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Abstract: A new approach for detecting and classifying a fault for transmission line compensated with Flexible AC 

Transmission System (FACTS) is presented in this paper. Unified Power Flow Controller (UPFC) is one of the most advanced 

FACTS devices that can simultaneously and independently control both the real and reactive power flow in a transmission 

line. The proposed technique consists of preprocessing module based on Discrete Wavelet Transform (DWT) in combination 

with Artificial Neural Network (ANN) or Gaussian Process (GP) for detecting and classifying fault events.  
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1. Introduction 

Electricity market activities and a growing demand for 

electricity have led to heavily stressed power systems. This 

requires operation of the networks closer to their stability 

limits. The flexible alternating current transmission system 

(FACTS), a new technology based on power electronics, 

offers an opportunity to enhance controllability, stability, and 

power transfer capability of ac transmission systems [1-5]. 

Unified Power Flow Controller (UPFC) is regarded as the 

most generalized version of FACTS. UPFC consists of a 

static synchronous series compensator (SSSC) and a static 

compensator (STATCOM), connected in such a way that 

they share a common DC capacitor. The UPFC, by means of 

an angularly unconstrained, series voltage injection, is able 

to control, concurrently or selectively, the transmission line 

impedance, the nodal voltage magnitude, and the active and 

reactive power flow through it. It may also provide 

independently controllable shunt reactive compensation 

[6-12]. 

Although the UPFC improves the power flow in the 

transmission line, its presence imposes a number of 

problems including distance protection. The apparent 

impedance seen by a distance relay is influenced greatly by 

the location and parameters of UPFC [13], [14]. Thus an 

adaptive relay setting of the distance protection is required 

to cope up with the problems of over reach or under reach. 

2. Fault Detection and Classification 

Scheme 

“Fig. 1” shows the proposed protection scheme. It 

consists of two stages, Pre-processing stage based on DWT 

and fault classification stage based on ANN or GP. The 

DWT considerably simplifies the input signal of the ANN 

and GP; it reduces the volume of input data of ANN and 

GP without loss of information. This dramatically reduces 

the training stage in and increase the overall performance 

of the digital relay.  

 

Figure 1. Fault detection and classification scheme 

The proposed topology of the protection scheme is 

composed of two levels as shown in “Fig. 2”. Level-1 is 

used to detect the fault, while level-2 is used to identify 

faulted phase(s). The output of level-1 activates level-2 if 

there is a fault. Therefore, the proposed topology 



150 Noha Mahmoud Bastawy et al.:  Fault Detection and Classification Based on DWT and Modern Approaches  

for T.L Compensated with FACTS 

determines both the fault type and the faulted phase(s) 

selection. 

 

Figure 2. Proposed protection scheme 

3. Discrete Wavelet Transform 

Wavelet analysis is a relatively new signal processing 

tool and is applied recently by many researchers in power 

systems due to its strong capability of time and frequency 

domain analysis. The two areas with most applications are 

power quality analysis and power system protection [15]. 

The wavelet transform is the versatile tool with very rich 

mathematical content and great potential for applications. 

The wavelet transform decomposes transients into a series 

of wavelet components i.e. approximation and detail 

components. The resulting decomposed signals can then be 

analyzed in both time and frequency domains. Hence, the 

wavelet transform is feasible and practical for analyzing 

power system transients [16].  

Wavelet transforms are fast and efficient means of 

analyzing transient voltage and current signals. The wavelet 

transform not only decomposes a signal into frequency 

bands, but also, unlike the Fourier transform, provides a 

non-uniform division of the frequency domain (i.e., the 

wavelet transform uses short windows at high frequencies 

and long windows for low frequency components). Wavelet 

analysis deals with expansion of functions in terms of a set 

of basic functions (wavelets) which are generated from a 

mother wavelet by operations of dilatations and translation 

[17-18]. The discrete wavelet transform is defined by the 

following equation: 

   (1) 

Where g(k) is the mother wavelet, x(k) is the signal input 

and a, b are the scaling and translation parameters. Discrete 

wavelet transform is implemented by using high-pass filter 

and low-pass filter respectively, which defined by the 

following equations:   

               (2) 

               (3) 

Where yhigh(k) is the output from the high-pass filter 

called Detail and ylow(k) is the output from the low-pass 

filter called Approximation, also the output of the low-pass 

filter down-sampling by a factor of 2 which effectively 

scales the wavelet by a factor of 2 for next stage. This 

decomposition has halved the time resolution since only half 

the number of samples now characterizes the entire signal. 

However, this operation doubles the frequency resolution, 

since the frequency band of the signal now spans only half 

the previous frequency band. The block diagram of filter 

analysis is shown in “Fig. 3” 

 

Figure 3. Wavelet multi-resolution analysis 

4. Artificial Neural Network 

Artificial Neural Networks (ANN) are simplified to 

imitate central nervous system been motivated by the 

computing performed by human brain. ANN is defined in 

and as a data processing system consisting of a large number 

of simple highly interconnected processing elements 

(artificial neuron) in architecture inspired by the structure of 

cerebral cortex of the brain [19], [20]. 

 

Figure 4. Perceptron representation 

Once trained, a network response can be, to a degree, 

insensitive to minor variations in its input. This ability to see 

through noise and distortion to the pattern that lies within is 

vital to pattern recognition a real world environment [21], 

[22]. The neuron is the nervous cell and is represented in the 

ANN universe as a perceptron. “Fig. 4” shows a simple 

model of a neuron characterized by a number of inputs P, 

P2, ..., PN, than weights WI, W2, ....Wn, the bias adjust b 

and an output a. The neuron uses the input, as well as the 

information on its current activation state to determine the 

output a, given as in (4).  

                    (4) 
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4.1. Feed Forward Neural Network 

Feed-forward neural networks can be classified in a 

single layer or multilayer feed-forward neural networks. 

Multilayer FNN architecture comprises of input-layer(X); 

hidden-layer (V); and output-layer (Y); as shown in “Fig. 

5” [19], [23].  

The algorithm gives a prescription for changing the 

weights in any feed forward network to learn a training set 

of input-output pairs. The use of the bias adjust in the 

ANNs is optional, but the results may be enhanced by it. A 

multilayer network with one hidden layer is shown in “Fig. 

5”. This network consists of a set of N input units (Xi, i = 

1 ... N), a set of p output units (Yp, p = 1 ... P) and a set of J 

hidden units (Vj, j = 1 ... J). Thus, the hidden unit Vj 

receives a net input and produces the output. 

                    (5) 

Where j= 1….J 

The final output is then produced: 

              (6) 

Where p= 1…P 

 

Figure 5. Multilayer Feed-forward neural network architecture 

5. Gaussian Process 

Gaussian process is a supervised learning technique that 

has been used for regression and classification [24]. The GP 

models are probabilistic, non-parametric models based on 

the principles of Bayesian probability [25]. It governs the 

properties of functions and is fully specified by a mean and a 

covariance functions. It is based on assigning a prior in the 

form of a multivariate Gaussian density that imposes a 

smoothness constraint on the underlying function. For the 

classification problem this underlying function is the 

posterior probability [26]. 

Given a training set S of n observations, S = {(xi, yi) |i = 

1...n} where xi denotes an input vector of dimension D and 

yi denotes the target class of the corresponding input sample 

i. X refers to the matrix of all the training samples, y denotes 

the vector of the class labels for all the training samples and f 

represents the vector of the prior latent functions for all the 

training samples. One would like to predict the class 

membership probability to a test sample x*. This is achieved 

by obtaining the distribution of the latent function of the test 

sample f* given the class memberships of the training 

samples. Since the underlying function corresponds to the 

posterior probability of class 1, the unrestricted latent 

function is passed through a squashing function in order to 

map its value into the unit interval. 

The Gaussian process is specified by an a priori 

multivariate distribution for the latent functions of the 

training and testing samples. This distribution has a 

covariance function that ensures that the latent functions of 

near-by samples are closely correlated. On the other hand, 

their covariance decreases with increasing the distant 

between their data samples; this is controlled by 

hyper-parameters that need to be estimated. During the 

training phase, the mean and the covariance of the latent 

function are calculated for each training sample using the 

algorithms in [26]. The probability that the test sample x* 

belongs to class 1 is calculated as: 

   (7) 

P (y* = 1|f*) is evaluated using sigmoid activation 

function: 

             (8) 

Substituting in (7), we get 

    (9) 

Where  

  (10) 

6. Simulations and Results 

The proposed classification scheme is implemented on 

MATLAB software. It is trained and tested using 

measurements of three-phase voltage and current samples 

obtained from the PSCAD/EMTDC. “Fig. 6” shows the 220 

kV, 50 Hz simulated system one-line diagram. “Fig. 7” 

shows 3ph voltages and currents waveforms for single phase 

to ground fault at 50% of first line section at fault resistance 

10 ohm and fault inception angle 45. 

 

Figure 6. Transmission system with UPFC 

The samples are analysed using DWT, the mother wavelet 

considered is Daubechies (db)4. The behaviour of the DWT 

for actual fault current and voltage waveforms is illustrated 

in “Fig. 8” for single phase to ground fault at 50% of first 
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line length at fault resistance 10 ohm and fault inception 

angle 45.  

All possible fault types are simulated at fault resistance 0, 

10, 20 ohm and fault inception angle 0, 45, 90. Fault 

locations at 10%, 20%, 40%, 50%, 70%, 80%, and 100% 

from the length of each line are taken for the training process 

of ANN & GP. The test will begin with fault occurrence 

simulation at distance 30%, 60 and 90% from length of each 

line section. 
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Figure 7. 3ph voltages and currents waveforms for 1ph to ground fault at 

50% of first line section 
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Figure 8. Detailed coefficients of 3ph voltages and currents at time of fault 

Table 1. Estimated output of ANN for detecting fault (Level-1) 

Fault Type Fault Location Desired Value Actual Value 

A-G 30%  1st line section 1 1 

A-G 60%  1st line section 1 0.99 

A-G 90%  1st line section 1 1 

A-G 30%  2nd line section 1 1 

A-G 60%  2nd line section 1 0.99 

A-G 90%  2nd line section 1 1 

A-B 30%  1st line section 1 1 

A-B 60%  1st line section 1 1 

A-B 90%  1st line section 1 1 

A-B 30%  2nd line section 1 0.98 

A-B 60%  2nd line section 1 0.95 

A-B 90%  2nd line section 1 0.96 

AB-G 30%  1st line section 1 1 

AB-G 60%  1st line section 1 1 

AB-G 90%  1st line section 1 1 

AB-G 30%  2nd line section 1 0.99 

AB-G 60%  2nd line section 1 0.98 

AB-G 90%  2nd line section 1 1 

ABC-G 30%  1st line section 1 1 

ABC-G 60%  1st line section 1 0.99 

ABC-G 90%  1st line section 1 1 

ABC-G 30%  2nd line section 1 1 

ABC-G 60%  2nd line section 1 1 

ABC-G 90%  2nd line section 1 1 
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Table 2. Estimated output of GP for detecting fault (Level-1) 

Fault Type Fault Location Desired Value Actual Value 

A-G 30%  1st line section 1 1 

A-G 60%  1st line section 1 1 

A-G 90%  1st line section 1 1 

A-G 30%  2nd line section 1 1 

A-G 60%  2nd line section 1 1 

A-G 90%  2nd line section 1 1 

A-B 30%  1st line section 1 1 

A-B 60%  1st line section 1 1 

A-B 90%  1st line section 1 1 

A-B 30%  2nd line section 1 1 

A-B 60%  2nd line section 1 1 

A-B 90%  2nd line section 1 1 

Fault Type Fault Location Desired Value Actual Value 

AB-G 30%  1st line section 1 1 

AB-G 60%  1st line section 1 1 

AB-G 90%  1st line section 1 1 

AB-G 30%  2nd line section 1 1 

AB-G 60%  2nd line section 1 1 

AB-G 90%  2nd line section 1 1 

ABC-G 30%  1st line section 1 1 

ABC-G 60%  1st line section 1 1 

ABC-G 90%  1st line section 1 1 

ABC-G 30%  2nd line section 1 1 

ABC-G 60%  2nd line section 1 1 

ABC-G 90%  2nd line section 1 1 

 

Table 3. Estimated output of ANN for classifying fault (Level-2) 

. 
Phase A Phase B Phase C Ground 

Desired Actual Desired Actual Desired Actual Desired Actual 

A-G at 30%1st line 1 1 0 0 0 0 1 1 

A-G at 60%1st line 1 1 0 0 0 0 1 1 

A-G at 90%1st line 1 1 0 0 0 0.03 1 0.99 

A-G at 30%2nd line 1 0.89 0 0 0 0 1 1 

A-G at 60%2nd line 1 1 0 0 0 0 1 1 

A-G at 90%2nd line 1 1 0 0 0 0 1 1 

A-B at 30%1st line 1 0.99 1 0.99 0 0.001 0 0 

A-B at 60%1st line 1 1 1 1 0 0 0 0 

A-B at 90%1st line 1 1 1 1 0 0 0 0 

A-B at 30%2nd line 1 0.97 1 1 0 0.16 0 1 

A-B at 60%2nd line 1 0.96 1 1 0 0 0 0 

A-B at 90%2nd line 1 1 1 1 0 0 0 0 

AB-G at 30%1st line 1 1 1 1 0 0.002 1 1 

AB-G at 60%1st line 1 1 1 0.99 0 0 1 0.99 

AB-G at 90%1st line 1 1 1 1 0 0 1 0.99 

AB-G at 30%2nd line 1 1 1 1 0 0.09 1 1 

AB-G at 60%2nd line 1 1 1 1 0 0 1 1 

AB-G at 90%2nd line 1 0.97 1 1 0 0.01 1 0.92 

ABC-G at 30%1st line 1 1 1 1 1 1 1 0.99 

ABC-G at 60%1st line 1 1 1 0.99 1 1 1 0 

ABC-G at 90%1st line 1 0.98 1 0.99 1 1 1 0.88 

ABC-G at 30%2nd line 1 1 1 1 1 1 1 1 

ABC-G at 60%2nd line 1 1 1 1 1 1 1 1 

ABC-G at 90%2nd line 1 0.96 1 1 1 0 1 1 
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Table 4. Estimated output of GP for classifying fault (Level-2) 

Fault type & location 
Phase A Phase B Phase C Ground 

Desired Actual Desired Actual Desired Actual Desired Actual 

A-G at 30%1st line 1 1 -1 -1 -1 -1 1 1 

A-G at 60%1st line 1 1 -1 -1 -1 -1 1 1 

A-G at 90%1st line 1 1 -1 -1 -1 -1 1 1 

A-G at 30%2nd line 1 1 -1 1 -1 1 1 1 

A-G at 60%2nd line 1 1 -1 -1 -1 1 1 1 

A-G at 90%2nd line 1 1 -1 -1 -1 -1 1 1 

A-B at 30%1st line 1 1 1 1 -1 -1 -1 -1 

A-B at 60%1st line 1 1 1 1 -1 -1 -1 -1 

A-B at 90%1st line 1 1 1 1 -1 -1 -1 -1 

A-B at 30%2nd line 1 1 1 1 -1 1 -1 -1 

A-B at 60%2nd line 1 1 1 1 -1 -1 -1 -1 

A-B at 90%2nd line 1 1 1 1 -1 -1 -1 -1 

AB-G at 30%1st line 1 1 1 1 -1 -1 1 1 

AB-G at 60%1st line 1 1 1 1 -1 -1 1 1 

AB-G at 90%1st line 1 1 1 1 -1 -1 1 1 

AB-G at 30%2nd line 1 1 1 1 -1 1 1 1 

AB-G at 60%2nd line 1 1 1 1 -1 1 1 1 

AB-G at 90%2nd line 1 1 1 1 -1 -1 1 -1 

ABC-G at 30%1st line 1 1 1 1 1 1 1 1 

ABC-G at 60%1st line 1 1 1 1 1 1 1 1 

ABC-G at 90%1st line 1 1 1 1 1 1 1 1 

ABC-G at 30%2nd line 1 1 1 1 1 -1 1 -1 

ABC-G at 60%2nd line 1 1 1 1 1 1 1 1 

ABC-G at 90%2nd line 1 1 1 1 1 1 1 -1 

 
Table 1 and Table 2 show some parts of calculations of 

test results for artificial neural network and Gaussian 

process at fault resistance 10 ohm and fault inception angle 

45 for detecting faults (Level-1). The output of ANN for 

level-1 is either 0 or 1 indicating that there is a fault or not 

and for GP is either 1 indicating a fault or -1 indicating no 

fault condition. 

Table 3 and Table 4 show some parts of calculations of 

test results for ANN and GP at fault resistance 10 ohm and 

fault inception angle 45 for classifying faults (Level-2). 

The neural network achieves higher test accuracy than the 

Gaussian process method. The test accuracy in detection 

level reached 100% for ANN & 100% for GP. The overall 

test accuracy in classification level reached 96.2% for ANN 

& 90% for GP. 

7. Conclusion 

The use of an ANN and GP as a pattern classifier to 

improve the performance of distance relay in transmission 

system compensated with FACTS is discussed in this paper. 

The neural network achieves higher test accuracy than the 

Gaussian process method. The proposed approach is 

designed to detect the faults, to classify the fault type, and to 

identify the faulted phase. The wavelet transform provides 

an efficient way to extract signal components at different 

frequency bands.  
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