7q∆ = , 2 1 9p + = , 

4p = , 1 8q = , 2 1q = , 16nD = , and: 

2 1 1 1

23 16 2 23 16 23
= + +

⋅ ⋅
 

It seems plausible that Ahmes rejected it because 

2 16 10 fd T= > = . But then, why accepted the case n = 53? 

In the table of 71 possibilities, he could choose among four 

possible options, namely: 

1. 
2 1 1 1

53 28 14 53 28 53
= + +

⋅ ⋅
, with 1q∆ = . 

2. 
2 1 1 1

53 30 6 53 15 53
= + +

⋅ ⋅
, with 3q∆ = . 

3. 
2 1 1 1

53 30 5 53 30 53
= + +

⋅ ⋅
, with 5q∆ = . 

4. 
2 1 1 1

53 36 2 53 36 53
= + +

⋅ ⋅
, with 17q∆ = . 

Since the second has the lowest possible 

2 15 10 fd T= > = , perhaps Ahmes decided to choose this 

although the Top-flag was not respected. But now, we can 

ask us again why case n = 23 was not elected then. And what 

happened with case n = 43? Ahmes obtained the unique case 

(among the 71 possibilities): 

2 1 1 1

43 30 2 43 15 43
= + +

⋅ ⋅
 

but Bréhamet suggested that Ahmes rejected because 

13q∆ =  is too large, and then he began to look for a 4-term 

decomposition. 

In general, it seems plausible that if Ahmes did not obtain 

a 3-terms decomposition or the difference between 2d  and 

fT  was too large (or he did not like the 3-term possible 

decomposition), then he looked for a 4-term decomposition. 

Again, Bréhamet obtained a table of 71 possible 4-term 

combinations in which, for example, we find decomposition: 

2 1 1 1 1

23 20 2 23 4 23 10 23
= + + +

⋅ ⋅ ⋅
 

Why Ahmes did not choose it if the Top-flag is respected? 

Bréhamet did not have any argument to answer this question. 

In this case, Bréhamet looked for three numbers 1q , 2q  
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and 3q  with which: 

1 2 32 2 1nD n p q q q− = + = + +                    (14) 

in a similar argument than (11). However, there are still cases 

not really stated in the paper. For example, case n = 29. 

Among the 71 possible 3-terms decomposition, there are 

three possible combinations: 

2 1 1 1

29 16 8 29 16 29
= + +

⋅ ⋅
, 

2 1 1 1

29 18 3 29 18 29
= + +

⋅ ⋅
, and 

2 1 1 1

29 20 2 29 20 29
= + +

⋅ ⋅
 

with respectively 1q∆ = , 5q∆ =  and 9q∆ = . In the three 

options, the Top-flag is not respected and Ahmes had to look 

for a 4-term decomposition and he found three more options: 

2 1 1 1 1

29 24 2 29 6 29 8 29
= + + +

⋅ ⋅ ⋅
, 

2 1 1 1 1

29 20 4 29 5 29 10 29
= + + +

⋅ ⋅ ⋅
 and 

2 1 1 1 1

29 30 2 29 3 29 5 29
= + + +

⋅ ⋅ ⋅
 

and he chose the first one. This case corresponds to 1 12q = , 

2 4q =  and 3 3q = , he second to 1 5q = , 2 4q =  and 3 2q = , 

meanwhile the third to 1 15q = , 2 10q =  and 3 6q = . 

Bréhamet argued that the reason why Ahmes chose this first 

option is because it implies the lowest difference between 2q  

and 3q  and this can be considered a new precept or previous 

condition. 

Finally, apart from cases n = 23 and n = 29, Bréhamet also 

points out case n = 53 for which Ahmes chose the 

commented 3-terms decomposition. Gillings noticed that 

there was a possible 4-term decomposition, namely: 

2 1 1 1 1

53 42 2 53 6 53 14 53
= + + +

⋅ ⋅ ⋅
 

Why Ahmes did not choose it if the last 3 14d =  in it is 

lower than the chosen 2 15d = ? Bréhamet did not give a 

satisfactory answer either. 

Thus, we can see that all these former studies on the Recto 

Table depend on some choices made by Ahmes/the real 

author which are not clearly explained. Since the five 

Gillings' precepts to Bréhamet's great trial, the 3-term and 4-

term decompositions continue hiding some clues to can 

explain the reason why Ahmes preferred one decomposition 

against another without taking care of his own established 

rules. 

3. The Reason for the Top-Flag 

It is obvious that all the values 1d , 2d  and 3d  of the 

Recto Table are below this Top-flag 10fT =  except cases n 

= 23 and 53. Thus, it is plausible to think that this upper 

bound was adopted to facilitate scribe's work. Bréhamet [5] 

argued in a very correct way that since there are infinite 

possible decompositions of one given fraction in unit 

fractions, it should have been the necessity of limiting the 

highest possible denominator 2d n  in the 3-term 

decompositions or 3d n  in the 4-term ones. This could be the 

real reason why Ahmes decided to look for a 4-term 

decomposition for case n = 29, for example. As it has been 

seen, the three possible options obtained with Bréhamet's 

method do not respect the Top-flag and neither do the five 

more 3-terms decompositions obtained by Gillings [15] 

which are not computed with the same algorithm. Finally, 

Ahmes chose the commented 4-terms decomposition. 

Then, what happened with case n = 23 and 53? As we have 

seen, case n = 53 is the only 3-terms decomposition in which 

2 15 10 fd T= > = . Abdulaziz [1] argued that Ahmes should 

have searched for a 4-term decomposition and he would 

obtain: 

2 1 1 1 1

53 36 4 53 6 53 9 53
= + + +

⋅ ⋅ ⋅
 or 

2 1 1 1 1

53 48 2 53 3 53 16 53
= + + +

⋅ ⋅ ⋅
 

In the first option, Ahmes should have deal with the 

problem that Q (see (8)) would have been the only case that it 

would have decomposed in three unit fractions, namely: 

53 36 17 1 1 1

36 36 4 6 18
Q

−= = = + +  (for example) 

and this would be the only case in all the table (all the 

computed Q were decomposed in only two unit fractions), so 

Ahmes rejected it. For the second option, since 3 16d = , 

Ahmes preferred the chosen 3-terms decomposition. This 

argument was more reasoned than Gillings' calculations [15] 

which showed that the 3-term decomposition found in Rhind 

Papyrus was the only available one in front of the twenty-

three possible 4-terms decompositions for this case. 

Furthermore, all these 4-term decompositions contain very 

high odd numbers except: 

2 1 1 1 1

53 42 2 53 6 53 14 53
= + + +

⋅ ⋅ ⋅
 

Gillings thought that if this last equality did come to 

Ahmes' attention, he must have thought very deeply before 

deciding. 

For n = 23, Ahmes decomposed this fraction in a 2-terms 

decomposition meanwhile cases n = 13, 17 and 19 were 

decomposed in a 3-terms one. Why this denominator is so 

special? Gillings said that the main reason is that is the only 

2-terms decomposition and all the possible 3-terms 
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decompositions have last terms much greater than 276. On 

the other hand, Abdulaziz placed it in group G1 and after 

showing four possible decompositions (two 4-terms 

decomposition, one of 3-terms and the chosen 2-terms one), 

said that clearly the last one was "the most attractive". 

However, there was no mention to the reason why Ahmes 

could not use the same method to decompose case n = 13, 17, 

19 or 53, for example. 

Now, it comes to my mind one more important question 

related with special case n = 71. We can not assure that 

Ahmes did not look for a different method for these cases and 

although there is not any solution which respects this upper 

bound. In fact, he could choose: 

2 1 1 1 1

53 36 4 53 6 53 9 53
= + + +

⋅ ⋅ ⋅
 

and the reason argued by Abdulaziz for not choosing it seems 

to be very weak because the implication of the violation of 

the Top-flag by Ahmes. 

4. 1st Step: The Composite 

Denominators in the Recto Table 

As it has been said, all the fractions with composite 

denominator seems to have been computed from the 

"Mother-table": 

2 1 1 1 1

3 2 2 3 2 6
= + = +

⋅
, 

2 1 1 1 1

5 3 3 5 3 15
= + = +

⋅
, 

2 1 1 1 1

7 4 4 7 4 28
= + = +

⋅
 and 

2 1 1 1 1

11 6 6 11 6 66
= + = +

⋅
. 

I agree that in order to follow the global rule explained in 

(4), (5) and (6), Ahmes (or, remember, the real authors of the 

table), scribes had to start his task looking for a 2-terms 

decomposition of the type: 

1

2 1 1

n D d n
= +                                 (4) 

and this decomposition is unique because multiplying (4) by 

1d n , there is an unique D which satisfies the equation: 

1
2 1

2

n
D n D

+= + ⇒ =                       (15) 

which of course satisfies (1). Then, 1

1

2

n
d

+=  too. 

Therefore, from these first four 2-terms relations, Ahmes 

could compute all the decompositions of the fractions whose 

denominators are multiples of 3, 5, 7 and 11: 

2 1 1

3 2 6m m m
= + , m = 1, 2, 3, ..., 33             (16) 

2 1 1

7 4 28m m m
= + , m = 1, 7 and 11                (17) 

m = 3 and 9 follows (16). 

2 1 1

11 6 66m m m
= + , m = 1 and 5                 (18) 

m = 3 and 9 follow (16). 

m = 7 follows (17). 

2 1 1

5 3 15m m m
= + , m = 1, 5, 13 and 17            (19) 

m = 3, 9 and 15 follows (16). 

m = 11 follows (18). 

Although there are some former studies which 

demonstrates that these are indeed the correct 2-term 

decompositions for all these composite denominators, it 

seems more probable to think that they were computed 

multiplying the results of the "Mother-table", as in formula 

(2). Furthermore, it seems that the values were calculated 

following the order given here, except n = 35 (m = 5 in (17) 

or m = 7 in (19)), 91 (m = 13 in (17)) and 95 (m = 19 in 

(19)). 

As we have seen, case n = 35 was probably a problem for 

Ahmes because he decided to check the given 

decomposition. Gillings [15] said that the scribe chose the 

simplest decomposition from the 1.458 possibilities. 

However, he could compute one of the other three 2-term 

options: 

2 1 1

35 18 18?35
= +  ( 1 18 10 fd T= > = ),  

2 1 1

35 20 4 35
= +

⋅
 or 

2 1 1

35 21 3 35
= +

⋅
 

Apart from the first one, Abdulaziz [1] discarded the 

third because it has two odd denominator (following 

Gillings' precepts) and then, Ahmes chose the elected one 

because D = 30 is greater than 20. However, both n = 35 

and 91 can be seen as the solution of the same proposed 

initial problem although we can not know why Ahmes did 

not follow the "Mother-table". If the initial approach had 

been a rule like: 

2 1 1

pq Dp Dq
= +                         (20) 

then the scribe would obtained: 

2

p q
D

+=                                 (21) 

Hence: 

1. If 5p =  and 7q = , then 6D =  and 

2 1 1 1 1

35 6 5 6 7 30 42
= + = +

⋅ ⋅
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2. If 7p =  and 13q = , then 10D =  and 

2 1 1 1 1

91 10 7 10?13 70 130
= + = +

⋅
. 

Could they be a contamination of another similar table 

with an alternative to formula (17)? In this case, this 

variation should be: 

( ) ( )7 7
2 2

2 1 1

7 7 m mm m+ +
= +                         (22) 

which must obviously demand an odd value for m. Thus, the 

possible table would contain the values of Table 2. However, it 

would not have any convincing argument to defend the use of 

formula (17) to calculate decomposition for n = 77 in spite of 

the decomposition of this new table. Thus, the only thing that it 

can be assured is that cases n = 35 and 91 are computed using 

the same method and they are not different cases as suggested 

by some of the former studies on the Recto Table. 

Table 2. possible table for decompositions of 2/(7m). 

m 7
2

m +  ( )7
2

7 m+  ( )7
2
mm +  Decomposition 

1 4 28 4 
2 1 1

7 4 28
= +  It is the same as calculated with (17). 

3 5 35 15 
2 1 1

21 15 35
= +  21 3 7n = = ⋅  was calculated using (16). 

5 6 42 30 
2 1 1

35 30 42
= +  Chosen by the scribe. 

7 7 49 49 
2 1 1

49 49 49
= +  It has no sense in the Recto Table. 

9 8 56 72 
2 1 1

63 56 72
= +  63 9 7n = = ⋅  was calculated using (16). 

11 9 63 99 
2 1 1

77 63 99
= +  Ahmes used (17). 

13 10 70 130 
2 1 1

91 70 130
= +  Chosen by the scribe. 

Finally, another singular case is m = 19 in (19). However, this decomposition was computed from the one with denominator 

equal to 19: 

2 1 1 1 2 2 1 1 1 1 1 1 1

19 12 76 114 95 5 19 5 12 76 114 60 380 570

 = + + ⇒ = = + + = + + ⋅    

Bruins [6] and Gillings [15] pointed out that Ahmes should 

have known that: 

1 1 1

380 570 228
+ =  

and then: 

2 1 1 1 1 1

95 60 380 570 60 228
= + + = +  

If this fact was true, then this third singular case must be 

added to cases n = 35 and 91 because: 

2 1 1 1 1 1 1 1 1

95 60 380 570 60 228 12 5 19

 = + + = + = + 
 

 

follows formula (20) for 5p = , 19q =  and 12D = . 

So, for the moment, we can conclude that all the fractions 

with a composite number in the denominator was computed 

as a 2-term decomposition using formulas (16), (17), (18) 

and (19), except cases n = 35, 91 and 95, whose 

decomposition was calculated using formula (20). 

5. 2nd Step: 3-Terms Decompositions 

After the 1st step, Ahmes should have looked for a relation 

of the type (5): 

1 2

2 1 1 1

n D d n d n
= + + , with 1 2d d kD=                    (5) 

for a certain k, and 1 2d d< , or what is the same: 

1 22kD n d d= + + , with 1 2d d kD=                 (23) 

Since now, the former studies have focused the attention in 

establishing some initial hypothesis and getting a good 

election of the first denominator D. In both cases, there 

always are cases which not seem to adapt to the a priori rules 

or precepts and then, there always are special and singular 

cases which only depend on Ahmes' predilections. Thus, all 

these commented studies gives convincing explanations if 

some exceptions are permitted. However, none of them gets 

their initial aim. In the best possible method [5], Ahmes had 

to choose among 71 3-terms possible decompositions and 71 

more 4-term decompositions which could have been reduced 



 History Research 2018; 6(2): 33-49 43 

 

with some preconceived ideas. But the main aim of this kind 

of study is not giving to Ahmes the right of choice but he got 

his results directly in some concrete way. After all these 

previous reasonings, I think that the lack of success of these 

works is having fixed the attention in finding an appropriate 

D and not on the other possible denominators which, till now, 

are always direct consequences of the chosen D. But if we 

have a look to the last four columns of Table 1 where values 

of D, 1d , 2d  and 3d  are given for each n prime, it can be 

noticed that there is not any pair { }1 2,d d  in the 3-terms 

decompositions and any triplet { }1 2 3,d d d  in the 4-term 

decomposition which appear twice. Hence, accepting the fact 

that after computing all the composite denominators n in a 2-

term decomposition, Ahmes began to look for a 3-term 

decomposition for all the prime denominators using some 

reasoning equivalent to (4), (5) and (6), the only established 

initial condition is the Top-flag 1 2, 10fd d T≤ = . 

With this assumption, how Ahmes could proceed? First of 

all, we can suppose that 1d  and 2d  are coprime, with 

1 2d d kD= . If not, it would exist d = g.c.d.( 1d , 2d ) ≠ 1, so 

1 1d ds= , 2 2d ds=  and 2
1 2 1 2 1 2·kD d d ds ds d s s= = = . In 

this case, we would consider that 1s  and 2s  are the new 1d  

and 2d , respectively, and 2k d= . However, one can consider 

the case 1 1d =  as a possible election as we will see below. 

Secondly, let us see what happens if we consider a 

decomposition of the kind: 

1 2
1 2

2 1 1 1 1
·2M kD n d d

n M D d n d n

 
= + + ⇒ = + + 

 
                                                       (24) 

If M = 1, ( ) ( )1 2 1 2 1 2 12 2n d d kD n d d d d n+ + = ⇒ = − + =                                                 (25) 

If M = 2, ( ) ( )1 2 1 2 1 2 1 1 2 24 4 2n d d kD n d d d d n d d n+ + = ⇒ = − + = + =                                           (26) 

If M = 3, ( ) ( )1 2 1 2 1 2 2 1 2 36 6 2n d d kD n d d d d n d d n+ + = ⇒ = − + = + =                                       (27) 

In general, it can be considered that for all the possible 

values for M, we have that: 

1 1 22M Mn n d d−= +                          (28) 

so the cases with denominators n = 13 ( 4M = ), 19 ( 2M = ), 

41 ( 2M = ), 53 ( 3M = ) and 71 ( 2M = ) can be reduced to 

easy trials and Ahmes could find them only adding 1 22d d  to 

some previous results. Table 3 provide all the possible results 

considering that 1d  and 2d  are coprime, and formula (28). 

Furthermore, formula (24) directly implies that 1d  and 2d  

must be of different parity. Then, the table is very easy and fast 

to compute and we have marked out the denominators n 

chosen by Ahmes (T), the composite denominators ©, the not-

chosen denominators (nc) and the denominators which later 

will be decomposed in four unit fractions (4t). Of course, the 

denominators 101n >  have not been written. 

Table 3. Possible n from d1 and d2. 

C1 C2 C3 C4 C5 C6 C7 C8 

d1 d2 2d1d2 d1+d2 n=n1(25) n=n2(28) n=n3(28) n=n4(28) 

1 2 4 3 1  5 9 (C) 13 (T) 

1 3 6 4 2 8 (C) 14 (C) 20 (C) 

1 4 8 5 3 11 19 (nc) 27 (C) 

2 3 12 5 7 19 (T) 31 (nc) 43 (4t) 

2 5 20 7 13 (nc) 33 (C) 53 (T) 73 (4t) 

2 7 28 9 19 (nc) 47 (nc) 75 (C) ---- 

2 9 36 11 25 (C) 61 (4t) 97 (nc) ---- 

3 4 24 7 17 (T) 41 (T) 65 (C) 89 (4t) 

3 8 48 11 37 (T) 85 (C) ---- ---- 

3 10 60 13 47 (T) ---- ---- ---- 

4 5 40 9 31 (T) 71 (T) ---- ---- 

4 7 56 11 45 (C) ---- ---- ---- 

4 9 72 13 59 (T) ---- ---- ---- 

5 6 60 11 49 (C) ---- ---- ---- 

5 8 80 13 67 (T) ---- ---- ---- 

6 7 84 13 71 (nc) ---- ---- ---- 

7 8 112 15 97 (T) ---- ---- ---- 

7 10 140 17 ---- ---- ---- ---- 

8 9 144 17 ---- ---- ---- ---- 

9 10 180 19 ---- ---- ---- ---- 

 

From table 3, we can extract some possible conclusions: 

1. Except the case 4 13n n= = , which Ahmes could have 

chosen because it is the result of a very quick calculation, it 

can be seen that column C7 has three possible denominators 
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(19, 31 and 97) which were not chosen and column C8 

contains denominators 43, 73 and 89 which were 

decomposed in four unit fractions (marked as (4t)). Thus, it 

can be concluded that Ahmes did not compute C7 and C8 as a 

priority. Probably, he didn't have computed C7 if 53n =  had 

appeared in C5 or C6. So Ahmes computed columns C5 or C6 

and made his trials and after that, he computed C7, found 

53n =  and discarded cases n = 19, 31 and 97 of C7 because 

he had chosen another decompositions found in previous 

columns. 

2. Case 19n =  can explain a possible order in computing 

the table because Ahmes chose 2 19n =  and not 1 19n = . It 

can be because 2 19n =  appeared before (over) 1 19n = , or 

really because 2 1d d d∆ = −  is less in 2 19n =  (as suggested 

by Bréhamet [5]). For the same reason, Ahmes chose 

2 71n =  and not 1 71n = . 

3. Case 2 61n =  was not chosen. The reason can be that 

2 9d =  and 2M = , so the denominator in the decomposition 

would be equal to 18?61  and 18 fT> . As 61n =  will be 

easily decomposed in four unit fractions, Ahmes would have 

discarded it here. Again, case 53n =  also implies 2 5d =  

and 3M = , so 15 fT>  but, as we will see below, 53n =  

will not be decomposed in four unit fractions with this 

method. Thus, Ahmes had to choose this decomposition. 

Hence, after these easy and fast calculations, Ahmes 

computed in this order: 

4M = , 1 1d = , 2 2d =  13n⇒ =  and 
2 1 1 1 1 1 1 1

13 4 1 2 1 13 2 13 8 52 104

 
= + + = + + ⋅ ⋅ ⋅ 

 

2M = , 1 2d = , 2 3d =  19n⇒ =  and 
2 1 1 1 1 1 1 1

19 2 2 3 2 19 3 19 12 76 114

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 3d = , 2 4d =  17n⇒ =  and 
2 1 1 1 1 1 1 1

17 1 3 4 3 17 4 7 12 51 68

 
= + + = + + ⋅ ⋅ ⋅ 

 

2M = , 1 3d = , 2 4d =  41n⇒ =  and 
2 1 1 1 1 1 1 1

41 2 3 4 3 41 4 41 24 246 328

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 3d = , 2 8d =  37n⇒ =  and 
2 1 1 1 1 1 1 1

37 1 3 8 3 37 8 37 24 111 296

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 3d = , 2 10d =  47n⇒ =  and 
2 1 1 1 1 1 1 1

47 1 3 10 3 47 10 47 30 141 470

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 4d = , 2 5d =  31n⇒ =  and 
2 1 1 1 1 1 1 1

31 1 4 5 4 31 5 31 20 124 155

 
= + + = + + ⋅ ⋅ ⋅ 

 

2M = , 1 4d = , 2 5d =  71n⇒ =  and 
2 1 1 1 1 1 1 1

71 2 4 5 4 71 5 71 40 568 710

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 4d = , 2 9d =  59n⇒ =  and 
2 1 1 1 1 1 1 1

59 1 4 9 4 59 9 59 36 236 531

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 5d = , 2 8d =  67n⇒ =  and 
2 1 1 1 1 1 1 1

67 1 5 8 5 67 8 67 40 335 536

 
= + + = + + ⋅ ⋅ ⋅ 

 

1M = , 1 7d = , 2 8d =  97n⇒ =  and 
2 1 1 1 1 1 1 1

97 1 7 8 7 97 8 97 56 679 776

 
= + + = + + ⋅ ⋅ ⋅ 

 

3M = , 1 2d = , 2 5d =  53n⇒ =  and 
2 1 1 1 1 1 1 1

53 3 2 5 2 53 5 53 30 318 795

 
= + + = + + ⋅ ⋅ ⋅ 
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Furthermore, these results show that Ahmes didn't start his 

search looking for 0D  and 0nD D p= +  (formula (10)) but 

the value of D only depends on the found 1d  and 2d . 

Of course, we must point out that all this modern 

mathematical formulation was not available for Ahmes and 

he should have computed all these values using a similar or 

equivalent method easy to implement. 

Now, Ahmes only had to deal with cases n = 23, 29, 43, 

61, 73, 79, 83 and 89, which he had not found without C8 in 

Table 3. 

6. 3rd Step: 4-Terms Decompositions 

Thus, Ahmes looked for a relation of the type: 

1 2 3

2 1 1 1 1

n D d n d n d n
= + + + , with 1 2 3d d d kD=           (5) 

for a certain k, and 1 2 3d d d< < , or what is the same,: 

2 3 3 1 1 22kD n d d d d d d= + + +                    (29) 

The results obtained by Ahmes are not random and we can 

state that a similar procedure as the 3-terms decomposition 

was made. Hence, Ahmes had to deal with an equality as (29) 

and it is obvious (observing the obtained results) that he 

began his procedure supposing that among 1d , 2d  and 3d , 

there are two consecutive numbers. For simplicity, let us 

suppose that 1d  and 2d  are consecutive and then 3d  does 

not necessary have to be less than them. Then, (29) is 

transformed in: 

12 3 12 3 122P d n S d P= + +                        (30) 

where 12 1 2 1 1( 1)P d d d d= = +  and 12 1 2 12 1S d d d= + = + . 

Equivalently: 

3 12 12 3(2 1)d P n S d− = +                         (31) 

In this way, an expression similar to (25) is obtained, since 

we have: 

3 12 12 3(2 1)n d P S d= − −                          (32) 

Furthermore, a general expression could be considered 

adding the parameter M: 

12 3 12 3 12
1 2 3

2 1 1 1 1 1
·2M P d n S d P

n M D d n d n d n

 
= + + + ⇒ = + + 

 
                                           (33) 

Again, if M = 1, 1 12 3 12 3 12 3 12 12 32 (2 1)n n P d S d P d P S d= = − − = − −                                    (34) 

If M = 2, 2 12 3 12 3 12 12 3 12 3 12 3 12 1 12 34 2 2 2n P d S d P P d P d S d P n P d= − − = + − − = +                                     (35) 

If M = 3, 3 12 3 12 3 12 12 3 12 3 12 3 12 2 12 36 2 4 2n P d S d P P d P d S d P n P d= − − = + − − = +                                      (36) 

In general, we can consider that for all the possible values 

for M, we have that: 

1 12 32M Mn n P d−= +                         (37) 

Hence, with these assumptions, Ahmes did not have any 

difficulty in finding the missing denominators. One first 

attempt would have been the special case 3 1d =  because it 

implies that 1M ≠  and 32 1 1d − = , so according to (34) we 

have 1 12 12n P S= − . If we look at Table 4 which the 

corresponding results obtained with two consecutive 1d  and 

2d , and 3 1d = , it can be concluded that 2 29n =  was 

obtained and the calculus didn't continued beyond 1 3d =  or 

4, because 2 79n =  was not chosen here. Hence, case n = 29 

is like case n = 13 in the 3-terms decompositions and it 

seems to make sense if it is considered as a result of a quick 

calculation (they are the only cases in which there is a divisor 

1jd = ). For all that, Ahmes computed: 

2M = , 1 3d = , 2 4d = , 3 1d = 29n⇒ = : 

2 1 1 1 1 1 1 1 1 1

29 2 3 4 1 29 3 29 4 29 24 58 174 232

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ 

 

Table 4. Possible n from d3 = 1 and consecutive d1 and d2. 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

d3 d1 d2 P12 S12 2d3-1 (2d3-1)P12 S12d3 2P12d3 n=n1 (34) n=n2 (35) 

1 

2 3 6 5 

1 

6 5 12 1 13 (nc) 

3 4 12 7 12 7 24 5 29 (T) 

4 5 20 9 20 9 40 11 51 = 3· 17 

5 6 30 11 30 11 60 19 (nc) 79 (nc) 

6 7 42 13 42 13 84 29 (nc) ---- 

7 8 56 15 56 15 112 41 (nc) ---- 

8 9 72 17 72 17 144 55 = 5· 11 ---- 

9 10 90 19 90 19 180 71 (nc) ---- 
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Now, Ahmes considered the case 1 2d = , 2 3d =  and all 

the possible results with 31 10d< ≤  (Table 5) and obtained 

denominators n = 43 and 89. So he had 4-terms 

decompositions: 

1M = , 1 2d = , 2 3d = , 3 7d = 43n⇒ = : 

2 1 1 1 1 1 1 1 1 1

43 1 2 3 7 2 43 3 43 7 43 42 86 129 301

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

2M = , 1 2d = , 2 3d = , 3 5d = 89n⇒ = : 

2 1 1 1 1 1 1 1 1 1

89 2 2 3 5 2 89 3 89 5 89 60 356 534 890

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

Furthermore: 

1. Ahmes obtained 2 146 2?73n = = . Then, he would 

compute: 

2 2 1 1 1 1 1

146 2 73 2 2 3 8 2 146 3 146 8 146

 
= = + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 

Therefore: 
2 1 1 1 1

73 48 4 73 6 73 16 73
= + + +

⋅ ⋅ ⋅
. 

This decomposition does not preserve the Top-flag 

10fT =  so it must be rejected. In general, if 2 2n n=  for a 

certain n, we have: 

1 2 3 1 2 3

2 1 1 1 1 1

2 2 2 2 2n d d d d n d n d n

 
= + + + ⇒ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 

1 2 3 1 2 3

2 1 1 1 1

2 2 2n d d d d n d n d n
= + + +

⋅ ⋅ ⋅ ⋅ ⋅              (38) 

Thus, all the considered factors 1d , 2d  and 3d  are 

doubled in the decomposition. Then, if 32 fd T> , the trial 

must be rejected. 

2. Case 1 29n =  is not chosen because it has already been 

computed in the quick calculation of Table 4. 

Table 5. Possible n from consecutive d1 = 2, d2 = 3 and d3 > 1. 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

d1 d2 P12 S12 d3 2d3-1 (2d3-1)P12 S12d3 2P12d3 n=n1 (34) n=n2 (35) 

2 3 6 5 

2 3 18 10 24 3
8 2=  

5
32 2=  

3 5 30 15 36 15 3 5= ⋅  51 3 17= ⋅  

4 7 42 20 48 22 2 11= ⋅  70 2 5 7= ⋅ ⋅  

5 9 54 25 60 29 (nc) 89 (T) 

6 11 66 30 72 2 2
36 2 3= ⋅  

2 3
108 2 3= ⋅  

7 13 78 35 84 43 (T) 127 prime 

8 15 90 40 96 2
50 2 5= ⋅  146 2 73= ⋅  

9 17 102 45 108 57 3 19= ⋅  165 3 5 11= ⋅ ⋅  

 

Finally, Ahmes considered consecutive 1 3d = , 2 4d = , 

and 1 4d = , 2 5d =  (Table 6) and obtained denominators n = 

61, 73, 79 and 83. It must be noticed that in cases n = 79 and 

83, Ahmes obtained 1 2?79n =  and 2?83 , respectively. This 

"2" is factor 2k =  in (6) and is the greatest common divisor 

of 3d  and one of the pair { 1d , 2d }. 

Table 6. Possible n from consecutive d1 = 3, d2 = 4, and d1 = 4, d2 = 5, and d3 > 1. 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

d1 d2 P12 S12 d3 2d3-1 (2d3-1)P12 S12d3 2P12d3 n=n1 (34) n=n2 (35) 

3 4 12 7 

5 9 108 35 120 73 (T) 193 prime 

6 11 132 42 144 290 2 3 5= ⋅ ⋅  2
234 2 3 13= ⋅ ⋅  

7 13 156 49 168 107 prime 2
275 5 11= ⋅  

8 15 180 56 192 2
124 2 31= ⋅  

2
316 2 79= ⋅  

9 17 204 63 216 141 3 47= ⋅  357 3 7 17= ⋅ ⋅  

10 19 228 70 240 158 2 79= ⋅  (T) 398 2 199= ⋅  

4 5 20 9 

2 3 60 18 80 42 2 3 7= ⋅ ⋅  122 2 61= ⋅ (T) 

6 11 220 54 240 166 2 83= ⋅ (T) 406 2 7 29= ⋅ ⋅  

7 13 260 63 280 197 prime 2
477 3 53= ⋅  

8 15 300 72 320 2
228 2 3 19= ⋅ ⋅  

2
548 2 137= ⋅  

9 17 340 81 360 259 7 37= ⋅  619 prime 

10 19 380 90 400 290 2 5 29= ⋅ ⋅  690 2 3 5 23= ⋅ ⋅ ⋅  

 

Therefore, having this little singularity in mind, Ahmes 

had the next 4-terms decompositions: 2M = , 1 4d = , 2 5d = , 3 2d = 2?61n⇒ = : 
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2 1 2 1 1 1 1 1 1 1

61 2 2 4 5 2 61 4 61 5 61 40 244 488 610

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

1M = , 1 3d = , 2 4d = , 3 5d = 73n⇒ = : 

2 1 1 1 1 1 1 1 1 1

73 1 3 4 5 3 73 4 73 5 73 60 219 292 365

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

1M = , 1 3d = , 2 4d = , 3 10d = 2?79n⇒ = : 

2 1 2 1 1 1 1 1 1 1

79 1 3 4 10 3 79 4 79 10 79 60 237 316 790

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

1M = , 1 4d = , 2 5d = , 3 6d = 2?83n⇒ = : 

2 1 2 1 1 1 1 1 1 1

83 1 4 5 6 4 83 5 83 6 83 60 332 415 498

 
= + + + = + + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

7. 4th Step: The Case n = 23 

In all this argumentation, denominator n = 23 has not 

appeared. We have seen that previous analysis had found 

other 3-terms decomposition and 4-terms decomposition for 

this case, as for example: 

2 1 1 1 1 1 1

23 16 2 23 16 23 16 46 368
= + + = + +

⋅ ⋅
, 

2 1 1 1 1 1 1 1 1

23 18 2 23 6 23 18 23 18 46 138 414
= + + + = + + +

⋅ ⋅ ⋅
 

2 1 1 1 1 1 1 1 1

23 20 2 23 4 23 10 23 20 46 92 230
= + + + = + + +

⋅ ⋅ ⋅
 

the third of which is recorded by Bréhamet and preserves the 

Top-flag. Gillings [15] said that eighteen 3-term 

decompositions were possible although all of them have last 

terms much greater than 276 = 12· 23. However, the main 

reason to argue that n = 23 must be decomposed in a 2-terms 

unique decomposition is that 23 is a primer number. If so, 

why denominators n = 13, 17 and 19 are not decomposed in 

the same kind of 2-term decomposition, namely (6)? In the 

procedure presented here, n = 23 has not been a possible 

result for Ahmes' computation because the conditions for the 

elections are not met. Hence, it is very plausible to think that 

this lack was filled with this unique 2-terms possible 

decomposition: 

2 1 1 1 1

23 12 12 23 12 276
= + = +

⋅
 

and cases n = 13, 17 and 19 were not affected by this 

desperate final calculus. As n = 23 is the unique case not 

obtained by Ahmes, he was content to use the only easy 

resource he had left. So he did not have to choose among 

some possibilities and did not have to discard the a priori 

correct 4-terms decomposition: 

2 1 1 1 1 1 1 1 1

23 20 2 23 4 23 10 23 20 46 92 230
= + + + = + + +

⋅ ⋅ ⋅
 

He simply did not find it among his calculations. 

8. Case n = 101 

Case n = 101 must clearly be treated separately because it 

is the only case which reproduces the same denominator in 

the decomposition: 

2 1 1 1 1 1 1 1 1
1

101 101 2 101 3 101 6 101 101 2 3 6

 = + + + = + + + ⋅ ⋅ ⋅  
 

This is the only possible decomposition for this case 

according to Gillings [15] but it should be specified that it is 

the only 4-term decomposition. In Table 3, Ahmes should have 

easily found n = 101 in column C6 just below n = 71. Then: 

2M = , 1 4d = , 2 7d =  101n⇒ =  and 

2 1 1 1 1 1 1 1

101 2 4 7 4 101 7 101 56 8 101 14 101

 
= + + = + + ⋅ ⋅ ⋅ ⋅ ⋅ 

 

which did not respect the Top-flag. Perhaps, Ahmes was very 

lucky and did not find it. Therefore, since he was perfectly 

aware of 

1 1 1
1

2 3 6
= + +  

he computed directly this decomposition. 

9. Conclusions 

As it has been seen, the Recto Table is one of the most 

controversial document in the History of Mathematics because 

Ahmes did not tell us how it was computed. If we look at all 

the values of the divisions of 2 by each prime number n from 3 

to 101, we notice that all these values (except perhaps cases n 

= 35, 91, 95 and 101) are organized as a global set and it seems 

that there must be an universal algorithm which could explain 

them. In this sense, Ahmes chose a concrete 2, 3 or 4-term 

decomposition for each division and this election does not 

seem to be random but former studies about them let some 

values to Ahmes' preferences. Probably, the solving of 

problem RMP 36 guided these studies to a convenient 

decomposition of a most appropriate numerator into the sum of 

some factors. Then, there always are denominators which 

depend on some established precepts a priori but on some 

others when it is necessary. If this was true, we should 

recognize that the Recto Table is not calculated in one unique 

way but depends on, for example, Gillings' precepts. However, 

if there is one thing which can be said certainly is that Ahmes 

(or the real ancient Egyptian scribes who designed the table) 

managed the unit fractions and the red auxiliary numbers very 
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easily. Hence, if his purpose was to decompose these division 

in expressions like: 

1

2 1 1

n D d n
= + , with 1d D=                      (4) 

1 2

2 1 1 1

n D d n d n
= + + , with 1 2d d kD=              (5) 

1 2 3

2 1 1 1 1

n D d n d n d n
= + + + ,with 1 2 3d d d kD=         (6) 

where D, 1d , 2d  and 3d  are appropriate numbers (except 

cases n = 35, 91, 95 and 101), and considering the special 

case n = 23, he should have managed some kind of unique 

algorithm to obtain all the tabulated values. As we have seen, 

(4) is determined by: 

1
2 1

2

n
D n D

+= + ⇒ =                     (15) 

On other hand, (5) and (6) can be transformed, 

respectively, in: 

1 22kD n d d= + +                         (23) 

and 

2 3 3 1 1 22kD n d d d d d d= + + +                 (29) 

and we have seen that Ahmed should have known these 

equivalences using the red auxiliary numbers. Therefore, 

each denominator n can be determined by: 

( ) ( )1 2 1 22n d d d d= − +                         (25) 

and 

3 12 12 3(2 1)n d P S d= − −                           (32) 

respectively, where 12 1 2 1 1( 1)P d d d d= = +  and 

12 1 2 12 1S d d d= + = + . Ahmes could perfectly have 

considered coprime divisors and, with the appearance of a 

convenient M (see formulas (24) and (33)) and a Top-flag 

10fT = , have reconstructed all the tabulated values 

computing them directly from these factors. For example, 

considering formula (25), Ahmes would have easily 

calculate: 

1 3d = , 2 4d =  ( ) ( )1 2 1 22 24 7 17n d d d d⇒ = − + = − =  

Hence: 

24 17 4 3 1 1 1
24 17 7 17 4 3

17?12 17?12 12 3?17 4?17

+ += + = + + ⇒ = = + +  

and this is the unique 3-terms decomposition which can be 

constructed with 1 3d =  and 2 4d =  (and 1M = ). Thus, as 

we have been demonstrated, Ahmes was able to calculate the 

rest of the tabulated decompositions and he could not choose 

among possibilities but he had to keep the obtained results in 

the order in which they appeared. Finally, case n = 23 never 

appeared so he used (4), as he could do with all the other 

denominators, and filled the lack of this value in the 

considered algorithm. 

Out of the algorithm, cases n = 35, 91 and 95 were 

calculated using algorithm: 

2 1 1

pq Dp Dq
= +                              (20) 

with: 

2

p q
D

+=                                   (21) 

Considering these three singular cases, it could be plausible 

that the Recto Table had been contaminated for another table 

or another method of computation for any unknown reason. In 

fact, Ahmes checked values n = 35 and 91 in his copy like if he 

was not aware of the tabulated results. 

Hence, now it is possible to assure that all the 

decomposition of the Recto Table (except cases n = 35, 91, 95 

and 101) of the Rhind Papyrus and the fragment of the Kahun 

Papyrus are the results of the same and unique project. 
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