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Abstract: The objective of this article is to communicate a class of new exact solutions of the plane equation of momentum
with body force, energy and continuity for moderate Peclet number in von-Mises coordinates. Viscosity of fluid is variable but
its density and thermal conductivity are constant. The class characterizes the streamlines pattern through an equation relating
two continuously differentiable functions and a function of stream function y. Applying the successive transformation
technique, the basic equations are prepared for exact solutions. It finds exact solutions for class of flows for which the function
of stream function varies linearly and exponentially. The linear case shows viscosity and temperature for moderate Peclet
number for two variety of velocity profile. The first velocity profile fixes both the functions of characteristic equation whereas
the second keeps one of them arbitrary. The exponential case finds that the temperature distribution, due to heat generation,
remains constant for all Peclet numbers except at 4 where it follows a specific formula. There are streamlines, velocity
components, viscosity and temperature distribution in presence of body force for a large number of the finite Peclet number.

Keywords: Successive Transformation Technique, Variable Viscosity Fluids, Navier-Stokes Equations with Body Force,
Martin’s Coordinates, Von-MisesCoordinates

1. Introduction Ov=%_¢ 1)

Theoretical study of a fluid flow problem with variable
viscosity is a system containing equation of momentum,
energy and continuity. The momentum equations for the ( ov; J_ 7 _Op 1 0 ov; +avj 2

motion of a fluid element are the Navier-Stokes equations * R ox. ax.  ox
. . . . . e U4 J i

(NSE) having capacity to incorporate all forces in the right-

hand side. In presence of unknown external force this system

for steady flow with constant density, thermal conductivity [ O_TJ _ 1 0 (OT J + i v ( ﬂ +al] 3)
0

v = |7 hddi
and specific heat using following dimensionless parameters g Ox;, R,P. 0x;\ 0x; ) R," 0Ox;| Ox; ’
=2 y* D A L S Equations (1-3) are in tensor notation where velocity
L, L, U, Uy vector isv=v,(x;), p=p(x;) is pressure, 4= (x;)>0 is
viscosity and F =F;(x;) is the body force per unit mass
N*:ﬁp*:iF*:iF*:i .. ..
Lo o 1 F, 2 F, i,j,k0{1,2,3} . The quantities P., £, and R, are the Prandt!
number, the Eckert number, the Reynolds number
Dropping the overhead “*” are following. respectively. The product of R, and P, is Peclet number P, .

For the plane case, in Cartesian space (x,y) , taking
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lvjvklj{laz} > xlzx > x2:y > F:(Fi(xay)a FZ(xay)) s
Vi =u v, =v, the equations (1-3) reduce to following system
of equations

u,tv, =0 4)

X

ity +vi, = F = p, +(200,) (G, 40011 (5)
1
uv,tvv, =F - p, +R—[(2/1Vy)y iy, +v)i] (6)

uT, +va =

E
(7 +7,) ’f;“[zu(ux2 +v,2)+ uu, +v,)’] (7)

er

The complex mathematical structure of this system of
fundamental equations (4-7) requires using new solution
techniques. The solution technique like one-parameter group,
Martin’s system, hodograph transformation method and
successive transformation methods in absence of body force
are there in [1-5]. The body force term appears in the study of
magneto-hydrodynamic and in geophysical fluid dynamics
[6-8] for example. The exact solution of fundamental
equations with body force by setting the arbitrary coordinates
of the Martin’s system in radial directionare there in [9-13].
Further, the solution of the basic system of equations is found
for very large and very small P, where as the solution for

moderate P, is challenging. Please refer to [14-16] and

references therein.
The solution of the plane equation of continuity (5)
provides astream functiony/ =¢/(x,y), such thatyy, . =¢, ,

and
a_‘// = u’a_l/j =—y (8)
oy Ox
This  discourse  applies successive  coordinate

transformations technique for solution of plane momentum
and energy equations (5-7). It transforms equations firstly
into a curvilinear net (@¢/) where the coordinate curves
{ =const. as streamlines and the coordinate curves
@=const. may take any direction. With this definition, the
coordinate system (@) is here Martin’s coordinate system
() for it has used in Martin [17].
retransforms the basic equations into von-Mises coordinates.
In von-Mises coordinates (x,{/) the coordinate lines

Secondly, it

@ = constant of Martin’s coordinates is taken along x —axis
thus the function @=x and stream function { of Martin’s
coordinates as independent variables instead of y and x

[18]. The von-Mises coordinates (x,{/) takes the privilege of

defining the arbitrary curve @= const. of Martin’s system by

setting
p=x ©)
This communication characterizes the pattern of
streamlines { = const. by
Y2 _ ot (10)
g(x)
The equation (7) implies
y=/()+g(x)v@) n

Where f(x) and g'(x)#0 are continuously differentiable
functions and V() is a functions of stream function.

The paper is organized as follow: Section (2) successively
transforms basic equations into the von-Mises coordinates
(x,¢) . Section (3), provides exact solutions of fundamental

equations for the cases when V({) varies linearly and when
it varies exponentially. Conclusion is the last section.

2. Fundamental Equations in Von-Mises
Coordinates

Let us introduce the vorticity function Q and the total
energy function

Q=v, ~u, (12)
1 2 Hu
s e (13)
And functions 4 and B as follow
A= pu, +v,).B=4p1u, (14)
Consider the allowable change of coordinates (@ ¢) .
x =x(@y), y=y(@y) (15)

Where the curves ¢ = const. are streamline and @ = const.

a(x,»)

Letting &be the angle between the tangents to the curves

are arbitrary such that the JacobianJ = # 0 and finite.

Y =const. and @=const. at a point P(x,y) , streamline
pattern equation (11) and applying differential geometric
technique of [19] it is easy to show that the fundamental
equations are following

~R,QJE= R, JNE[~F(F,cosé +F,sin &) +.J (Fsin§ = Fy cos§) |+ R, J EL,+ A¢((F2 —Jz)cos2£—2FJsin2£)
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+ E4y, (Jsin2& - F cos 2§)) B(,,(%(F2 —Jz)sin25+FJ0052£j+EBw (%Fsin25+Jcos2 5) (16)

0= ReJ\/E[Fl cosé +F, sin{]fReJLgﬁEAw COSZEfA(”[Fcost—JsinZ{] + Bw(%Fsinzf—Jsinz 5} fEf“’ sin2& (17)

And

GT,-FT ET,-FT, T
! o "y | (|20 |l E L(BZ+4A2)+—”’ (18)
P, ), ) J

Where £, F and G are the coefficients of first fundamental form,J =+ EG-F 2 and
B(gy) =;—j’3 [E,(Fsiné+Jcosé)’ -2 E(Fsiné +J cosé) (Fysiné+J,cosa)+ E*(J,sin2§ +G,sin® £)]  (19)

(Fcosé—Jsiné)

Alpy)=u |- DB {E¢(2EJ3cos{+F\/fsin{)f 4E2J2J¢cos{—2E\/EF¢singr +E\/EEwsin{}
+C2083a { Ey(Fsiné +Jcosé)— 2EJ, cosé ~ EGsiné 1+ (Fs1n§+i00s{) {(JEy=2EJy) sin¢ + cos&
J EJ
[—FE¢,+2EF¢,—EE¢,]}
S (g, (Jsiné-F 2EJ, siné + EG
Y {(Ey(Jsin&=Fcos&)—2EJ siné + EG,cos € }] (20)
And
Fsiné +J cos ) siné . .
0= ( jEﬂ é) {(JE¢—2EJ¢,) siné + cosé& [—FE¢+2EF¢—EE¢/]}— > {Ew(Js1n€—Fcosf)—2EJ¢, siné +
EGc0s¢ }]
+ (Fcosfz—JssmE) {E¢(2EJ3 cosE+F\/EsinE)f 4E2J2J¢cos{—2E\/fF¢siné' + E\/EE,/, siné }
4E<J
cosé . .
—[——F {Ey(Fsiné+Jcosé) — 2EJ cos & — EGysiné }] (21)
2J

Setting equations (6) and (8) in Martin’s system we find that

cosé = % (22)

E =1+(M +Nv)* (23)
F=\1-E (24)

G=J* (25)

J=xgV (26)
N(x)=xg'(x)M(x) =x ['(x) 27)

The basic equations (16-21) in von-Mises coordinates on utilizing equations (22-27) becomes



18 Mushtaq Ahmed: A Class of Exact Solutions for a Variable Viscosity Flow with Body Force for
Moderate Peclet Number Via Von-Mises Coordinates

-R,Q=-R,JF,+R, L, ~J A, +NE-14,+B, (28)
2-F VJE-1B
0=R(F, +F2\/E—1)—R€Lx+—A¢(J )+ 4 JE- " (29)
2
E E
JT, ~2aNE-1T, +2 =7 +|J ——2%_-p |T
XX Vx J vv [ X Zm e] X (30)
E E EJ E.P
ta| - L7, =-JEE (32 +4A2)
J 2WE-1 J 4u
—4U(N +
B= /1(2 2g) 31)
ax‘g
A=—H _[xg (M'+N'V)-2M + NV)(N +g)] (32)
a(xg)
M' 2MN |(1 " 2N?
Q=L _2MA (_j+ N2V [Kj (33)
xg (xg) \a) | xg (xg)" [\a
And the magnitude of v = (u,v) is
JI+(M +Nv)y?
|v|=F———"— (34)
J
The condition L, ,, = L, on equations (28-29) implies
2-E) Ly
JA~E-Tay,-E By voals -
o ooy e [ WE-1 ]
E Jy(2-E) E,
+ -—+ +— | —g'(x)#0
A‘”{ 2WE-1 J? J
= RQ, +R (F+F, E—l)w R, (JF), (35)
The equations (31-33) guide us to discus exact solution for the following two cases when V"' (¢) = 0and whenv"'(¢) 20 .
3. Exact Solutions
Case LV"(¢) =0
For this case
V=ay+b (36)
Witha #0, b as constants. Equation (35) on utilizing equation (36) provides
[l—xz(f’+g’|/)2]
axgA, —2x(f'"+g'VA4,, - A
& Axx (f'+g'v) Xy axg wy
ag A = A, (S +g V) +x(f"+g"V)) =4, (/' +& V) +x(f"+g"V)) (37
I+ IV B
—{BX -M} =RQ+R(F+Fx(f'+g'v)), R, (axg ),
ag
w
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Solution of equation (37) will lead to L and T from The equation (27) and equation (31) imply following

equations (28-30), y from equation (31) or (32), the coupled equations
pressure p from equation (13) and velocity components u ,
v from (8).

The equation (37) involves both the function 4 and B .
The functions 4 and B involves components of velocity
field. Therefore, one of the techniques to solve equation (37)
could be to obtain a relation between the functions A4 and 2(xg) [

2(xg)'g’ —(xg) =0

And

B using equations (31-32). It is easy to see that such a +(x f)'=0
relation is not possible. Therefore, let us consider the
following two velocity field cases Equations (39-40) implies
CaseI(a): 4=0 .
X -_—
Case I(b): B=0 8() (Cox* +C)
Case I(a): -
f)=————+n
When (Cyx* +C)) ’
A=0 (38)

Where C, 20, C,,n, and n, are constants. Therefore, equation (37) leads to

{_Bx +(f'+g'l/)B¢

4 }w=ReQx+Re(F1+sz(f'+g'V))¢,_Re(axgF2)x

The search for possible forms of /| and F, , satisfying equation (43), equations (28-29) and equation (30) leads to
Re (xgan) :Re Q+Gl(w)
And equation (43) implies

R =~(f" +g'v>{]zf_9 ' GZ—Z)}‘BX AN gV) by

Where G| (/) and H,(x) are functions of integration.
Utilizing equations (44-45), in equations (28-29) and solving for the function L , we obtain
R L= —B+jHl(x)dx+le(w)dw +m,

Where m, is constant. We find viscosity from equation (32)

= —ax*g?
4N +g)
Equation (30), on supplying equation (38), equations (41-42) and equation (47), implies the function B
a{l +x*(n g+ g'v)z}
xXg

(axg)T., —2ax(n g +g"7T,, + T, +(ag=P,)T,

E.P.(N+
. P.(N g)B
xg

[Zx(nl g'+g'v)g

g _(n1 g'+g'V)+(n1 g”"'g"l/)\JaTV -

Equations (47-48) provides following relation between viscosity and temperature

(39

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47

(43)
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o a{1+x2(n1 g'+g'V)2}
2[(axg)Txx_2ax(nlg +g)TVx+ TVV

__ —aXg’
4E, P.(N +g) xg

2x(m g'+g'v)g'
g

+(ag—ReP,)Tx+[ -(n g""g'V)"‘(nlg"+g"l/)]aTV]

(49)

One can find pressure p from equation (13) using equation (46) and can find velocity components from (8) using (41-42) in

(11).
Case 1(b):
Now when
B=0
Equation (32) implies
_c
g==
X

Where a non-zero constant is ¢ . The equation (37) for the case (50), becomes

-],

c

2[M—CV)
+EAX _aAv (M'+%]+—x
X

X X

vv

=R, Q. +aRe(F1 +(M_ﬂjF2] - R, (acF,),
1%

X

The coefficients suggest searching solution of the type
A=R(x)+dv

In equation (52), where d is constant. This implies

r

2R
{acR" +£R’}—ad(M’ +%j= R, (LJ{M’ +ﬂ} et

X X ac X ax3

+aR, (Fl +(M —ﬂ)sz -R,(acF,).
X

14

The search for possible forms of F, and F, , satisfying equation (54), equations (28-29) and equation (30) leads to

R, acF, = ad[M+2J-(dex]+[£J{M' +2_M} —acR' —acj[ﬂjdx+ﬁ(V)
x ac x x

On substituting equation (55) in equation (52), we find

oo oA
c x x ac x
—-acR' —acj(ijdX"'ﬁ(V)]_(—R: )Vz +e' ajMR'e_X dx+E e
X ax

Equations (28-29) on utilizing (55-56) provide

(50)

(1)

(52)

(53)

(54

(55)

(56)
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ReaL :V(&]{M'+2_M:|—Vacj(£jdx_v|:M'+2_M:l[&j
ac X X X ac

; (57)
Re V X r_—X X
+ > te a.[MRe dx+E e +jﬁ(v)dv
2ax
And
d=0 (58)
Equation (31) on using equation (51) provides
=g (59)
(M'=g'v)
In light of equations (58-59), equation (50) and equation (53) the equation (30) implies
cV :
all+ (M - J
cv x ac
T..-2a|M-——|T, + T, + —-P |T
ac XX a[ xj Vx c vv ( X e j X (60)
2(M +Nv
FECELYNPRT W3
X x x
Let us searching solution of equation (60) of the form
T = Ry(x)+ Ry (x)V + Ry (x) v (61)
Equation (60) on substituting equation (61) gives
2
V2 LacRy +dagR, +258" 1ur, (o' +28) +[£ -P, jRg v acRy —4aMR, +2ag R, ~—2RM & +(£ -P, ]Rg
c x X X
2aR,(1+M?
+a {—ZR3 (M' +2—A/I]+R2 (g' +2—gJ} ]+ acR' —2aMR, +L
X X c
R
+ [E—PEVJR{ —a[M'+%]R2=_ECg[RM'+C—2v] (62)
X X X
The coefficients of equation (62) when compared implies
P, 4
Ré’{f ——e]Ré +(—2]R3 =0 (63)
X ac X
P,
R;+(§——CJR5 +R—§ = 4aMR}, +2aR, {M' +ﬂ] _E.P, (%R] (64)
X ac X X X
1 P : +M? E PM
Rl"+(_——ele'= 2MRy +1—(M'+—2M]R2—[ A 2M ) JR3— “L—R (65)
X ac ¢ ¢ X c ac

Solving homogeneous equation (63), using the computer algebra system (CAS) software Mathematica, provides
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Ry =L L
3 P2

P,

p2
]+ 2ae2 c? JEZ

2
e \xYac (66)
.. - Pe '
+E3 Mel.]erG[{{}s{l}}s{{'za 2}9{}}9 ac x]
In order to make the equation (64) homogeneous and find its solution through Mathematica, let us set
dax*M 2ax? aM
Ry =222 R+ 225 |+ 28 (R, (67)
EP. " CE.PR x
in equation (64) to find
3 P R
Ry +(— -—e)Ré +—3=0 (68)
X ac X
The software Mathematica gives
ac (1 P, .. -P,
RZ(X): [___EJE4+E5MeljerG[{{}a{l}}a{{_za 2}7{}}: < x] (69)
R, P \x ac ac
Solving equation (65), we have
e[%)x —[P'. )x e(%jx
Ri(x)= J' J' xe Z,(x)dx b dx+ E, j dx+E, (70)
X
Where
: +M? E.PM
z,(x)= 225 +1—(M’+2—MJR2( 2t )]R3 < TR (1)
c x c ac
and E;, iJ{1,2,---,7} are constants. 2 1
Equation (59) using equation (67) provides viscosity, Q= (C_zj () (75)
equation (61), by supplying equations (66-71), gives T ,
equation (13) using equation (57) gives pand equation (8) v
using equation (51) and equation (8) provides velocity. A=—_ 2'u 2c (1 _&J (76)
Case IL: V() # 0 e x x
For thi let t
or this case let us se And
vig)=¢¥ (72)
B[] ( L (77)
And czew X ew
g =L (73) Where ¢ and b are constant.
X

Because g'(x) #0.

Equations (31-33) on utilizing equations (72-73) lead to

f(x)=Inx+b

(74)

" ﬂ_zxe“/’ Lt 6xe_2’/’_2e_"” )
A‘/"/’ X c X C2 c 14 6‘2

The equations (76-77) imply a relation between the

function 4 and B .

B -2x

A (78)
ce

Equation (35) on substituting equation (78) becomes

y _4xe_2‘/’




Fluid Mechanics 2019; 5(1): 15-25

w
= R.(R), +Re((1—%)F2] R, (ce ).
w

The search for possible forms of /| and F, , satisfying equation (79), equations (28-29) and equation (30) leads to

R, ((1 —%)FZJ R, (ce” F, ) -0

Y
Or
R Y
R, Fy=—¢ H[e—+—1nxJ
X X ¢
& 1 . . . . o . .
Where H| —+—Inx | is an arbitrary function. The equation (79) on substituting equation (81) provides
X ¢

W —y 2 Y 0o 2y
Re(lﬁ)w—ce‘/’Axxz[l——ce -x¢ Jsz//"'[_—"'—ce + =€ -—X:Z )AW

X c X x? c
N e _2xe_"” A+ 6xe Y _ 207 At// _4xe_2"" 4
X c 2 ¢ c?

The integration of equation (82) requires selecting the form of 4 . Let
A(x,¢) =M (x)S@)

The equation (82) on substituting (83) gives

' 2, 2x
ReFl:cM”J.e‘/’ Sdy —ﬂjé” Sdy +%J'e4’ Sdy +(—2+—C v+2te ‘”jM' s
X X X C

2 2x - 2 2x -
+[———%e‘/’ +—;Ce 2‘/’jMS +(%e‘/’ +Ze Y ——2xe zijS'-i-K(x)
X x c X c c

Where K(x) is a function of integration. It is easy to see that F, and F, satisfies equation (79) and the viscosity is

W
2

ce” x

w -1
[y =- [1—%] M(x)S@)

Equations (28-29) provides

R _ - W
R L= [—eje 2 ——2b1xM(x)e v +[Re lnx—bch'(x)]e"”JrCRee
c X

e
2 2x°

R, (Inx)’
+b M + 2b1jM(x)dx + 9(2“) +b2+IK(x)dx
X C

W 'z
H(e— +llnx]—(6—+llnxJ
X ¢ X ¢

And

23

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

87
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Where b, and b, are constants.
Equation (30) on utilizing equation (72-74) and equation (85) simplifies to

¥ —y ¥ 4 —Y
w S|, _ce 2 2 ce ce” [ 2e _
ce" T, 2[1 —J wa—ir[ —t— Ty * — P |T. Ty=

X c X x c
20 v w
b E, P, [”2 —e—+——%JM<x) (88)
c 4 X X
The right-hand side of equation (88) suggests searching for solution of the form
= Y -y -2y
T(x,¢) =K (x) +K;(x)e” +Ks(x)e ™ +Ky(x)e (89)
Equation (88) on substituting equation (89) reduces to
-3¢
12K, e +[4KA_8K4 _p KA+4K3}_M
c c
r r 2K -y _ r
+ CK:‘,_4CK4+4CK4 _{_cK4 +(Q2-P)K, - je e‘/'+cK§'—CK3 +cK3 P K!
X x2 X X x2
2K,  cK| 3cK,  cK ooV i
+[c1<1“—(2+g.)1<; i +c—1}e"/’ +[ch' 42672 +c—22}e2"”——2b1 E. P (i—%—e—+ M@ (90)
X X X X x ¢ c
The equation (90) implies Implies
(HA+F5) E b1, P v
M =ty x" where @ =——%= when P,#2 (91) - bty ce” X
0 2-P)) T=b+ 5 Inx+ P 97)
K = E b {—xM'+2J.[ﬂ]dx}+b3 (92) For the case a z0 (or P, #4 ) the equations (37-41)
2R, X simplifies to
—_ —_ — a
Kz_b_4 ©93) b, =0,5,=0,M =t,x
x
Ki(x)=b,K,(x)=0,K;=0,and K, =0
__E. B b
Ky = 2w M (94) Implies
K, =0 95) T=b, %)

Where by, b, and ¢, are arbitrary constants and

E.myt
Pe'Cl _czc;nl()xa

e

[ a —4a+4Pe,} =0 (96)

The solution equation (96) depends on the choice of a . It
will be discussed for @ =0 and a 0.
For the case @ =0 (or P, =4 ), the equations (46-50)

simplifies to

2cE bt 2E b t,1
M =ty x@ =1y,b, = =2¢0 K (x) = Z0 R
RC RC
2cE E P
KZ(x)=Ml7K3 :—ﬂx and K4 =0

R X 2¢

e

It finds viscosity from (84), pressure from (11) using (86)
and velocity from equation (8). The temperature T is found
form equation (97) for P, =4 otherwise 7' satisfies equation

(98).

4. Conclusion

A class of exact solutions for plane steady motion of
incompressible fluids of variable viscosity in the presence of
body force with moderate Peclet number is obtained. The
non-dimensional form of basic equations undergoes the
successive transformations until equations in von-Mises
coordinates. Two  classes of streamline pattern

y=f(x)+g(x)v(¢) are considered with V(¥Y)=ay+b

and V(@) =¢” . When the family of streamlines varies
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linearly, exact solutions for a suitable component of body
force are determined based on two velocity field cases. The
first velocity field fixes both of the functions

S(x)=n g(x)+n, and g(x)= The second

Cox* +C

velocity field provide exact solution for arbitrary f(x) and
requires g(x) =< Wherec#0 , Co#0, C ,n and n, are
x

constants. When the family of streamlines varies

cew

exponentially, the streamline pattern is y =b+Inx+
X

The temperature distribution, due to heat generation, is

Ebt, P Y
T=bh+—<10r nx+<8 -2 when P, =4
2 x  ce?

Whenever P, # 4, the temperature distribution is constant.
There are infinite set of expressions for streamlines, pressure,
viscosity, temperature distribution and velocity vector field in
the presence of body force.

The software Mathematica is used to determine the
solution of some ordinary differential equations. Using
Mathematica one can draw the streamlines pattern to observe
the effect of various parameters on the streamlines and
discuss the flow characteristic.
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