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Abstract: Real-time anomaly detection is a critical monitoring task for power systems. Most studies of power network 

detection fail to identify small fault signals or disturbances that might lead to damages or system-wide blackout. This work 

presents a methodology for analyzing high-dimensional PMU data and detecting early events for large-scale power systems 

in a non-Gaussian noise environment. Also, spatio-temporal correlations of PMU data are explored and determined by the 

factor model for anomaly detection. Based on random matrix theory, the factor model monitors the variation of 

spatio-temporal correlations in PMU data and estimates the number of dynamic factors. Kullback-Leibler Divergence is 

employed to measure the deviation between two spectral distributions: the empirical spectral distribution of the covariance 

matrix of residuals from online monitoring data and its theoretical spectral distribution determined by the factor model. Using 

IEEE 57-bus, IEEE 118-bus, and Polish 2383-bus systems, three different case studies demonstrate that the proposed method 

is more effective in identifying early-stage anomalies in high-dimensional PMU data collected from large-scale power 

networks. Performance evaluations validate that this method is sensitive and robust to small fault signals compared with other 

statistical approaches. The proposed method is a data-driven approach that doesn’t require any prior knowledge of the 

topology of power networks. 
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1. Introduction 

Anomalies in power systems include deviations from 

expected measurements resulting from grid faults, such as 

load fluctuations and system oscillations. Anomaly detection 

is an important data analysis task that detects outliers from a 

given dataset. Also, real-time anomaly monitoring and 

detection are essential functions of the smart grid. Therefore, 

anomalies should gain more attention because they might 

lead to significant but rare events which might result in 

widespread blackouts. Discovering these faulty behaviors 

promptly and taking countermeasures will ensure the quality 

of the power grid and reduce economic losses [1]. 

Comprehensive studies of anomaly detection for large-scale 

power systems have been presented in recent years. Signal 

processing solution is a traditional method for event detection. 

For instance, the wavelet energy function is employed to exam 

the non-stationary occurrence of significant changes in signals 

[2]. Also, principal component analysis (PCA)[3, 4] and 

singular value decomposition (SVD) [5] techniques are applied 

to event detection by reducing the system model dimension 

and extracting energy coherent structures. Recently, a large 

number of research topics focus on fault detection with 

machine learning. According to Wang [6], the online power 

system transient stability assessment problem is characterized 

as a two-class classification problem using a core vector 

machine. Other machine learning methods have been used in 

fault detection, including artificial neural networks (ANN) [7], 

KMeans [8], and isolated forest [9]. 

With the increasing scale of the power grid, such as Polish 

2383-bus system, how to monitor such large power networks 

has been challenging for online monitoring analysis. Recently, 

a deep learning scheme has been successfully applied to 

anomaly detection for large-scale power systems, including 

long short-term memory (LSTM) [10, 11], graph neural 

networks (GNN) [12], deep neural network (DNN) [13]. 
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However, calculations of these methods are growing 

exponentially with the depth and complexity of networks. 

Also, there are not enough labeled anomalies corresponding 

to the normal samples for training and testing. 

Random matrix theory [14] as a statistic solution to big data 

has been mentioned to analyze massive data and successfully 

applied to the analysis of large-scale power networks. Using 

random matrix theory such as Qiu [15], state estimation and 

fault detection for power grid are investigated with PMU data. 

Ma [16] applies a graph partitioning algorithm to determine 

fault location by dividing the complex networks into several 

groups. Then the largest eigenvalue is calculated to detect the 

fault and locate the event position. Moreover, large size 

matrices of capacitor voltages are analyzed and identified the 

faulty submodules using single ring law analysis [17]. The 

linear eigenvalue statistics (LES) method is utilized to study 

situation awareness of power systems based on random matrix 

theory [18]. 

These methods mentioned above are helpful to identify 

faults. However, real-world power systems have strong 

interactions, mutual coupling effects, which exhibit 

spatio-temporal correlations in the power grid [15, 19]. 

Correlations existing in power systems lead to degraded 

accuracy and performance of traditional methods under 

Gaussian assumptions. Therefore, spatio-temporal 

correlations in power networks should be significantly 

considered. Investigation of the correlation structure of data 

is vital towards improving event detection performance [20, 

21]. However, only a few studies focus on the above issue, 

which motivates us to explore an efficient correlation 

analysis method for power systems. 

In recent years, the factor model for high-dimensional data 

analysis has attracted more attention. The main task of the 

factor model aims to use a small number of factors to 

characterize a large number of variables and extract 

correlation information from high-dimensional data. The 

factor model has been widely used in the analysis of big data 

recently. Yeo [22] applies high-dimensional factor models to 

capture economic market dynamics. Kapetanios [23] 

estimates the number of factors needed in high-dimensional 

factor models by studying the behavior of the eigenvalues. 

Pelger [24] explores factor models in high-frequency data 

and proposes an estimation approach to separate continuous 

and rare jump risk factors. Furthermore, Lee [25] generates a 

dynamic factor model to estimate power correlations between 

load and wind. In this paper, the factor model is used to 

analyze high-dimensional PMU data and study the 

spatio-temporal correlation of power systems. 

Early anomaly detection aims to discover faults in a low 

signal-to-noise ratio (SNR) environment. Some faulty 

behaviors usually exhibit dynamic characteristics in their 

early stage. Due to noise interference, fault signals are 

submerged in the noise, which causes many algorithms 

inefficiency in early fault recognition. Recently, the event 

detection approach based on Kullback-Leibler divergence 

(KLD) has been successfully applied to early fault detection 

in some fields and approved its high sensitiveness and 

robustness. For example, Bakdi [26] involves the KLD 

method to power quality monitoring in RMPV systems. 

Gupta [27] uses KLD based approach to monitor early 

warning signals of a blackout. Additionally, KLD with PCA 

technique proves high performance on incipient fault 

detection [28-30]. Moreover, a fault detection method based 

on Jensen-Shannon divergence is proposed to detect the 

surface material cracks using experimental ECT data [31]. 

Under the random matrix theory framework, this paper 

proposes a factor model-based KLD method (FKLD) to 

detect early fault events in large-scale power systems. The 

main contributions of this paper are as follows: 

1) Propose an early anomaly detection method for 

large-scale power systems based on the KLD technique. 

The proposed method is sensitive to incipient faulty 

behaviors in power networks, which efficiently 

identifies significant failures in their early stages. 

2) The method in this paper captures the correlation 

properties of high-dimensional power grid data by using 

factor model analysis. Therefore, the factor model-based 

FKLD detection method has more accuracy and higher 

performance than conventional statistic methods in 

non-Gaussian noise environment systems. 

3) Present a statistical method based on random matrix 

theory, and it is robust to interference noise and bad 

data, including data errors. 

4) This paper introduces a data-driven approach to detect 

small anomaly behaviors without prior knowledge of 

the complex topology of power systems. 

The rest of the paper is organized as follows: In Section 2, 

data modeling and random matrix theory are described. Then 

correlation analysis for power systems is introduced in Section 

3. Furthermore, factor model analysis for power systems is 

presented in Section 4. The proposed method is then 

introduced in Section 5. Next, cases are studied, and the results 

are exhibited in Section 6. Following that, performance 

evaluations are made by comparing with other algorithms in 

Section 7. Finally, conclusions are drawn in Section 8. 

2. Data Modeling and Random Matrix 

Theory 

Large power systems are modeled as high-dimensional 

random matrices, which transfers a complex anomaly 

detection problem of large-scale power networks into the 

analysis of matrices [14]. In this section, data processing is 

introduced firstly. High dimensional phasor measurement unit 

(PMU) [32, 33] data is employed to be status data in this paper, 

such as voltage magnitude and active power. Then 

Marchenko-Pasture Law, a fundamental theory of random 

matrix theory, is described.  

2.1. PMU Data Processing 

Let X be status data, � ∈ ℂ�×� is a matrix of N variables 

for T sampling times collected from PMUs shown in Figure 1. �  is split into the fixed-length moving windows of K 
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sampling times, K<T. A measurement matrix ��(	) ∈ ℂ�×� at 

current time �(
) is generated as: 

��(	) = (��(	)����, ��(	)����. . , ��(	))      (1) 

Where ��(	) is an N-row vector of X at current time �(
), 
��(	) = (��,�(	), ��,�(	) ⋯��,�(	))� .  Then the measurement 

matrix ��(	) can be normalized as: 

���,� = (��,� − �(��)) × �(���)
�(��) + �(���)      (2) 

Where ����� = 0	and #(���) = 1, �(��) and #(��) are the mean 

and standard variance of the %&�  row vector in the matrix ��(	), % ∈ (1, 2,⋯(), ℎ ∈ (1, 2,⋯*). 

 

Figure 1. Streaming data collected from PMUs is constructed as a random 

matrix. 

2.2. Marchenko-Pasture Law 

Marchenko-Pasture Law (MP-law) [34] is described the 

asymptotic behavior of empirical spectral density (ESD). Let 

� = [,�, ⋯,�]  be ( × �  random matrix whose elements are 

independent identically distributed with mean �(�) = 0 and 

standard variance #(�) < ∞. The sample covariance matrix 

of � is defined as: 

 0 = �
1��2                 (3) 

Assume that 3�,3�, ⋯3� are the eigenvalues of the sample 

covariance matrix of �. ESD of ( × ( sample covariance 

matrix of � is generated by its eigenvalues: 

45(�) = �
� ∑ 789(:)�	;�              (4) 

Where 7	  denotes the dirac point measure at 
 . As (, � → ∞  with (/� = > ∈ (0, 1] , spectral distribution 

converges to the distribution of MP-Law with density 

function: 

?(,) = @ �
�ABC�D E(F − ,)(, − G)				 
?		G ≤ , ≤ F

0 IJℎKLM
NK   (5) 

Where G = #�(1 − √>)�, F = #�(1 + √>)�. 

3. Correlation Analysis for Power 

Systems 

With the growing scale of power systems, such as 

distribution generations and flexible loads, the structure of 

power networks becomes much larger and more complex than 

it used to be. All electrical components are integrated into one 

system, which leads to strong interactions, mutual coupling 

effects, and high randomness when large fluctuations occur in 

power systems [19]. These behaviors mentioned above exhibit 

spatio-temporal correlations [15, 35] in power networks. 

Some studies have been discovered and proved their existence 

in power systems. Such as Xu [19] finds that correlations exist 

between the influential factors and system status utilizing 

augmented matrix and demonstrates that certain factors 

influence the operating states of power networks. 

Additionally, Chakhchoukh [21] shows that 

cross-correlations occur when several PMUs are placed close 

to each other by analyzing Akaike information criterion, 

which reveals that different PMU measurements at different 

locations can be correlated as well. Furthermore, Ghanavati 

[36] finds that autocorrelation increases with the power 

system approaching instability and estimates autocorrelation. 

Here, autocorrelation (temporal correlation) is the correlation 

between two measurements �1,& and P1,&�	 at the same bus Q, 

while the correlation between two measurements �1,&  and 

PR,&�S  from different buses (bus Q  and bus T ) is 

cross-correlation (spatio-correlation). In this paper, 

spatio-temporal correlation is modeled and estimated using 

factor model analysis with high dimensional PMU data 

collected in a non-Gaussian environment. 

4. Factor Model Analysis for Power 

Systems 

Traditional studies theoretically use Gaussian assumptions 

[18]. However, in the real world, large-scale power systems 

exhibit behaviors of spatio-temporal correlation based on the 

discussion above. In this section, the factor model [22] is 

utilized to capture the correlation structure of PMU data and 

predict the power state mode. The main task of this section is 

to build factor model based on random matrix theory. In this 

section, the subspace of residuals is construed, firstly. Then 

estimated eigenvalue distribution and the modeled eigenvalue 

distribution of residuals are obtained. Finally, by minimizing 

the distance between estimated and modeled spectral 

distributions, the spatio-temporal correlations of power 

systems can be determined.  

4.1. Estimated Eigenvalue Distribution Analysis 

The estimated eigenvalue distribution is produced by the 

ESD of the covariance matrix of residuals after eliminating p 

factors from PMU data. 
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Let �  be a ( × �  matrix. X is decomposed into p 

principal components (factors) and residuals as � = U +∑ VW1W;� XW. Thus residual matrix is generated as below: 

U = � − ∑ VW1W;� XW             (6) 

Where U  is ( × �  residual matrix obtained after Y 

principal components are removed from �. XW is a matrix of 

factors, and VW  is a matrix of the factor loading, Y  is the 

number of factors to be subtracted from PMU data. 

Furthermore, the residuals are modeled by the covariance 

matrix shown as: 

ZW = �
� UU2                   (7) 

Finally, the ESD of the covariance matrix ZW, represented 

by X[\]^(Y), is obtained by equation (4). 

4.2. Modeled Eigenvalue Distribution Analysis 

The next step is to investigate the modeled eigenvalue 

distribution of the covariance matrix of residuals. A doubly 

correlated form is constructed to build the spatio-temporal 

correlation structure as below: 

U = _��/�`a��/�                (8) 

where `  is an (  × � matrix with independent identical 

distribution entries. _�  and a�  representing 

cross-covariance and autocovariance, respectively, are 

symmetric and non-negative definite matrices. 

In this paper, the structures of _� and a�  are restricted so 

that they are expressed by simple parameter sets b and c, for 

example, each residual has the same cross-correlation, b, to 

other residuals, and each residual has an exponentially 

decaying temporal autocorrelations with a parameter c, so _�  and a�  are determined by two parameters b  and c , 

since _� = d(_�)		 = 1, (_�)	�,	e� = b, 
, % = 1,⋯(f , and 

a� = gha�)5& = K,Y( − |5�&|
j k ,			N, J = 1,⋯�l . Thus, the 

modeled eigenvalue distribution can be represented by XRmn\^(b, c). 
Two assumptions are made to simplify the estimation in the 

factor model: 

Assumption 1: 

Total cross-correlations are efficiently eliminated from Y 

principal components so that cross-correlations can be 

negligible. Thus _� ≈ p�×� or b = 0. 

Assumption 2: 

The autocorrelations are exponentially decreasing, which 

can be expressed by {a�} = F|	��|, with |F| 	< 	1. 
Based on the above two assumptions, XRmn\^(b, c) can be 

reduced to XRmn\^(F)  with only parameter b. Since it is 

difficult to obtain the limiting spectral distribution from 

Stieltjes Transform, free random variable techniques are 

provided to calculate the result for XRmn\^(F), which can be 

generated by the following three steps: 

1) By using the moments generating function s ≡sRmn\^(u) and its inverse relation to N transform, we 

can derive the following polynomial equation: 

Gv>�sv + 2G�>(−(1 + F�)u + G�>)sw + ((1 − F�)�u� − 2G�>(1 + F�)z + (>� − 1)Gv)s� − 2Gvs − Gv = 0 (9) 

Where |F| < 1 , G = √1 − F� and > = (/� . Basic 

derivations of the polynomial equation (9) are provided in the 

Appendix. 

2) Next, the Stieltjes Transform can be generated from 

moment generating function: 

yRmn\^(u) = z{|}~�(�)��
�           (10) 

3) Finally, the modeled eigenvalue distribution XRmn\^(F) 
is estimated from the imaginary part of yRmn\^(u) given 

by: 

XRmn\^(F) = − �
A �
T�→��ℑTy(3 + 
`)      (11) 

4.3. Spectral Distribution Distance 

The estimated and modeled eigenvalue distributions of the 

covariance matrix are constructed in residual subspace from 

the discussion above. The former is controlled by p, the 

number of factors to be removed. The latter depends on 

parameter b. Now the objective of estimation is to predict two 

parameters of (Y, F) by finding the best fit of X[\]^(Y) and XRmn\^(F) . Jensen-Shannon divergence, which is the 

symmetric form of KLD, measures the spectral distance 

between X[\]^(Y) and XRmn\^(F) as: 

���(X[\]^||XRmn\^) = �
�∑ X	[\]^ �I� �9�~��

z9	
+ �

�∑ X	Rmn\^ �I� �9{|}~�
z9	

    (12) 

Where s	 = �9�~����9{|}~�
� . More details of factor model 

estimation are shown in Algorithm I. To quickly search for b 

in the minimizing process, we use the Newton method to solve 

equation (12). Y	and F	approximately approach their actual 

values when the distance between estimated and theoretical 

distribution is small. Here Y	and F	stand for cross-correlation 

and autocorrelation, respectively. Y	and F	exhibit dynamic 

characters of data and indicate the different operating state 

modes. Therefore, they can be used as indices for anomaly 

detection. 

Algorithm I. Estimation for spatio-temporal correlations 

Y	 , F	, and X�(	)Rmn\^(F	): 
1: Construct PMU data matrix � ∈ ℂ�×�; 

2: At each sampling point T(i): 

3: Separate � into fixed-length windows. Each window 

forms a matrix ��(	) ∈ ℂ�×�following equation (1); 

4: Obtain residuals U�(	) after Y	  factors removed from 

��(	) by equation (6), Y	 ∈ ℤ�; 
5: Normalize residuals U�(	) through equation (2); 

6: Obtain covariance matrix of U�(	) using equation (3); 
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7: Calculate X�(	)[\]^(Y	) by equation (4); 

8: Use the Newton method to find F	  by solving the 

function ����(	)(F	) in equation (12); 

9: Find a solution to X�(	)Rmn\^(F	)	using equation (11). 

5. The Proposed Method for Early 

Anomaly Detection 

In this section, the proposed method for anomaly detection 

is mainly introduced. Firstly, KLD anomaly detector for 

power systems is presented. Then the framework of the 

proposed method is illustrated. Eventually, a fault-to-noise 

ratio (FNR) is given to evaluate the performance of our 

approach. 

5.1. KLD Anomaly Detector 

KLD anomaly detector [37, 38] is based on 

Kullback-Leibler divergence, which is a metric to measure the 

distance between two probability distribution �(,) and �(,). 
KLD is defined as: 

���(�||�) = ∑ �		 �I� �9
�9          (13) 

Jensen-Shannon divergence [39], the symmetric version of 

KLD, is used in this paper. Jensen-Shannon divergence is 

defined as follows: 

�(�||�) = �
����(�||s) +

�
����(�||s)    (14) 

Where s = �
� (� + �). Equations (15) and (16) are given to 

solve equation (14): 

���(�||s) = ∑ �		 �I� �9
z9

          (15) 

���(�||s) = ∑ �		 �I� �9
z9

          (16) 

���(�||�) is always positive, and it is equal to zero when 

two probability distributions are identical. Otherwise, it 

becomes higher when one probability distribution deviates 

from another, which is described as follows: 

����(�||�) = 0,												
?			� = �
���(�||�) > 0,												
?			� ≠ �         (17) 

In practice, there is always a non-zero deviation caused by 

interference noise. Therefore, a moderate threshold of KLD 

detector must be considered, which is described as: 

���(�||�) ≤ �&�              (18) 

Conventionally, a higher-level noise may lead to a bigger 

threshold. There are two schemes to mitigate this situation: One 

approach is increasing the data dimension to reduce the impact of 

statistic noise on the KLD detector. It is known that central limit 

theory requires (, � → ∞. However, T can be very large in the 

real world to satisfy the theory limit, but N (dimension) is often 

moderate [14]. Therefore, the low dimension of data degrades the 

performance of many statistical approaches. By increasing the 

data dimension, spectral distribution is more approximate to 

theoretical measures, which leads to statistical noise deduction. 

Another method is finding an appropriate model for raw data to 

reduce the error of detection. 

 

Figure 2. The architecture of the FKLD detection method. 
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5.2. The Framework of the Proposed Method 

Concluding techniques mentioned above, the procedure of 

the proposed method is outlined to make an entire point of 

view for this detection process, which is shown in Figure 2. 

Offline Training System: 

KLD detector compares two spectral distributions: the 

eigenvalue distribution of online data and the reference 

spectral distribution. The main task of the offline training 

process is to estimate an appropriate reference spectral 

distribution for KLD detector. Initially, the factor model is 

established by two spectral distributions X[\]^(Y�) 
and XRmn\^(F�) . X[\]^(Y�)  is the estimated eigenvalue 

distribution of covariance matrix of residuals obtained by 

removing Y� factors from data. And XRmn\^(F�) stands for 

the reference eigenvalue distribution. Once the distance of two 

distributions is minimized, the auto-cross correlations 

parameter Y� and F� can be determined. It is noted that the 

offline data is collected from a fault-free environment of 

power networks. Considering a non-Gaussian environment, Y�  and F�  are reference parameters that represent 

spatio-temporal correlations in a normal operating state, 

which are determined according to Algorithm I. Thus, a 

reference spectral distribution XRmn\^(F�), also named factor 

model, is obtained using Algorithm I and ready for the 

following KLD detector. 

Online Monitoring System: 

Online monitoring is the process of generating the 

eigenvalue distribution of online data. Firstly, to set up the 

process, online PMU data is segmented into a fixed-length 

window of Q  sampling points. The detection algorithm is 

initialized by the first Q sample points. And then the moving 

window is updated every Q sampling points. 

At the beginning of the process, residuals are obtained after Y�  factors subtracted from online data, Y�  was a 

pre-estimated parameter from the offline system. Next, the 

eigenvalue distribution of the covariance matrix of residuals 

from online data, which is represented as �	(Y�) , is 

determined by equation (4). When fault signals or 

disturbances occur, �	(Y�)  deviates from its reference 

spectral distribution XRmn\^(F�)  since spatial-temporal 

correlations of status data (such as bus voltage magnitude, 

active power) changed. If the index of KLD detector exceeds 

its threshold, then an anomaly event will be issued. Following 

that, F	 and Y	  at the 
&� segmented windows are estimated 

by factor model using online data. 

Decision-Making System: 

The main task of the decision-making process is to compare 

the eigenvalue distribution of online data with its reference 

spectral distribution. In this process, a KLD anomaly detector 

measures the deviation between two different distributions XRmn\^(F�)  and �	(Y�) . Then a threshold is given to 

determine whether an event or non-event exists. We formulate 

this decision-making process as a hypothesis test as below: 

@��: ���(XRmn\^(F�)||�	(Y�)) < �&�
��: ���(XRmn\^(F�)||�	(Y�)) ≥ �&�      (19) 

Where �&� is a threshold of KLD detector. The threshold 

�&�  equals zero on the condition that the estimated 

distribution is equal to its reference. However, due to noises 

are existing in real situations, there are always slight 

deviations that reflect as �&�. 

5.3. Fault-to-Noise Ratio Evaluation 

Fault-to-noise ratio (FNR) [30, 31] is employed to evaluate 

FKLD performance, which measures the detector sensitivity 

to faults in the presence of noise by comparing the level of 

noises and fault signals. FNR is defined as: 

FNR = 10 × log�� �~
D

� D
             (20) 

where #\� and #��  are estimated variances. #\�  is related to 

changes due to fault occurrence,	#�� is estimated by PMU data 

collected from a fault-free environment. 

6. Case Studies 

In this section, the proposed approach is simulated with 

PMU data from IEEE 57-bus, IEEE 118-bus, and Polish 

2383-bus systems. Details about the three test systems above 

can be found in Matpower Package [40]. Three cases in 

different scenarios are simulated on the test systems, and the 

effectiveness of the proposed method is validated. In the first 

case, the proposed method detects fault events from single line 

tripping. Then voltage collapse event is analyzed in the second 

case. In the third case, multiple-fault detection is presented by 

comparing the linear eigenvalue statistics (LES) algorithm 

with the FKLD method. The synthetic data is constructed as 

� = ¡ + L¢,  where ¡  is generated data. In this paper, 

voltage magnitude is utilized to be generated data in all three 

cases. ¢  is non-Gaussian noise which is expressed: ¢	,& =
0.5 × ¢	,&�� + `	,& . `	,&  is white noise, `	,& ∈ ¤(0, 1 − 0. 5�) 
so that variance of ¢	,& is 1. L is the magnitude of noise added 

to synthetic data. Meanwhile, faults or significant 

disturbances are regarded as fault signals represented by 

¥¦]§^& . Thus, the signal-to-noise ratio (SNR) is calculated by: 

0(U(¨a) = 20 �I�©¥¦]§^&/L©. 
Case 1: Anomaly Detection for Line Tripping Event 

 

Figure 3. Synthetic data is generated from the IEEE 57-bus system. An event 

is set at J = 501N	in case 1. 
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In this case, the generated data shown in Figure 3 is created 

from the IEEE 57-bus system (see Figure 4), containing 57 

voltage magnitude variables with 1000 sampling points. 

Assume that a transmission line connecting bus 9 to bus 10 is 

tripped at J5 = 501N. Details of this event are shown in Table 

1. Furthermore, the moving window size is set to be 57 � 80, 

and SNR is 30 dB in a non-Gaussian environment. Then fault 

detection performance is verified by the proposed method. 

Figure 5 presents the simulation result detected by the 

proposed method over continuously moving windows. Due to 

moving window initializing, the first testing time starts from 

81. During J5 � 0~500N,  values of FKLD are almost 

constant, which implies that the power system operates in a 

normal state. Starting from J5 � 501N, FKLD values increase 

rapidly, which indicate that an event is occurring at 501&�N. 
After several sample points, FKLD values decrease to normal, 

with the system returning to a new steady state. In addition, 

the changes of spectral distribution in different operating 

states are investigated by comparing the eigenvalue 

distribution, factor model, and MP-law illustrated in Figure 6. 

It demonstrates that the factor model can successfully fit the 

eigenvalue distribution of covariance matrix of residuals, 

which is an efficient model to capture the spatio-temporal 

correlation structure of grid data. In contrast, MP-Law is not 

able to characterize the spectral distribution of data with 

spatio-temporal correlations. 

 

Figure 4. In the IEEE 57-bus system [41], a line connecting bus 9 to bus 10 is tripped at J5 � 501N in case 1. 
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Figure 5. FKLD anomaly detection results in case 1. 

 

Figure 6. Comparison of eigenvalue distribution, factor model, and MP-law in pre-event state and event state in case 1, c=0.71. 

Table 1. Line tripping event in case 1. 

­®¯°±²³ ­®¯´² Sampling Time(s) Impedance (p.u.) 

9 10 J5 � 0~500N, 0.02 

9 10 J5 � 501~1000N 10 

Others  J5 � 1~1000N Unchanged 

 

Case 2: Anomaly Detection for Voltage Collapse Event 

In this case, the generated data is created from IEEE 

118-bus system. A single overload fault is assumed at bus 52, 

with the details shown in table 2. The voltage magnitude data 

is collected containing 118 variables with 1000 sampling 

points exhibited in Figure 7. Furthermore, we set the size of 

moving window to be 118 � 240. And SNR is 27 dB in a 

non-Gaussian environment. Next, we test the performance of 

the proposed method. As illustrated in Figure 8, during 

J5 � 0~500N, FKLD values remain almost constant, which 

indicates the power system operates in a normal state. From 

J5 � 501N, FKLD values gradually increase, which coincides 

with the variation of voltages caused by gradually increasing 

load at bus 52. From J5 � 901N, FKLD values are growing 

with further increasing voltage arising from continuing 

variation of load. Starting from J5 � 1301N, FKLD values 

increase rapidly, which coincides with voltage collapse. 

In this case, we further investigate correlation variations in 

different operating states. As details are seen from Figure 9, b 

and p are estimated in the various operating states. F  is 

increasing from 0.5 in the pre-event state to 0.68 in the state of 

voltage collapse. This result reveals that b increases as the 

increment of faults signal in power networks. In other words, b 

is related to the level of fluctuation on each bus. When 

overload happens, the variations of power flow on the faulty 

buses affect the neighbor buses. Therefore, cross-correlations 

between buses near the event location vary rapidly at the 

moment of the faults occurring. Here, P reveals the level of 

cross-correlation between buses. Furthermore, we compare 

spectral distribution in different operating states. As seen in 

Figure 9, spectral distributions are changing with the variation 

of b and p, which indicates that the factor model can capture 

specific correlation structures of dynamic data. 

 

Figure 7. The synthetic data is generated from IEEE 118-bus test system. An 

event occurs at t = 501s. With the evolution of fault, voltage collapse takes 

place in the system in case 2. 

Table 2. Voltage collapse event in case 2. 

Time(s) ¸~¹ºº¯ ¹º¸~»ºº¯ »º¸~¸¼ºº¯ ¸¼º¸~½¹ºº¯ 

�¾§5¿��sÀ
 10 40 130 J/5 � 130 
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Figure 8. The detection result of voltage collapse event and partial zoomed-in view of the results in case 2. 

 

Figure 9. The spectral distributions in different operating states of the power system in case 2, c=0.49. 

 

Figure 10. Comparison of Detection results between FKLD and LES algorithms on Polish 2383-bus system and partial zoomed-in view of the results in case 3, 

where LES fails to identify Event A. 
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Figure 11. Comparison of eigenvalue distribution, factor model, and MP-law at different times in case 3, c=0.79. 

Case 3: Multiple Event Detection 

In this case, the main task is to verify the performance of the 

proposed method on multiple events in large-scale power 

networks. Voltage magnitude data is created from the polish 

2383-bus test system, containing 2383 variables with 12000 

sampling points in a non-Gaussian environment with 25 dB 

SNR. 

Multiple faults are set at 59&� bus, 61&� bus, and 126&�bus, respectively. More details of events are presented 

in Table 3. Additionally, the size of the moving window is set 

to be 2383×3000. In this case, the detection performance of 

the proposed method in high dimensionality is showed by 

comparing FKLD with the LES approach [18][20]. Moreover, 

LES algorithm can be constructed by using various test 

functions. The commonly used test functions of LES include 

Chebyshev Polynomial ( Â(3) = 23� − 1 ), Information 

Entropy ( Â(3) = −3 �Q 3 ), Likelihood Ratio Function  

( Â(3) = 3 − �Q 3 − 1 ), and Wasserstein Distance 

( Â(3) = 3 − 2√3 + 1 ), respectively. In this simulation, 

Chebyshev Polynomial Function is used to be a test function. 

The detection result and its partial zoomed-in view are 

presented in Figure 10. The result exhibits that the LES 

method (red) is not able to detect Event A occurring at J5 = 3001N . In contrast, the proposed method (blue) can 

easily recognize it, indicating that the FKLD method has 

higher sensitivity to small fluctuations than the LES method 

in high dimensionality. The result demonstrates that FKLD is 

an efficient method for small fault recognition in large-scale 

power networks. Meanwhile, comparisons between the 

eigenvalue distribution of online data and the factor model in 

different operating states of the power network are shown in 

Figure 11. It reveals that the factor model fits the eigenvalue 

distribution of covariance matrix of residuals from high 

dimensional PMU data. By way of contrast, MP-law is 

plotted at the same time. 

Furthermore, p and b are investigated in multiple event 

detection. p and b represent the different state modes. For 

example, as seen from table 4, one factor is estimated in a 

normal state. Due to the number of events arising, p increases 

from two to three, implying that p is related to the increasing 

number of faults. The variation of p is caused by mutual 

effects between the buses when multiple events occur. 

Meanwhile, following the varies of faults signals, b is 

constantly increasing as the fluctuations of power systems. 

Table 3. Multiple events in case 3. 

Event ID Bus Sampling Time(s) Active Load (MW) 

Event A 59 J5 = 1~3000N 0 

  J5 = 3001~12000N 100 

Event B 61 J5 = 1~9000N 0 

  J5 = 9001~12000N 100 

 126 J5 = 1~9000N 25 

  J5 = 9001~12000N 500 

Others  J5 = 1~12000N Unchanged 

Table 4. Comparison of FKLD values, p, and b in different states in case 3. 

System State Event Time(s) p b FKLD 

Normal State 2000s 1 0.5 5 × 10�¿ 

Event A 3380s 2 0.581 0.0204 

Event B 9100s 3 0.673 0.3613 

7. Performance Comparison with Other 

Algorithms 

In the above section, the performance of the proposed 

method is verified in different scenarios. The FKLD algorithm 

is evaluated for further analysis by comparing it with other test 

functions of the LES method. All the simulations in this 

section are tested on an IEEE 118-bus test system with 5000 

sample points. 

The performance evaluation of the FKLD method is 

validated with probabilities of false alarm under 

non-hypothesis as: 

PÄÅ = P	(DÇÈ > HÊË|H�
          (21) 

For a fixed �¦], the detection threshold is determined by: 

�&� � T� + Ì#�            (22) 

Where T� and #� are the mean and standard variance of 

data which is collected from fault-free environment of power 

systems. Ì is the threshold adjustment. For a fixed �¦], Ì is 

determined by Monte Carlo studies at a specified SNR. 
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In this evaluation, detection probability is analyzed to prove 

the performance of the proposed method by comparing it with 

other algorithms. Considering the worst and the best cases of 

SNR, the range of SNR is set to be [10, 30] dB, and the 

probability of false alarm is fixed with 1\%. As shown in 

Figure 12, the proposed method exhibits good performance 

above 15 dB (87\% Detection Probability). However, the rest 

of the algorithms require higher SNR to achieve the same 

detection probability as the FKLD method. In a word, the 

proposed method outperforms the LES algorithm in early 

anomaly detection. 

The FNR performance of the FKLD method is studied by 

comparing it with different algorithms to evaluate sensitivity 

to fault signals in the presence of noise. The range of SNR is 

set to be [10, 30] dB. As exhibited in Figure 13, the FNR 

values of the FKLD method are the highest among all the 

other algorithms. The result demonstrates that the FKLD 

method has a high sensitivity to small fault signals, which 

explains why the proposed method has good performance in a 

relatively low SNR environment. 

 

Figure 12. Detection Probability of FKLD and different algorithms. 

 

Figure 13. FNR versus SNR in the comparison of different algorithms. 

8. Conclusion 

This paper proposes the FKLD method to analyze 

high-dimensional PMU data and detect early fault events in a 

non-Gaussian noise environment. Spatial-temporal 

correlations are determined by factor model analysis 

considering existing correlation structures in the power grid, 

which captures dynamic information of high-dimensional 

PMU data. Furthermore, performances of the proposed 

method are verified by using standard, large, and synthetic 

systems, including IEEE 57-bus, IEEE 118-bus, and Polish 

2383-bus systems in different scenarios. Results demonstrate 

that the proposed method is effective in discovering 

early-stage events in power networks. 

Performance evaluations of the proposed method reveal 

that the FKLD method is more sensitive and robust to 

high-dimensional data anomalies than other statistical 

methods in a relatively low SNR environment. This 

methodology applied to online monitoring and fast diagnosis 

for power systems is data-driven without any topology 

knowledge. 

Appendix 

Key Concepts and Derivation of Polynomial Equation 

Definition 1: The Green’s Function or Stieltjes Transform is 

defined as: 

yÍ�u
 � Î
ÏÐ�8


��8
¨3             (23) 

Where 4Í�3
 is ESD of the covariance matrix of �. u is a 

complex variable. Also, the spectral density 4Í�3
 can be 

obtained from the imaginary part of Green’s Function: 

4Í�3
 � �
�

A
�
T
�→�

ℑTyÍ�3 + 
`
        (24) 

Definition 2: 

The n-th moment of ESD is defined as: 

T1 �
�

�
Ñ�L�1Ò � Î4Í�3
 3

1¨3      (25) 

Definition 3: 

Moment Generating Function: 

yÍ�u
 � ∑
RÓ

�Ó�Ô1Õ�            (26) 

sÍ�u
 � ∑
RÓ

�Ó�Ô1Õ�            (27) 

The relationship of yÍ�u
 and sÍ�u
 as: 

sÍ�u
 � uyÍ�u
 � 1           (28) 

Definition 4: 

N-Transform is a function that is the inverse transform of 

moment generating function sÍ(u): 
sÍ((Í(u)) = (Í(sÍ(u)) = u     (29) 

Definition 5: 

S-Transform is a basic transform of free probability theory 
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which is given by: 

0�u
 �
���

�
Ì���u
           (30) 

where Ì�N
 � Î
5B

��5B
¨Y�,
 � �N��y�N��
 � 1. 

For two free matrices �� and �� , random variable 

multiplication law is obtained: 

0ÍÔÍD(u) = 0ÍÔ(u)	0ÍD(u)        (31) 

The relationship between S Transform and N-Transform is 

found as below: 

0Í(u) = ���
��Ð(�)             (32) 

We can then use the free random variable (FRV) multiplication 

law to obtain the N-Transform of multiplication of �� and ��, 
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            (33) 

Based on the basic concepts and properties mentioned 

above, N-Transform for empirical covariance matrix can be 

derived in the following steps: 

Initially, define a general form of empirical covariance: U = _�/�`a�/� Where ` is ( × T matrix with identical 

independent distribution entries. A and B are ( × (  and � × �  symmetric non-negative definite matrices. Then 

Covariance matrix of R is obtained as: 

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2
1 1 1 1

( ) ( ) ( ) T T T T T TC RR A B A B A B B A A B A
T T T T

ε ε ε ε ε ε= = = =                         (34) 

Following that, N-Transform of the covariance matrix of C 

is derived by using the cyclic property of trace and FRV 

multiplication law as: 

1 1 1 1

2 2 2 2
1 1

1

1

1

1
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     (35) 

Where (Ô
Ö�Ö�(u) = (���)(��[�)

� . Considering s ≡ s(u) 
and u = s = s(u) which are defined in equation (29), the 

above equation (35) can be rewritten: 

(Ô
Ö×

ÔD�¾�Ö×ÔD(s(u)) = Ls(×(s)(¾(rM) = u    (36) 

Assume that cross-correlation of residual is completely 

removed, the cross-correlation matrix is satisfied _ = p� . 

Then we have (×(u) = (Ø(u) = 1 + 1/u . Therefore, the 

equation (36) is conveniently rewritten as: 

Ls = s¾( �
[(��z))              (37) 

Now we need to find s¾ for equation (37). The 

auto-covariance matrix B from (34) is AR (1) process, which 

can be considered as a simple form a = F|	�&|. M transform 

of the matrix B can be generated using a Fourier transform as: 

s¾(u) = − �
√���Ù��(Ô�ÚD)D

ÔÛÚD �
          (38) 

Finally, we obtain a fourth-order polynomial equation (9) 

with G� = 1 − F�. 
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