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Abstract: The recent publication of Quinn’s Law of Fluid Dynamics brings into focus longstanding contradictions regarding 
permeability in closed conduits that have littered the fluid dynamics landscape for more than 150 years. In this paper, we will 
use this new level of understanding to explain these contradictions, in layman’s terms, and resolve them, by introducing for the 
first time, as far as we know, a unique solution to the Navier-Stokes equation for fluid flow in closed conduits, which is 
understandable by knowledgeable physicists, engineers, chromatographers and aerospace enthusiasts alike, but who may not 
necessarily be versed in the abstract jargon of a graduate in advanced mathematics. In addition, we will apply our unique 
solution to chosen illustrative worked examples, as well as those of third parties from the published literature. In so doing, we 
will demonstrate the utility of our solution, not only, to packed conduits containing particles having solid skeletons, but also, to 
empty conduits, which in the context of this new understanding of fluid dynamics in closed conduits, represents a special case 
of a packed conduit in which the particles are fully porous, i.e., they are made entirely of free space. 
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1. Introduction 

Let us begin at the beginning. Most practitioners will say 
that the first real attempt to characterize the flow of fluids 
through closed conduits was made by Poiseuille circa 1846 
[1], in the case of empty conduits, and by Henry Darcy in 
1856 [2], in the case of conduits packed with solid obstacles. 
The former’s work led to what is known today as Poiseuille’s 
Law [3] and the latter’s work to what is known as Darcy’s 
Law [4]. Both these Laws teach that there is a linear 
relationship between fluid flow rate and the pressure drop 
across a given conduit. As time progressed, however, it 
became obvious that both these Laws had limitations, and in 
the intervening 170 years approximately, much effort has 
been devoted to ascertaining the underlying reasons [5-12]. 
Unfortunately, among practitioners, even to this day, there is 
much controversy regarding the parameters which constitute 
the pressure/flow relationship [13]. 

Darcy’s original methodology used screened river sand 
packed into large pipes, through which he pumped water, and 

recorded the pressure drop across the packed pipe for each 
measurement of flow rate of the water [14]. It would be 
logical to conclude, therefore, that the precise nature of the 
sand particles, and the manner in which they were forced 
together inside the packed conduit, should be fertile ground 
for experimentation in any efforts to better understand the 
pressure/flow relationship in packed conduits [15]. 
Throughout the middle to end of the 20th century, Blake, 
Kozeny, Carman, Bird Stewart and Lightfoot, Giddings, 
Halasz and Guiochon are just some of the more prominent 
scientists who devoted considerable effort to the elucidation 
of a fluid flow model capable of describing accurately the 
elements underlying this linear pressure/flow relationship, 
i.e., that portion of the fluid flow regime where viscous 
contributions to pressure drop dominate over kinetic 
contributions [16-22]. Unfortunately, however, their efforts 
did not culminate in a consensus of opinion and we are left 
today with the glaring contradictions regarding the value of 
the constant in the Kozeny/Carman equation, which is 
generally accepted as the most popular equation to describe 
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the pressure/flow relationship in packed conduits, when the 
dominant contributions are derived from viscous sources [23, 
24]. Giddings circa 1965, for instance, teaches that this value 
is 270 [25], while Halasz and his disciples claim that its value 
is 180 [26, 27], which is the value derived originally by 
Carman in 1937 [28]. Furthermore, the concept of conduit 
external porosity has been misapplied mostly in the 
engineering disciplines [29]. To make matters even worse, 
with the advent of the use of porous particles in applications 
like chromatographic separations, where solute molecules are 
separated based upon their ability to penetrate the pore 
network internal to the particles in a packed conduit, yet 
other elements of confusion have found their way into the 
controversy. Particle porosity, which is a variable that is 
independent of the packed conduit, has been invariably 
conflated with conduit internal porosity and “mobile phase 
velocity”, which is not a fluid velocity of any kind, has been 
conflated with the fluid velocity in many chromatographic 
journal publications [30, 31]. In the realm of the flow regime 
where kinetic contributions begin to manifest, Sabri Ergun 
circa 1950, in combination with others, most notably Orning, 
produced an equation which uses the sum of two distinct 
terms to capture both viscous and kinetic contributions [32]. 
This was a significant step forward in understanding how the 
pressure/flow relationship changes as the fluid accelerates 
into the region where kinetic contribution trump viscous 
contributions. Sadly, however, in 1952 this development 
morphed into, one step forward and two steps backwards, 
when Ergun assigned values of 150 and 1.75 for the 
constants in the viscous and kinetic terms in his now famous 
“Ergun equation” [33]. Throughout the intervening years, 
these values have been shown to be un-certifiable and, 
consequently, have added fuel to the fire of the ever 
expanding controversy which litters this field of study to this 
very day [34]. 

While experimentation on packed conduits were in 
progress in the middle of the 20th century by the investigators 
mentioned above, other investigators, in parallel, were 
focused on the exact same objective with respect to the flow 
in empty conduits [35]. The efforts of Sir Osborn Reynolds, 
in particular, stand out, reaching back to 1883 [36]. Johan 
Nikuradze, for instance, is another most respected name 
when it comes to the fundamental experiments underlying the 
impact of inner wall roughness on the fluid flow profile in 
empty conduits. Actually, he carried out two seminal sets of 
experiments, circa 1933, one deals with smooth walled 
conduits and one deals with inner wall roughened conduits 
[37, 38]. Furthermore, since he was a student of Prandtl, their 
contributions are linked within a theory put forward by the 
latter, which forms the basis of their concept of the fluid 
boundary layer, a fluidic phenomenon that forms adjacent to 
a solid boundary due to viscosity, and which theory has been 
recognized as the father of wing flight fluid dynamics [39]. 
Fluid flow in empty conduits is extremely important in many 
engineering applications, so it is perhaps understandable that 
an engineer, Lewis Moody, circa 1944, building on the work 
of Nikuradze and others, produced the now famous “Moody 

diagram” which has been used as a popular “look up” chart 
by the engineering discipline for fluid flow designs which 
require knowledge of fluid flow in the region where kinetic 
contributions dominate [40]. The diagram is based upon the 
concept of “friction factor” which is a man-made entity 
however, being as it is a mathematical construct and, thus, 
unfortunately, suffers from the defects of its qualities [41]. It 
has, in addition, been updated from time to time since its 
original creation [42]. In more modern times, the Princeton 
Super Pipe has gained in popularity with respect to the theory 
of fluid dynamics in smooth pipes and has been credited with 
an update to the conventional concept of the "Law of the 
Wall” [43]. 

It is apparent from the brief history of the development of 
fluid flow theory outlined above, that empty and packed 
conduits formed separate and distinct categories of 
investigative effort involving fluid flow theory throughout 
the past 150 plus years. While some attempts were made to 
produce a unified fluid flow model which would seamlessly 
embrace both types of fluid flow embodiments throughout 
that period, none were successful, at least up until now [44]. 
With the advent of the Quinn Fluid Flow Model (QFFM) 
published last year (2019), this is no longer the case [45]. 
Accordingly, this paper is dedicated to elucidating a unified 
methodology for both packed and empty conduits, which a 
typical practitioner can take advantage of, whether that 
practitioner is an engineer, chromatographer or aerospace 
enthusiast. 

We begin by introducing a methodology used in 
engineering circles called Hydraulic Conductivity [46]. To 
put this term in context for all disciplines, we show the 
relationship between hydraulic conductivity (∆H/L) and 
pressure gradient (∆P/L): 

∆�

�
=

∆�

����
                                      (1) 

We can see from the right hand side of equation (1) that 
hydraulic conductivity involves, not only, the pressure 
gradient across a packed conduit, but also, includes the fluid 
density, and the acceleration due to gravity. Thus, from an 
empirical perspective, a practitioner need only measure the 
pressure drop at any given flow rate, the length of the conduit, 
and obtain from reference text books the value for the density 
of the fluid used in the measurement, as well as the 
acceleration due to gravity. In addition, since it is customary 
when carrying out permeability determinations in packed 
conduits, to record the measured flow rate corresponding to 
the measured pressure drop, as fluid flux through the packed 
conduit, plotting fluid flux versus hydraulic conductivity is a 
popular engineering methodology. Thus, we can write: 

μ
 =
��


��
                                    (2) 

Where equation (2) represents the fluid flux, also called 
linear superficial fluid velocity, q=volumetric fluid flow rate, 
D=the conduit diameter. 

Accordingly, in order to use the fluid flux parameter, the 
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practitioner must measure, in addition to the fluid volumetric 
flow rate, the conduit diameter. 

2. Methods 

When reporting empirical results of permeability in packed 
conduits, the Forchheimer fluid flow model is a popular 
engineering methodology, especially when the fluid flow 
regime involves significant kinetic contributions [47]. We 
can write the Forchheimer equation as follows: 

∆�

�
� aµ� � ���

�                               (3) 

Normalizing equation (3) by dividing across by µs, gives: 

∆�

���
� a � ���                                  (4) 

Where, a, and b, are the Forchheimer coefficients for the 
viscous and kinetic contributions, respectively. 

Thus, we can see from equation (3) that hydraulic 
conductivity is a quadratic function of fluid flux. It is 
customary in engineering circles to make a plot of equation 
(3), a typical example of which is shown in Figure 1. 

 
Figure 1. Hydraulic conductivity as a quadratic function of fluid flux. 

 
Figure 2. Normalized hydraulic conductivity as a linear function of fluid flux. 
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As shown in Figure 1, the second order polynomial trend 

line associated with this plot renders the values of a, and b, 
both of which are represented as having a constant value, 
over all flow rate ranges. 

Alternatively, equation (4) is often used by practitioners, 
since a linear trend line of this plot of normalized hydraulic 
conductivity versus fluid flux µs, will render a straight line 
whose intercept represents the value of a, and whose slope 
represents the value of b, as shown in Figure 2. 

As shown in Figure 2, this technique also generates a 
constant value for both coefficients. 

2.1. Quinn’s Law of Fluid Dynamics 

Since Quinn’s Law is universal, it applies to all fluid flow 
regimes. Specifically, it provides a detailed analytical 
definition of the fluid flow parameters which make up the 
numerical values of a, and b, for any experiment under study. 
Thus, we provide, herein, the definition for a, and b, as taught 
by Quinn’s Law: 

a =
���
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In addition, Quinn’s Law also provides all the needed 
relationships between the measurable fluid flow embodiment 
parameters necessary to completely establish the fluid flow 
relationship. Thus, we include some additional pertinent 
equations from Quinn’s law: 
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λ=(1+WN)                                (11) 

where, rh=fluid drag normalization coefficient, i.e., 4, η=the 
fluid absolute viscosity, dp=the spherical particle diameter 
equivalent, dc=the diameter of the hypothetical Q-channel, 
np=the number of particles in the packed conduit under study, 
and λ=the normalization coefficient for wall effects, 
generally equal to unity for packed conduits. 

Since the parameter λ, however, involves a very complex 
definition involving many different independent and 
dependent variables, we refer the reader to the original 
publication of Quinn’s Law for all the details concerning the 
components of λ [48]. Additionally, for the reader’s 
convenience, we have included in the addendum to this paper, 
a comprehensive reference guide which provides, 
nomenclature, glossary of terms and all formulae from the 

original publication of Quinn’s Law. 

2.2. Solving the Navier-Stokes Equation for Closed 

Conduits 

Quinn’s Law is the only extant theory of fluid dynamics 
which includes an equation capable of describing the 
relationship between fluid flow rate and pressure drop that is 
unique in its ability to describe, accurately and precisely, this 
relationship throughout the entire fluid flow regime, 
including all three so-called regions of laminar, transitional 
and fully turbulent. We shall now explore in detail how this is 
accomplished. 

1. Definition of Parameters. 
Quinn’s Law teaches that there are 17 important 

parameters in the pressure flow relationship in closed 
conduits, representing 3 distinct categories which include: (a) 
constants, (b) independent variables and (c) dependent 
variables: 

a. There are 4 constants: 
π, rh, k1 and k2 

b. There are 9 independent variables: 
3 Fluid variables: η, ρf and q. 
4 Packed conduit variables: D, L, np, and k. 
2 Particle variables: dpm, Ωp, 

c. There are 4 dependent variables: 
1 Fluid variable: λ=f (π, rh, Rem, k, δ,) 
3 Packed conduit variables: dp=f(dpm, Ωp), 

ε0=f(π, D, L, dp), 

∆P=f(λ) 

2. Formula 
The formula PQ=k1 + k2CQ, which is the dimensionless 

manifestation of Quinn’s Law, is a unique formula which 
combines the above identified variables in a manner never 
before contemplated. 

3. Underlying theory 
The theory which underpins Quinn’s Law is vitally 

important in executing the solution to the Navier-Stokes 
relationship, because of the important insights derived based 
upon an understanding of the boundary conditions embedded 
within the theory. 
Accordingly, what makes Quinn’s Law unique is that it 
contains many parameters not identified in other fluid 
dynamic models, i.e., rh, k1, k2, β0, τ, λ, QN, CQ, etc., etc., and, 
in addition, combines all the parameters in a unique 
arrangement not heretofore available in any other fluid model. 

Thus, when the fluid flow rate, pressure drop and conduit 
diameter are determined by experiment and, accordingly, the 
Forchheimer values of a, and b, are known, based upon 
accurate measurements of these three variables over a broad 
range of flow rates, including the non-linear region, where 
kinetic contributions to measured pressure drop are 
significant and, in combination with the fluid property of 
kinematic viscosity, we can solve the N-S equation using 
Quinn’s Law. Thus, we proceed as follows: 
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It follows from equation (5) above that we may write: 
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Similarly, it follows from equation (6) above that we may 
write: 
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Therefore, in order to solve the N-S equation we must 
satisfy both equations (12) and (13) simultaneously. 

From equation (12), let us assume that: 

�

"#
� � α                                         (14) 

From equation (13), let us assume that: 
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Let us further assume that: 

x=αβ                                         (16) 

Similarly, let us assume that: 
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?

@
                                         (17) 

It follows that we may now write the solution to the N-S 
equation for closed conduits as: 

56 �
'
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                                    (19) 

The above simultaneous solution for the values of dc 
and δ depends, not only, upon the independent variables 
identified above, but also, upon the value of λ in 
equation (13). However, λ, in turn, depends upon the 
value of other variables including dc, a dependent 
variable itself and, accordingly, and problematically, this 
is the conundrum of solving the N-S equation. 
Furthermore, the variable ε0 (conduit external porosity), 
is clearly the most important variable amongst all the 
variables in the pressure flow relationship, since it 
appears in both the Forchheimer coefficients a, and b 
(equations (5 and (6)), and is also present in equations 
(18) and (19). Additionally, there is no more sensitive 

relationship in all of physics between the value of ε0 in 

the Forchheimer coefficient b, and the value of the 

pressure gradient ∆P/L, when the fluid flow profile 

contains significant kinetic contributions. 

Therefore, Quinn’s Law is the only fluid flow model in 
existence today that can return a valid analytical solution, 
based upon pressure drop and flow rate measurements, for 
the values of dc and δ, simultaneously, for any given flow 
rate, in any given experiment, in a closed conduit, 
regardless of whether that conduit is packed with particles 
or empty, and regardless of where in the fluid flow regime 

that flow rate may fall, laminar, transitional or fully 
turbulent. This unequivocal assertion is a manifestation of 
the solution to the N-S equation for fluid flow in closed 
conduits. 

2.3. Executing the Navier-Stokes Solution Using Quinn’s 

Law 

The theoretical basis of Quinn’s Law, i.e. the Quinn 
Fluid Flow Model (QFFM), however, provides the means 
by which one can overcome this conundrum in solving 
the N-S equation for closed conduits, by establishing an 
understanding of the value of λ under three distinct 
closed conduit milieus, two of which are self-evident, 
based upon the underlying theory, and one of which 
necessitates an additional measurement of an 
independent variable. 

We digress here to emphasize that the parameter λ, as 
defined in the QFFM, is bounded on the lower side by an 
asymptote which tends to the value of unity when the packed 
conduit tortuosity term, tau, is very large. The definition of 
the conduit tortuosity term tau, in turn, is based upon the 
architectural makeup of the particular closed conduit under 
study. It is, therefore, a totally novel concept for this 
parameter, amongst all other existing and competing theories 
of fluid dynamics. Consequently, the concept of conduit 
tortuosity, as defined in the QFFM, is what differentiates the 
fluid dynamics within different closed conduits and, 
accordingly, defines the three distinct closed conduit milieus 
regarding the values of λ which arise in the case of fluid flow 
in packed and empty closed conduits. These distinct milieus 
may be catalogued as follows: 

1) Packed conduit with low value of the ratio D/dp 

The most general case of a packed conduit is when the 
ratio of D/dp is low, say less than 10. In this scenario, Quinn’s 
Law teaches that there is a significant primary wall effect at 
very low values of the modified Reynolds number and, 
consequently, the value of λ will not be exactly equal to 1.0 
and, together with the value of the Forchheimer coefficient b, 
will vary based upon the fluid velocity used in any 
experiment under study. 

It is important to understand, however, that in this milieu, 
even though the primary wall effect is significant at very low 
values of the modified Reynolds number, it will only manifest 
in the pressure gradient measurements at moderate values of 
the modified Reynolds number. This is because all wall effects, 
and therefore the λ parameter, manifests only in the kinetic 
term of Quinn’s Law, which has a relatively small contribution 
to the measured pressure gradient at very low values of the 
modified Reynolds number. One could, theoretically, make 
measurements at very high modified Reynolds number values, 
where the value of λ would tend to unity as the boundary layer 
is dissipated, but this could require large pressure drops, not 
practical in a typical practitioner’s laboratory. Therefore, 
alternatively, one must know, in addition to the values of the 
Forchheimer coefficients a, and b, at least one more 
independent variable, to solve the N-S equation in this milieu 
scenario at reasonable pressure drops. That independent 
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variable is np, the number of particles in any packed conduit 
under study, which must be independently measured in this 
scenario of a packed conduit. Again, we point out that in this 
scenario, the plotting techniques using equation (3) and (4) 
will not produce accurate values for the Forchheimer 
coefficients a, and b. 

Thus, Quinn’s Law is the only fluid flow model capable of 
validating the accuracy and precision of the underlying 
conduit variables of dp, and ε0, based upon Forchheimer type 
measurements of fluid flux and hydraulic conductivity, and 
which also include an independent measurement of the value 
of np, in this milieu, where the primary wall effect is 
significant at low to moderate flow rates. 

2) Packed conduit with large value of the ratio D/dp 

A packed conduit where the ratio of D/dp is large, say 
greater than 30. This represents a special boundary condition 
in the application of our solution. In this scenario, the QFFM 
teaches that there is no wall effect of any kind, either primary 
or secondary, and, consequently, because the value of the 
packed conduit tortuosity term, τ=δγ, is very large, the value 
of λ �1, at all fluid velocities across the fluid flow regime, 
i.e. all values of the modified Reynolds number, Rem. 
Accordingly, the measured values for the Forchheimer 
coefficients a, and b, will both be constant at all fluid 
velocities. Thus, the above solution for the values dc and δ is 
absolute at a value of λ=1, since in equation (13), all the 
values of the parameters are uniquely defined at this 
boundary condition. This is typically the case for most 
commercially available packed conduits, since they are 
typically designed with large ratios of D/dp for performance 
related reasons. In this scenario, the technique outlined above 
of identifying the values of the Forchheimer coefficients a, 
and b, by plotting equations (3) and (4) will yield accurate 
values across the full spectrum of modified Reynolds number, 
if sufficient flow rate measurements are taken both in the 
linear and non-linear regions of the flow regime, which 
includes the region in which kinetic contributions to the 
measured pressure drop are significant. Thus, in this new 
teaching, measurements which include kinetic contributions 
are critical to identify an accurate value of the Forchheimer 
coefficients a, and b, regardless of what flow regime a 
particular experimental protocol may be focused, i.e., 
permeability studies in the laminar regime are included in 
this qualification. 

We emphasize that in the literature for packed conduits in 
many applications, and especially in the field of 
chromatography, kinetic contributions to measured pressure 
drop have been totally ignored in favor of just doing 
measurements in the laminar regime. This results in 
inaccurate values for the Forchheimer coefficients a, and b, 
which, in turn, means that studies carried out under this set of 
experimental protocols will not facilitate validation of any 
underlying packed conduit variables. Indeed, when other 
fluid flow models are used in this scenario, such as the 
popular Kozeny-Carman model, in the case of packed 
conduits containing solid particles, and the Hagen-Poiseuille 
model, in the case of empty conduits, to back-calculate either 

the value of D, dp or ε0, they will provide only crude 
estimates of the true value of these parameters. 

3) Empty conduits 

All empty conduits regardless of the independent variable 
values which define them, i.e., the conduit diameter, D, the 
conduit length L, or the inner conduit wall roughness k, 
represent another special case of a packed conduit in the 
QFFM. Thus, although Quinn’s Law teaches that an empty 
conduit has a relatively low tortuosity value and, 
consequently, a large value for λ at low flow rates, this is 
offset by the fact that its value is always constant, i.e. τ=3/16, 
which is a consequence of four limiting boundary conditions 
for an empty conduit: (a) dp=D, (b) δ=1/8, (c) np=-npq, and (d) 
εp=1, where εp represents the particle porosity (not to be 
confused with εi, the conduit internal porosity), and when its 
value is unity, as in the case of an empty conduit, represents 
particles of free space. Thus, in an empty conduit, which 
corresponds to a packed conduit filled with particles of free 
space, there is less degree of freedom than in a packed 
conduit filled with particles which have a solid skeleton. This 
boundary condition, in turn, results from the Laws of Nature 
which dictate that solid matter and free space are mutually 
exclusive. It follows, therefore, that the values of λ, dc, δ in 
equation (13) will be uniquely defined when these four 
boundary conditions prevail. Thus, setting four boundary 
conditions in Quinn’s Law for the values of δ=1/8, dp=D, 
np=-npq and εp=1, establishes a unique value for λ at any 
given flow rate, when the Forchheimer type coefficients a, 
and b, are known. We emphasize, however, that the technique 
outlined above of using plots of equations (3) and (4), as 
shown in Figures 1 and 2, will not produce accurate values 
for the Forchheimer coefficients a, and b, in the case of an 
empty conduit, since they are only capable of returning an 
average value for these coefficients and, of course, the value 
of b in an empty conduit varies as a function of flow rate. 

Thus, Quinn’s Law is the only fluid flow model capable of 
validating the accuracy and precision of the underlying 
conduit variables of D, L, and k, in an empty conduit, based 
upon Forchheimer type measurements of fluid flux and 
hydraulic conductivity. 

We digress, once again, to explain the significance of 
Quinn’s Law as it pertains to the independent variable, k, the 
roughness of the inner conduit wall in an empty conduit. 
There are just three measureable variables for an empty 
conduit, D, L, and k. The former two variables are easy to 
measure and, in addition, can usually be measured with a 
high degree of accuracy. This is not the case with the latter 
variable, k which is very difficult to measure, in the first 
instance, not to mention the accuracy of the measurement. 
Accordingly, in the case of an empty conduit, one can use the 
Forchheimer equivalent type measurements for an empty 
conduit, in conjunction with Quinn’s Law, to accurately 
back-calculate for the value of k, when the measured data 
contains pressure drop measurements taken at sufficiently 
high values of the modified Reynolds number, where the 
secondary wall effect, i.e., the wall roughness coefficient, 
manifests itself by punching through the ever- dissipating 
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boundary layer. This is a very effective tool for the 

practitioner. 

3. Illustrative Examples 

We shall now present illustrative examples for all of the 
categories above as well as an example for roughened walls. 

Example 1. 

Our first illustrative example is based upon our own 

laboratory experiment involving a conduit of dimensions 
0.3681 x 97.75 cm into which we packed 297 stainless steel 
ball bearings with a value of dp=0.3291 cm, to which we 
have given the identification label of HMQ-14. [49]. In our 
Figure 3 below, we have included the results of our 
procedure for determining the values of the underlying 
packed conduit variables, in this case a packed conduit with a 
low value of D/dp=1.12. 

 
Figure 3. Packed conduit with low value for D/dp. 

As shown in Figure 3, the value of λ is greater than 1 at 
low flow rates and gradually decreases in value with 
increasing flow rate. The value for the Q-modified Ergun 
coefficient A, on the other hand, is constant at a value of 
268.19, but the value of B varies between 1.61 and 1.59 over 
the range of modified Reynolds number values of 500 to 

4,000 approx. Similarly, the value of the Forchheimer 
coefficient a, is constant at 7.04 but the value of b, steadily 
decreases from 261 to 257 approx. 

In our Figure 4 below, we show the inaccurate 
Forchheimer coefficient values for a, and b, generated by the 
procedure of making plots after equations (3) and (4). 
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Figure 4. Packed conduit with low D/dp ratio data plotted after equations (3) and (4). 

As can be seen in Figure 4, neither of the plotted graphs 
generate the correct Forchheimer coefficient values for a, and 
b, and, in addition, each plot generates a constant value for 
each coefficient but with slightly different magnitudes. 

Finally, in our Figure 5 below, based upon the teaching of 
Quinn’s Law, we show a complete picture of the performance 
characteristics of this packed conduit over the corresponding 
flow rate range of 55 to 385 mL/min. 

 

Figure 5. Performance characteristics of packed conduit with low value for D/dp ratio. 

We emphasize here that in the plot of dimensionless 
permeability in Figure 5, the measured values appear to 
overlay the line forλ=1. This is because we typically show 
this plot as a log-log plot. If, on the other hand, we simply 
focused on the narrow range of QN values measured in this 
example, and used linear coordinates, we would see that the 
measured values are offset slightly from the line for λ=1. We 
offer this as a cautionary note to the reader because in many 
instances in the published literature, and especially in this 
field of study relative to the scaling of experiments over a 
very broad range of modified Reynolds number values, 
unscrupulous authors have used log-log plots to hide 
empirical evidence which does not otherwise support their 
theoretical narratives. 

Example 2. 

Our second illustrative example is taken from a paper by 
Sidiropouloe, et al., published in 2007 [50]. In that paper, the 
authors present empirical data for 115 different packed 
conduits with many different types of particles. 

It is noteworthy to point out, initially, that in samples 
numbered 1 through 26 in the paper, there are no values 
provided for the Forchheimer coefficient b. Accordingly, it is 
apparent that for these samples, the authors totally ignored 
kinetic contributions and, consequently, as pointed out above, 

their reported values for the underlying packed conduit 
variables cannot be validated based upon this empirical 
evidence. 

In our Figure 6 below, we have selected some of the 
samples from their paper in which the authors reported both 
Forchheimer coefficient values for a, and b. In addition, we 
note that in our subset of reported samples, there is only a 
constant value reported for both coefficients. Accordingly, we 
assume that the ratio of D/dp was large in all cases, a critical 

experimental detail which we could not find emphasized 
anywhere in the paper. As shown in our Figure 6, we have 
included the results of our procedure for determining the 
values of the underlying packed conduit variables. 
Furthermore, we have included a comparison between our 
calculated values for the external porosity, ε0, and the values 
reported by the authors. As shown in the figure, there are 
some very significant differences for the values of this 
variable which we attribute to the experimental methodology 
used by the authors to measure the value of the external 
porosity, ε0, and/or the particle diameter equivalent, dp, 
neither of which, we contend, was sufficiently accurate or 
precise. These discrepancies are symptomatic of the typical 
experimental protocols used in the engineering disciplines 
regarding fluid flow through packed conduits. 



 Fluid Mechanics 2020; 6(2): 30-50 38 
 

 

 
Figure 6. Packed conduit with high value for D/dp ratio. 

In our Figure 7 below, for illustration purposes, using the teaching of Quinn’s Law, we show a complete picture of the 
performance characteristics of sample number 21from this paper over a modified Reynolds number range value of 1 to 70,00. 
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Figure 7. Performance Characteristics of sample no. 21. 

Example 3. 

Our third illustrative example is based upon our own 
laboratory experiment involving a peak capillary tubing of 
nominal dimensions 0.02 inches in diameter and 12 inches in 
length [51]. In our Figure 8 below, we have included the 
results of our procedure for determining the values of the 

underlying packed conduit variables, in this case an empty 
capillary. In addition, in our Figure 9 below, using the 
teaching of Quinn’s Law, we show a complete picture of the 
performance characteristics of this empty conduit over a flow 
rate range of 20 to 125 mL/min. 

 
Figure 8. An empty conduit. 

As shown in Figure 8, the value of the Q-modified Ergun 
coefficient A, and the value of the Forchheimer coefficient a, 
are constant at all Reynolds number values, but the values of 
B, b and λ change as a function of the modified Reynolds 
number Rem. Since this capillary has a smooth inner wall, the 
changing values of the three parameters mentioned, i.e., B, b 

and λ, are due to the primary wall effect whose impact on 
permeability is most pronounced at modest Reynolds number 
values. Note that the value of λ in this scenario is relatively 
large, since an empty conduit has a low and constant value 
for the τ parameter. 

 

Mat'l A B Rem a b λ dc δ ε0 dp np

Type 1 X
1/6

1 dcabs(1-ε0) 3D
2
L(1-ε0)

X
(1/6)

y
(1/2)

100Y
1/2 δ (1/3)

2dp
3

none sm
-1

s
2
m

-2
cm none none cm

Empty conduit type 268.19 0.12 919 13.24 3.10 6.22 0.0508 0.1250 2.0000 0.0508 -886

Peek Capillary tube 268.19 0.12 1253 13.24 3.08 6.18 0.0508 0.1250 2.0000 0.0508 -886

Nominal dimensions 268.19 0.12 1545 13.24 3.06 6.14 0.0508 0.1250 2.0000 0.0508 -886

0.02 x 12 inches 268.19 0.12 1837 13.24 3.05 6.11 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 2088 13.24 3.03 6.08 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 2464 13.24 3.01 6.04 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 2798 13.24 3.00 6.01 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 3090 13.24 2.98 5.98 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 3340 13.24 2.97 5.95 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 3591 13.24 2.96 5.93 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 3883 13.24 2.94 5.90 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 4050 13.24 2.94 5.89 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 4468 13.24 2.92 5.85 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 4718 13.24 2.91 5.83 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.12 4885 13.24 2.90 5.81 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 5220 13.24 2.88 5.78 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 5303 13.24 2.88 5.78 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 5637 13.24 2.87 5.75 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 6263 13.24 2.84 5.70 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 6681 13.24 2.83 5.66 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 7099 13.24 2.81 5.63 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 7516 13.24 2.79 5.60 0.0508 0.1250 2.0000 0.0508 -886

268.19 0.11 8128 13.24 2.77 5.56 0.0508 0.1250 2.0000 0.0508 -886
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Figure 9. Performance characteristics of an empty conduit. 

It is obvious from Figure 9, in the plot of Θ v QN, that in 
this example, the primary wall effect has a negligible impact 
at very low values of QN, i.e., it coincides with the line 
forλ=1, but manifests significantly through moderate values 
of QN and, if projected in a straight line in our mind’s eye, 
would coincide once again with the line for λ=1, at very high 
values of QN. This is a manifestation of the dissipation of the 
boundary layer as the fluid becomes fully turbulent at high 
values of QN. 

Example 4. 

Our fourth illustrative example is based upon the work 
reported by Nikuradze [38]. This is the classical study carried 
out circa 1930 which involved the grafting of particles of 
sand onto the inner surface of drawn brass pipes to create six 
levels of wall roughness criteria. Even to this day, this study 
is considered the gold standard of wall roughness empirical 
data. We have plotted Nikuradze’s measured data according 
to the teaching of Quinn’s Law for dimensionless 
permeability in our Figure 10 below. 

 
Figure 10. Overlay of Nikuradze’s roughened data. 

As shown in Figure 10, we have superimposed 
Nikuradze’s measured results on the underlying background 
of the λ parameter taught in Quinn’s law, in our plot of 
dimensionless permeability. As shown in the plot, 
Nikuradze’s roughened data falls within a range of λ values 
from 2 to 11, approximately. It is obvious from the plot that 
the secondary wall effect, i.e., the roughness coefficient, 
manifests at sufficiently high modified Reynolds number 
values as the boundary layer is progressively dissipated, 
commensurate with the magnitude of the roughness 

coefficient of a particular conduit under study. 

4. Evaluating Third Party Published 

Works 

We shall now evaluate a cross-section of published articles in 
the literature, applying our solution to the N-S equation using 
the teachings of Quinn’s Law, to pinpoint discrepancies 
which are commonplace in the literature due to inadequate 
measurement techniques. To highlight the discrepancies, our 
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analysis will generate the Q-Modified Ergun constants, A, 
and B, the Forchheimer coefficients, a, and b, the value of 
λas well as our back-calculated values for the conduit 
variables, for each sample evaluated. For guidance in our 
analysis, we shall follow a precise accept/reject procedure as 
follows; 

We shall apply the Q-modified Ergun equation as an 
accept/reject criteria for any reported packed conduit data 
having solid particles. In particular, we shall use the value for 
the B coefficient as our measurement standard with respect to 
conduit packed density, i.e., external porosity. Therefore, 
consistent with our own experience of packing many 
conduits with a variety of rigid particles (the packed conduits 
being numbered in the hundreds of thousands over a career of 
30 plus years), which dictates that well-packed conduits have 
a range of external porosities of 0.36 to 0.47, and based upon 
the teaching of Quinn’s Law for the value of the coefficient B, 
our accept/reject criteria for the value of B is: 1.5 < B < 3.5. 
The value of B=1.5 represents the highest value of external 
porosity possible, i.e. ε0=0.47, and a value of B=3.5 
represents the lowest value of external porosity possible, i.e., 
ε0=0.36. 

Example 5: Data of Banerjee et al 2017 & 2019 

In a recent published article (2019), whose title would 
seem to suggest that the authors had discovered something 

important related to permeability “Over the Complete Flow 
Regime”, Banerjee et al claim that they have made a 
correlation between the Forchheimer coefficients a, and b, 
which dictates that the values of the coefficients are a 
function of the fluid flow profile [52]. In fact, they define 
“corrections” to several parameters in their 2017 paper and 
“create” a parameter which they designate as, γ, whose value 
changes over the fluid flow regime and suggests that both 
values of the Forchheimer coefficients a, and b, are a 
function of this γ parameter. We categorically disagree with 
the author’s conclusions, as well as the “corrections” upon 
which they are based. 

Firstly, the authors make it a point to present hydraulic 
conductivity data representing external porosity values of 
packed conduits ranging from 0.30 to 0.50. This range is far 
too broad based upon our experience of packing many 
conduits with various rigid particle types and, in addition, 
their paper lacks any meaningful analysis of the role of 
external porosity or the care with which they measured its 
value, which variable is clearly the most sensitive element 
impacting their reported development. 

To illustrate our arguments, we have applied our N-S 
solution for closed conduits to a subset of the data reported in 
this paper and captured our analysis results in Figure 11 
below. 

 
Figure 11. Our analysis of Banarjee et al. 
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As can be seen in Figure 11, we have assumed a D/dp ratio 

of 10, for all the packed conduits in our sample set, thus 
eliminating all wall effects. The reported hydraulic 
conductivity data in this paper renders values for the Q-
modified Ergun constant B which is consistent with our 
accept/reject criteria. It is apparent, however, that the 
author’s values for external porosity are significantly larger 
(10-20%) than those generated by our application of the N-S 
equation using Quinn’s Law. This discrepancy is at the heart 
of the author’s methodology because, as dictated by Quinn’s 
Law, both the Forchheimer coefficients a, and b, are very 
sensitive functions of this parameter as can be seen from our 
equations (5) and (6) above. Moreover, the coefficient b is an 
extremely sensitive function of the value of the external 
porosity, which means that any discrepancy in porosity 
values will produce greatly exaggerated errors in predicted 
values for hydraulic conductivity when kinetic contributions 
dominate. 

In our Figure 12 below, we show the relationship dictated 
by Quinn’s law between the values of the Forchheimer 
coefficients a, and b, and external porosity, for a conduit 
packed with 5mm spherical particles at a D/dp ratio of 10. In 
this scenario, our λ value is 1.00. 

 
Figure 12. Forchheimer coefficients as function of porosity. 

In Figure 13 below, we show the teaching of Quinn’s law 
relative to hydraulic conductivity and the Forchheimer 
coefficients over a wide range of modified Reynolds number, 
for a conduit packed with 5mm spherical particles, at an 
external porosity of 0.30 (suggested by the paper’s authors) 
and a D/dp ratio of 10. 

 
Figure 13. Hydraulic conductivity for 5mm diameter particles. 

As can be seen from Figure 13, the values of the 
Forchheimer coefficients a, and b, remain constant over an 
extended range of modified Reynolds number values, Rem, i.e. 
2-3,500, which represents a significantly changing fluid 
profile. This conclusion is at odds with the assertions made 
by the authors in their paper. 

Finally, it is noteworthy to point out that the paper author’s 
development is based upon the manifestly absurd assumption 
that “The flow path is assumed to be straight and undeviating 
through the porous packing”. One wonders how the authors 

could rationalize this false assumption with their statement 
that they used empirical data to validate their theoretical 
development, since everyone knows that the flow is 
decidedly sinuous in conduits packed with crushed stones. 

Example 6. Data of Shrinivas et al 2014 

In this worked example, the authors reported on the 
permeability of various crushed rock [53]. The paper includes 
results for the “present study” as well as data by Nasser and 
Niranjan. In our Figure 14 below, we have captured our 
analysis for this data set. 
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Figure 14. Our analysis of Shrinivas et al. 

As can be seen in Figure 14, a significant number of the 
reported samples fall outside our accept/reject criteria for 
external porosity (highlighted in bold). In addition, the 
author’s reported values for dp, the spherical particle diameter 
equivalent, and ε0, the external porosity, are significantly 
different from our analysis values, and are indicated in the 
columns labeled ∆dp% and ∆ε0%, respectively. The 
discrepancies are significant and vary in both directions, i.e., 

some are larger and some are smaller than our values. We 
suggest that the experimental protocols used in this paper 
were not sufficiently accurate or precise to support the 
author’s conclusions. 

Example 7. Data of Salahi et al 2014 

In our Figure 15 below, we present our analysis of the data 
set reported in a paper by Salahi et al., published in 2014 [54]. 

 
Figure 15. Our analysis of Salahi et al. 

As can be seen in Figure 15, again two of the conduits fall outside our acceptable window with respect to external 
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porosity. In addition, it is also clear that the author’s 
experimental protocol for determining the values of dp and ε0 
were not adequate. Their reported values for both these 
variables vary significantly in both directions as compared to 

our N-S solution for both rounded and crushed rocks. 
Example 8. Data of Zhongxia Li et al 2019 

In our Figure 16 below, we present our analysis of the data 
set reported in a paper by Li et al. published in 2019 [55]. 

 
Figure 16. Our analysis of the data of Li et al. 

As can be seen in Figure 16, just 4 of the samples fall 
outside our acceptable window for external porosity. In 
addition, it is also clear, again that the author’s experimental 
protocol for determining the values of dp and ε0 were not 
adequate. Their reported values for both these variables vary 
significantly in both directions as compared to our N-S 
solution for these particles of quartz sands. Furthermore, 
since the authors state that all packed conduits had the 
identical same value for external porosity, i.e., 0.36, we are 
inclined to reject the entire premise of this paper as an 
example of empirical data, but include it as part of our 

selected examples to alert the reader to the fact that the 
literature is filled with these type of “measurement” 
examples. 

Example 9. Data of Neue et al 2005 

In our Figure 17 below, we include our evaluation of a paper 
by Neue et al., published in 2005 [56]. This paper represents a 
category of packed conduits of commercial value for the high 
efficiency analysis of small molecules of interest in the 
pharmaceutical industry. The chromatographic “columns” as 
they are referred to in the industry, are used in the application 
of HPLC, i.e., high pressure liquid chromatography. 

 
Figure 17. HPLC Columns. 

As can be seen in Figure 17, these packed conduits contain 
small spherical particles operated at relatively high pressure 
drops. Note that there is relatively good agreement in our 

analysis between the values reported by the paper authors for 
particle diameter. However, the values for external porosity 
reported by the authors are typically 10-15% too low, 
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representing as they do: (a) an embedded assumption in the 
author’s paper, that the value of the constant A in the 
Kozeny-Carman equation is always 180, and (b) the fact that 
only a solitary measurement of permeability was made for 
each sample at extremely low values of the modified 
Reynolds number, thus, totally ignoring kinetic 
considerations. 

Example 10. Data of Cabooter et al 2008 

In our Figure 18 below, we include our evaluation of a 
paper by Cabooter et al. published in (2008) [57]. This paper 
is also an example of HPLC columns but represents the most 
modern version thereof, typically referred to in the industry 
as UHPLC, i.e. ultra high pressure liquid chromatography. 
Additionally, this paper allows us to underscore a 

fundamental issue which appears time and time again, 
particularly, in the chromatographic literature. That issue is 
the fact that the Laws of Continuity are generally ignored 
with respect to the utilization of free space within a packed 
conduit. This issue raises its’ head in this example, since the 
authors report the use of several different particle diameter 
choices but report just one set of external porosities and one 
set of pressure drop measurements and, moreover, totally 
ignore the number of particles, or an equivalent 
reconciliation, for each of the respective sets of particle 
diameter values reported. We have chosen herein just one of 
the reported sets of values for particle diameter, i.e., that 
provided by the manufacturer of the particles. 

 
Figure 18. UHPLC columns. 

As shown in Figure 18, the particle diameters are even 
smaller in these type columns and are typically in the range of 
2-3 microns. Again, note that there is relatively good 
agreement in our analysis between the values reported by the 
paper authors for particle diameter. However, the values for 
external porosity reported by the authors are, once again, 
typically 10-20% too low, due to: (a) an embedded assumption 
in the author’s paper, that the value of the constant A in the 
Kozeny-Carman equation is not constant, but varies as a 
function of particle size distribution and, (b) the authors totally 
ignored the porosity of these particles, εp, (an independent 
variable whose value is available from the particle 
manufacturer) and, accordingly, made no attempt to reconcile 
the packed conduit internal porosity, εi, thus, violating the 
Laws of Continuity for packed conduits and, (c) the fact that 
only a solitary measurement of permeability was made for 
each sample, at extremely low values of the modified 
Reynolds number, thus, totally ignoring kinetic considerations. 

5. Conclusions 

In this paper, we have demonstrated a unique solution to 
the Navier-Stokes equation for closed conduits, both 
packed and empty. In so doing, we have used both the 
underlying theory and equation expressed in Quinn’s Law, 
to arrive at a boundary condition which identifies the 
value of λat one specific flow rate for any given fluid flow 
experiment under study. This is both a necessary and 
sufficient condition to identify, simultaneously, the unique 
combination of the values of dp andε0 in any closed 

conduit under study, and which, in combination with the 
measured Forchheimer coefficients of a, and b, can 
correlate precisely any measured data at any point across 
the entire spectrum of the modified Reynolds number, 
which includes the regions typically referred to in 
conventional wisdom as, laminar, transitional and fully 
turbulent. We have also evaluated several examples of 
empirical data including both packed and empty conduits, 
from our own laboratory as well as those taken from 
published third party laboratories. Our conclusions based 
upon our application of this unique solution to the N-S 
equation can be catalogued as follows: 

1. The value of the coefficient A in the re-invented Ergun 
model, i.e., the Q-modified Ergun equation, has the 
constant value of 256π/3 which is 268.19 approx. 

2. The value of the coefficient B in the re-invented Ergun 
model, i.e., the Q-modified Ergun equation, is a variable 
function of the external porosity of the conduit as well 
as the wall normalization coefficient λ. Thus, the typical 
value of B falls in a range from 1.5 to 3.5 for well-
packed conduits packed with rigid particles having a 
solid skeleton and a large ratio for D/dp. 

3. There is but one unique combination of values for dp, ε0 
and np which will correlate permeability measurements 
over the entire range of the fluid flow profile, from 
creeping flow to fully turbulent flow. This is a result of 
the Laws of Nature which dictate that for any given 
conduit under study, every combination of the packed 
conduit values of the variables dp and np represents a 
unique hypothetical Q channel and, consequently, a 
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unique pressure gradient/fluid flow rate profile over the 
entire fluid flow regime. This relationship between 
pressure gradient and fluid flow rate is quadratic over 
the entire range of flow rates in any given packed 
conduit under study. 

4. The Laws of Continuity dictate that for any given 
conduit dimensions, i.e. diameter D and length L, 
packed with rigid particles of spherical particle diameter 
equivalent, dp, the value of ε0 is not an independent 
variable but is defined by the combination of the values 
of dp and np, i.e. the number of particles present in the 
packed conduit. 

5. In order to accurately define the Forchheimer 
coefficients a, and b, empirical measurements must be 
taken in the nonlinear portion of the fluid flow regime, 
i.e. where kinetic contributions are significant. This is a 
result of the fact that kinetic contributions are much 
more sensitive to the value of the external porosity 
parameter, ε0, than are viscous contributions. 

6. In most engineering examples studied in the literature, 
the experimental protocols typically used to measure the 
values of dp and ε0 are not sufficiently accurate or 
precise to validate the value of these variables using 
pressure drop measurements. Measurement 
discrepancies occur in both directions, i.e., both larger 
and smaller than the actual values. Thus, the values 
reported in the literature have values for external 
porosity which are both too high and too low. 

7. In most chromatographic examples studied in the 

literature, on the other hand, the experimental 
protocols typically used to identify the values of dp 
and ε0 are fundamentally flawed for several reasons. 
Firstly, they are based upon a back calculation of 
permeability which is derived based upon the 
erroneous assumption that the value of the coefficient 
in the Kozeny-Carman fluid flow model is either 
constant at 180 approx., or varies as a function of the 
particle size distribution, secondly, the values for dp 
and ε0 are both independently measured, without any 
reconciliation with the value of np, thus violating the 
Conservation Laws as applied to the total amount of 
free space contained within the empty conduit under 
study, thirdly, pressure drop measurements are 
typically taken in the linear portion of the fluid flow 
regime (laminar) thus totally ignoring kinetic 
contributions, fourthly, particle porosity is sometimes 
substituted for conduit internal porosity and, finally, 
mobile phase velocity is sometimes substituted for 
superficial fluid velocity. These errors typically 
result in reported values of permeability, which do 
not facilitate accurate identification of underlying 
fluid embodiment variables based upon measured 
pressure drops, most notably external porosity, which 
is invariable 10-15% too low. 
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Appendix 

Ref: Quinn’s Law of Fluid Dynamics Pressure-driven Fluid Flow Through Closed Conduits. Fluid Mechanics. 
Vol. 5, No. 2, 2019, pp. 39-71. doi: 10.11648/j.fm.20190502.12. 

Table 1. Glossary of Terms. 

# Symbol Unit cgs Ref. Formula Description 

    Particle Independent variable 
1 dpm cm Sec 2.2.1 N/A Particle nominal diameter 
2 Ωp none Sec 2.2.1 N/A Particle sphericity 
3 Spv cm3g-1 Sec 2.2.1 N/A Particle specific pore volume 
4 ρsk gcm-3 Sec 2.2.1 N/A Particle skeletal density 
5 mdp g Sec 2.2.1 N/A Mass of the particle 
     Dependent variable 
6 dp cm Eq (1) Ωpdpm Spherical particle diameter equivalent 
7 SAp cm2 Eq (2) πdp

2 Surface area of spherical particle equivalent 
8 CSAp cm2 Eq (3) πdp

2/4 Cross-sectional area of spherical particle equivalent 
9 Vdp cm3 Eq (4) πdp

3/6 Volume of spherical particle equivalent 
10 ρpart g Eq (5) mdp/Vdp Particle apparent density 
11 εp none Eq (6) Spvρpart Particle porosity 
    Conduit Independent variable 
12 D cm Sec 2.2.2 N/A Conduit diameter 
13 L cm Sec 2.2.2 N/A Conduit length 
14 k cm Sec 2.2.2 N/A Conduit wall roughness dimension 
15 np none Sec 2.2.2 N/A Number of particle equivalents in conduit under study 
     Dependent variable 
16 Vec cm3 Eq (7) πD2L/4 Empty conduit volume expressed in terms of conduit diameter and length 
17 Vpart cm3 Eq (8) npVdp Conduit volume occupied by all the particles 

18 npq none Eq (9) 3D2L/(2dp
3) 

Dimensionless empty conduit volume (number of spherical particle 
equivalents) 
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# Symbol Unit cgs Ref. Formula Description 

19 γ none Eq (10) npqD/L Conduit architectural coefficient 
    Q porosity Functions Independent variable 
20 Ve cm3 Sec 2.2.2 N/A Conduit volume external to the particle fraction 
21 Vi cm3 Sec 2.2.2 N/A Conduit volume internal to the particle fraction 
22 Vsk cm3 Sec 2.2.2 N/A Conduit volume occupied by the cumulative skeletons of all the particles 
23 Vt cm3 Sec 2.2.2 N/A Conduit volume excluding the volume occupied by the particle skeletons 
     Dependent variable 
24 (1-ε0) none Eq (11) np/npq Conduit particle volume fraction 
25 ε0 none Eq (12) (1-np/npq) Conduit external porosity; volume fraction external to particles 
26 εi none Eq (13) εp(1-ε0) Conduit internal porosity; volume fraction internal to particles (porous) 
27 εt none Eq (14) 1-(1-εp)np/npq Conduit total porosity; sum of external and internal volume fraction (porous) 

28 εsk none Eq (15) np(1-εp)/npq 
Conduit skeletal porosity; volume fraction occupied by skeleton of particle 
fraction 

29 npπdp
3/6 none Eq (16) Vecabs(1-ε0) Reconciliation between solids and porosity in packed conduit 

    Governing Principle Continuity Laws 
32 Unity none Eq (17) ε0 + εi + εsk Conservation Law (porous particles) 
33 Unity none Eq (18) εt + εsk Conservation Law 
34 ρpack gcm-1 Eq (19) Mp/Vec Conduit packing density 
35 ε0 none Eq (20) 1-ρpack(Spv-1/ρsk) Conduit external porosity (mass of particles based) 
36 ε0 none Eq (21) 1-(2npdp

3/(3D2L)) Conduit external porosity (number of particles based) 
37 εp none Eq (22) (εt-εo)/(1-ε0) Particle porosity (measurements made inside packed conduit) 

38 Spvρpart none Eq (23) (εt-εo)/(1-ε0) 
Particle porosity (measurements made outside packed conduit) i.e. 
independent 

39    Hypothetical Q Channel Dimensional parameters (scale factor) 
40 dc cm Eq (24) dp/(abs(1-ε0)) HQC diameter under study 
41 vc cm3 Eq (25) πnpqdp

3εt/6 HQC volume under study 
42 ac cm2 Eq (26) πnpq

2dp
2/(4np

2) HQC cross sectional area 
43 lc cm Eq (27) 2np

2dpεt/(3npq) HQC length under study 
     Uniform Circular motion 
44 ∆P gcm-1sec-2 Eq (28) P1-P0 Conduit Differential pressure 
45 ω radsec-1 Eq (29) dΦ/dt Angular velocity 
46 Φ radians Eq (30) (ωt + α) Phase of the motion 
47 x cm Eq (31) Acos(ωt+α) x coordinate displacement 
    QFFM Dimensionless manifestation 
48 PQ none Eq (32) (k1 + λQN/фh) Viscous normalized friction factor 
49 PK none Eq (33) PQ/QN Kinetic normalized friction factor 
50 Θ none Eq (34) QN/PQ Dimensionless permeability 
51 Θ none Eq (35) 1/(k1/QN +λ/фh) Dimensionless permeability 
    QFFM Reference parameters 
52 π none N/A 22/7 Universal constant 
53 фh none Eq (36) 2πrh=8π Drag normalized hydraulic channel circumference 
54 k2  Eq (37) 1/фh=1/(8π) Fluid kinetic control element normalization coefficient 
55 rh none Eq (38) SAp/CSAp=4 Normalization coefficient of fluid drag 
56 k1 none Eq (39) 4/3πrh

2=67 Fluid viscous control element normalization coefficient 
    Fluid Dynamics Parameters 
57 PQ none Eq (40) 64π/3+λQN/8π Viscous normalized friction factor 
58 δ none Eq (41) 1/ε0

3 Conduit porosity normalization coefficient 
59 τ none Eq (42) δγ Conduit tortuosity normalization coefficient 
60 QN none Eq (43) δRem Fluid current 
61 λ none Eq (44) (1+WN) Fluid current wall normalization coefficient 
62 PQ none Eq (45) 64π/3+δλRem/(2πrh) Viscous normalized friction factor 
63 PQ none Eq (46) 64π/3+δ(1+WN)Rem/(2πrh) Viscous normalized friction factor 
64 WN none Eq (47) W1 + W2R Net wall effect 
65 ω none Eq (48) 1/фh Dimensionless fluid resistance 
66 β none Eq (49) k1/(k2QN+k1) Viscous boundary layer (λ=1) 
67 W1 none Eq (50) β0

(1/3)/τ Primary wall effect 
68 kdc none Eq (51) k/dc Relative wall roughness coefficient 
69 W2 none Eq (52) 30kdc

(1/3) Secondary wall effect 
70 W2R none Eq (53) W2-W1

(1.2) Residual secondary wall effect (W2R ≥ 0) 
71 Rem none Eq (54) 4qdcρf/(πηD2) Modified Reynolds number 
72 nk gcm-2sec-2 Eq (55) δµs

2ρf/dc the kinetic hydraulic force exerted per unit element of fluid control volume 
73 µs cmsec-1 Eq (56) 4q/(πD2) Average fluid superficial linear velocity (fluid flux). 
74 nv gcm-2sec-2 Eq (57) δµsη/dc

2 the viscous hydraulic force exerted per unit element of fluid control volume 
75 BLT cm Eq (58) βdc/(2τ) Boundary layer thickness 
76 PQ none Eq (59) 4πrh

2/3 + δλnk/(2πrhnv) Viscous friction factor 
77 ∆P/(rhnvL) none Eq (60) PQ Drag normalized viscous friction factor 
78 ∆P/(rhnvL) none Eq (61) 4πrh

2/3 + δλnk/(2πrhnv) Drag normalized viscous friction factor 
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# Symbol Unit cgs Ref. Formula Description 

79 ∆P/(rhL) gcm-2sec-2 Eq (62) 4πrh
2nv/3 + δλnk/(2πrh) Drag normalized pressure gradient 

80 ∆P/L gcm-2sec-2 Eq (63) 4πrh
3nv/3 + δλnk/2π Total pressure gradient 

81 ∆P/L gcm-2sec-2 Eq (64) 
4πrh

3δµsη/(3dc
2) + 

δλµs
2ρf/dc 

QFFM practitioner’s empirical equation 

82 ∆P/L gcm-2sec-2 Eq (65) 4πrh
3nv/3 Viscous pressure gradient 

83 CQ none Eq (66) λQN Wall normalized instantaneous fluid current 
84 β none Eq (67) k1/(k2CQ+k1) Instantaneous boundary layer 
85 PQ none Eq (68) 64π/3+ CQ/(8π) Quinn’s Law 

86 ∆P/L gcm-2sec-2 Eq (69) 
1024δqη/(3D2dc

2) + 
8δ2λq2ρf/(π3D4dc) 

QFFM expanded equation 

87 ∆P/L gcm-2sec-2 Eq (70) 
128qη/(3D4) + 
λq2ρf/(248D5) 

QFFM balanced equation for empty conduit 

    QFFM Dimensional manifestation 
88 q cm3sec-1 Sec 2.3.3 dv/dt Fluid volumetric flow rate 
89 η gcm-1sec-1 Sec 2.3.3 N/A Fluid absolute viscosity 
90 ρf gcm-3 Sec 2.3.3 N/A Fluid density 
91 ν cm2sec-1  η/ρf Fluid kinematic viscosity 
92 λbc none  π3D4dc(∆P-bq)/(8δ2ρfLq2) Back-calculated wall normalization coefficient 
93 QFFM none Eq (71) aq2+bq+c=0 Quadratic manifestation 
94 c gcm-1sec-2 Eq (72) -∆P constant 
95 ∆P gcm-1sec-2 Eq (73) aq2 +bq Calculated differential pressure drop 
96 qbc m3sec-1 Eq (74) -b±√(b2-4ac)/(2a) Back-calculated flow rate from measured pressure differential 
97 a gcm-7 Eq (75) 8δ2λρfL/(π3D4dc) Quadratic term coefficient (flow rate based) 
98 b gcm-4sec-1 Eq (76) 1024δηL/(3D2dc

2) Linear term coefficient (flow rate based) 

99 ∆P/L gcm-2sec-2 Eq (77) 
1024(1-ε0)2qη/(3D2dc

2) + 
8(1-ε0) λq2ρf/(π3D4ε0

6dc) 
Total pressure gradient 

100 ∆P/L gcm-2sec-2 Eq (78) 
256π(1-ε0)2µsη/3ε0

3dp
2 + 

(1-ε0)λρf µs
2/(2πε0

6dp) 
Q modified Ergun equation 

101 ∆P/L gcm-2sec-2 Eq (79) 
A(1-ε0)2µsη/(ε0

3dp
2)+B(1-

ε0)ρf µs
2/(ε0

3dp) 
Q modified Ergun equation 

102 A none Sec. 2.34 256π/3 Q modified Ergun (viscous) constant 
103 B none Sec. 2.34 λ/(2πe0

3) Q modified Ergun (kinetic) constant 
104 τw gcm-1sec-2 Eq (82) ∆PD/(4L) Wall shear stress 
    Harmonic Oscillator Parameters 
     Damping Coefficients 
105 v cmsec-1 Eq (80) vx +vy + vz Instantaneous fluid velocity 
106 t0 sec Eq (81) (πD2Lεt)/4q Time to displace one (packed) conduit volume 
107 µf cmsec-1 Eq (83) (τw/ρf)(1/2) Fluid frictional velocity 
     SHM dimensional parameter equivalents 
108 t sec Sec 3 QN Elapsed time 
109 α radians Sec 3 k1(2π/360) Epoch of the motion 
110 ω0 radsec-1 Sec 3 k2 Reference angular velocity (when there is no net wall effect; WN=0; λ=1) 
111 ω radsec-1 Sec 3 λ/фh Instantaneous angular velocity 
112 Φ radians Sec 3 PQ Phase of the motion 
113 T sec Eq (84) 2π/ω Period of the motion 
114  radsec-1 Eq (85) 1/T Frequency of the motion 
115 M0 cm Eq (86) dc/2 Maximum amplitude displacement (scale factor) 
116 M cm Eq (87) M0exp(-ωto) Instantaneous amplitude displacement 
     Dimensional x-coordinate 
117 x cm Eq (88) McosPQ Instantaneous displacement in x direction 
118 Vx cmsec-1 Eq (89) -Mλ/hsinPQ Instantaneous velocity in x direction 
119 fx cmsec-2 Eq (90) -M(λ/h)2cosPQ Instantaneous acceleration in x direction 
     Dimensional y-coordinate 
120 y cm Eq (91) MsinPQ Instantaneous displacement in y direction 
121 Vy cmsec-1 Eq (92) M(λ/фh)cosPQ Instantaneous velocity in y direction 
122 fy cmsec-2 Eq (93) -M(λ/фh)2sinPQ Instantaneous acceleration in y direction 
     Dimensional z-coordinate 
123 z cm Eq (94) Mcos(π/4-PQ) Instantaneous displacement in y direction 
124 Vz cmsec-1 Eq (95) -M(λ/фh)sin(π/4-PQ) Instantaneous velocity in y direction 
125 fz cmsec-2 Eq (96) -M(λ/фh)2cos(π/4-PQ) Instantaneous acceleration in y direction 
     Dimensionless x-coordinate 
126 x* none Eq (97) (M0-x)/(2M0) Unit cell displacement in x direction 
127 Vx* none Eq (98) Vx/µf Unit cell velocity in x direction 
     Dimensionless y-coordinate 
128 y* none Eq (99) (M0-y)/(2M0) Unit cell displacement in y direction 
129 Vy* none Eq (100) Vy/µf Unit cell velocity in y direction 
     Dimensionless z-coordinate 
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# Symbol Unit cgs Ref. Formula Description 

130 z* none Eq (101) (M0-z)/(2M0) Unit cell displacement in z direction 
131 Vz* none Eq (102) Vz/µf Unit cell velocity in y direction 
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