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Abstract: This work concerns with free vibration analysis of cracked nanobeam problems. Based on Eringen's nonlocal 
elasticity theory, the governing equation of Euler–Bernoulli and Timoshenko nanobeams, are derived. It is assumed that strain 
at a certain point is a function of the strains at all points within the influence domain. The cracked beam is modeled as multi-
segments connected by a rotational spring located at the cracked sections. This model promotes discontinuities in rotational 
displacement due to bending which is proportional to bending moment transmitted by the cracked section. Polynomial based 
differential quadrature method is employed to solve the problem. Derivatives of the field quantities are approximated as a 
weighted linear sum of the nodal values. For different supporting cases, the boundary conditions are directly substituted in the 
equation of motion, such that the problem is reduced to that of linear homogeneous algebraic system. This suggested numerical 
scheme accurately determined angular frequencies of the problem. A comparative study is tabulated to compare the obtained 
results with the previous ones. Further, a parametric study is introduced to investigate the influence of crack locations, crack 
severity and the nonlocal scale parameter on the obtained results. The obtained results recorded that frequency values decrease 
with the increasing of both of crack severity and the nonlocal scale parameter. The results of the proposed scheme may be 
applied for structural health monitoring. 

Keywords: Cracked Nanobeam, Free Vibration, Euler–Bernoulli Theory, Timoshenko Theory,  
Differential Quadrature Method 

 

1. Introduction 

Nanostructures are commonly used because of their large 
Young’s modulus, yield strength, flexibility, and conductivity 
properties. According to application of nanobeams in 
nanoelectromechanical systems and in biotechnology, it is 
important to investigate the vibrational behavior of 
nanobeams [1]. In nonlocal theory of elasticity, stress at a 
point is function of strains at all points in the continuum, 
while stress at a point is function of strain at the same point 
in local elasticity [2-6]. 

Several publications concerned with the analysis of non-
cracked nanobeam problems. Reddy [7] studied analytically 
vibration of nanobeams. Wang et al. [8] studied analytically 
vibration of nonlocal Timoshenko beams. Behera [9] studied 
free vibration of Euler and Timoshenko nanobeams using 
boundary characteristic orthogonal polynomials. In [10] the 

orthogonal collocation method is applied to study the free 
vibrations of nonlocal Timoshenko beams by using piecewise 
cubic Hermite polynomials. Eltaher [11] studied the vibration 
analysis of Euler–Bernoulli nanobeams using finite element 
method. 

The crack can make the structures more flexible and so are 
able to decrease the natural frequencies of the structures [12-
15]. As a result, analysis of such structures may be applied 
for structural health monitoring. Also, several publications 
concerned with the analysis of cracked nanobeam problems. 
Loya [16] investigated free vibration of cracked Euler–
Bernoulli nanobeams using nonlocal elasticity model. Sourki 
and Hoseini [17] investigated vibration of a cracked 
nanobeam based on the modified couple stress theory within 
the framework of Euler–Bernoulli beam theory. Also, they 
simulated a cracked nanobeam with the nonlocal modified 
couple stress theory and investigated the mechanical 
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parameters with analytical method in [18]. Bahrami [19] used 
wave propagation methods to analyze vibration in multi-
cracked Euler–Bernoulli nanobeams. Wang K [20] 
investigated the Timoshenko beam model for vibration 
analysis of a cracked nanobeam with surface energy. Torabi 
[21] considered analytically free vibration analysis of craked 
Timoshenko beam problem. Soltanpour [22] studied the 
vibration of functionally graded nanobeams resting on 
Winkler foundation using Timoshenko theory. 

Although all these publications, analysis of cracked 
nanobeams still attractive. Recently, differential quadrature 
method is introduced as promising numerical technique. This 
method leads to very accurate results by using small number 
of nodal points [23-26]. Rotational spring model is employed 
to simulate the crack existence. 

This work extends application of differential quadrature 
method for free vibration analysis of cracked nanobeams. 
The technique is applied for each of Euler–Bernoulli and 
Timoshenko beams with different boundary conditions. For 
different supporting cases, the angular frequency of the 
cracked nanobeam, is obtained. As well as, a parametric 
study is introduced to investigate the influence of crack 

locations, crack severities, and the nonlocal scale parameter 
on the obtained results. 

2. Formulation of the Problem 

Consider a nanobeam of length L, containing multi-cracks 
located at a distance 	��  (� =1, 2, …, n ) from the left end, as 
shown in Figure 1. The beam is divided into (n+1) sub-
beams, while the cracks are modeled as a rotational springs at 
the crack positions. If we assume harmonic behavior of the 
problem, the field quantities can be expressed as: 

���, 	
 = ���
	
���                            (1) 

Where ���
  denotes to field quantities, x is the 
longitudinal coordinate measured from the left end of the 
beam, t is time, � is the natural frequency. 

2.1. Nonlocal Euler–Bernoulli Beam 

The governing equation based on nonlocal Euler–Bernoulli 
theory (EBT) for each sub-beam can be written as [16]: 

������
��� 	+ ��	�
����
�	 	�������� 	������
��� 	− �� 	�������� 	!���
 	= 0 , (� = 1, n+1)                                    (2) 

Where !� , (�=1, n+1), is the deflection of sub-beam � , �
����
�	  is the scale coefficient that incorporates the small 
scale effect of sub-beam � , #�  is Young’s modulus of sub-
beam �, $� is the second moment of area of sub-beam �, %� is 
the mass density of sub-beam �, &� is the cross-sectional area 
of sub-beam �. 

2.2. Nonlocal Timoshenko Beam 

Also, the governing equations based on nonlocal 
Timoshenko beam theory (TBT) for each sub-beam can be 
written as [8]: 

#�$� ��'���� − ()�*�&� +,� + ����� - + ��%�$�,� − 	�
����
�	 +��	%�&� 	����� + ��%�$� 	��'���� - = 0	,	                        (3) 

()�*�&� 	+�'��� + ������� - + ��%�&�!� = 0 , (� = 1, n+1)   (4) 

Where *�  is the shear modulus of sub-beam � and K)�  is the 
shear correction factor of sub-beam �, L is the length of the 
whole beam. 

We may take K)�  = 0.563 for all sub-beams as given by [8]. 

2.3. Boundary Conditions 

The boundary conditions of the problem at external 
boundaries, (x=0 and x=L) can be expressed as follows: 

For a simply supported end: 

!�  = 0 and /� = 0                          (5) 

For a clamped supported end: 

!� 	= 	0	and	Φ� = 0	                        (6) 

For a free supported end: 

4�  = 0 and /� = 0                          (7) 

Where �=1 at x=0, while �=n+1 at x=L. 
At the cracked locations, the boundary conditions can be 

expressed as [18, 21], (x=��, (�= 1, n)): 

!� =	!�56 , (� = 1, n)                          (8) 

/� =	/�56 , (� = 1, n)                          (9) 

4� 	= 	4�56	, (� = 1, n)                         (10) 

�	��78�� − ����� 	= (� 	�������                        (11) 

should be considered for EBT, while 

9�56 −	9� = (� �:���                            (12) 

should be considered with TBT. Where (� is crack-severity 
of �-th crack, (�= 1, n), /�  denotes to the bending moment of sub-beam � , 4�  
denotes to the shear force of sub-beam �, (�= 1, n+1), 

/� = − �����;�
� 	<������� + ��		�
����
�	%�&� �;�
����� 	!�=         (13) 

4� = − �����;�
> <	�>����> + ��		�
����
�	%�&� �;�
����� 	����� =         (14) 

For EBT as [27], While 
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/� = #�$� �'��� − ��		�
����
�	 +%�&�!� + %�$� �'��� -       (15) 

4� = ()�*�&� 	+9� + ����� -                     (16) 

For TBT as [8], Where ?�  denotes to the length of sub-
beam�, (�= 1, n+1). 9� 	is the rotational angle in TBT, while it represents to 

�����  

in EBT. 

 

Figure 1. Model of cracked beam. 

3. Method of Solution 

Polynomial based differential quadrature method (PDQM) 
is employed to reduce the problem to that of linear algebraic 
system. The derivatives of field quantities are approximated 
as [28-31]: 

@AB��
@�A C�D�E	 = 	∑ G�HIJHD6 	�K�HL	, �	i	 � 	1	, N	
	, �	m	 � 	1	,M	
	. (17) 

Where N is the number of the nodes for each sub-beam, M 
is the order of the highest derivative appearing in the 
problem, f�x�
 is the nodal values of field quantities at the 
points ��, (i = 1, N); N > M. CVWX , (i , j = 1, N), are the weighting coefficients relating 

the mth derivative to the functional values at ��. 
For first order derivative, the weighting coefficients can be 

expressed as [28-31]: 

G�H6 � Y 	 6�EZ�[ \]E][^ , _ ` a 	∑ G�H6JHD6	,Hb� 	 , _ � a		                 (18) 

Where c�  is defined as: 

c� �	∏ K��  �HL	JHD6	,Hb� , _, a � 1,2, . . , f           (19) 

For second order derivative, the weighting coefficients can 
be expressed as: 

G�H� � Y	2G�H6 \G��6  	 6�EZ�[^	 , _, a � 1,2, . . , f, _ ` a		 	∑ G�H�JHD6	,Hb� 	 , _ � 1,2, . . , f, _ � a	, 	    (20) 

The distribution of the nodes �� is calculated according to 
Chebyshev–Gauss–Lobatto discretization as [28-31]: 

�� � �6 � �gZ�8� +1  cos +	 �Z6JZ6 	k	-	- , _ � 1,2, . . , f     (21) 

3.1. Solution of Euler–Bernoulli Problem 

Applying prescribed PDQM to equations (2) and (5-11), 
one can reduce the problem to the following linear algebraic 
system: 

∑ G�HlJHD6 	!H� � �� 	�������� m!��  	�
����
�	∑ G�H�JHD6 	!H� 	n	(i, j � 1,2, . . , N
, (� = 1, n+1).                            (22) 

The boundary conditions at external boundaries, (x=0 and x=L) can be written as follows: 
For a simply supported end: 

!�� � 0, ∑ G�H� �JHD6 	!H� � ��	�
����
�	 	����;������ !�� 	� 0                                                     (23) 

For a clamped supported end: 

!�� � 0, ∑ G�H6 �JHD6 	!H� � 0                                                                              (24) 

For a free supported end: 

∑ G�Hp �JHD6 	!H� � ��	�
����
�	 	����;������ 	∑ G�H6 �JHD6 	!H� � 	0 , ∑ G�H� �JHD6 	!H� � ��	�
����
�	 	����;������ !�� � 0               (25) 

Where �=1 at x=0 and �=n+1 at x=L. 
At crack sites (x=�� , (l = 1, n)), the following conditions should be considered: 
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wJ� �	w6�56                                                                                    (26) 

����;� [	∑ GJH�JHD6 	!H� 	 � ��	�
����
�	 	�����;�
����� 	!J� 	] 	� ��78��78;�78 [	∑ G6H�JHD6 !H�56	 � ��	�
��56��56
�	 	��78��78�;�78
���78��78 	!6	�56]     (27) 

#�$��?�
p t	uGJHpJ
HD6

	!H� 	 � ��	�
����
�	 	%�&�?�
�

#�$� 	uGJH6J
HD6

	!H� 	v 
� ��78��78�;�78
> [	∑ G6HpJHD6 	!H�56	 � ��	�
��56��56
�	 	��78��78	�;�78
���78��78 	∑ G6H6JHD6 	!H�56	]                                  (28) 

∑ G6H6JHD6 	!H�56	  ∑ GJH6JHD6 	!H� 	 	� (� 	∑ GJH�JHD6 	!H� 	                                              (29) 

3.2. Solution of Timoshenko Problem 

Also, by applying PDQM to equations (3, 4), (5-10) and (12), one can reduce the problem to the following linear algebraic 
system: 

[#�$�  ��	�
����
�	%�$�]	∑ G�H� 	JHD6 ,H� � [��%�$�  ()�*�&�],��  [��	�
����
�	%�&� � ()�*�&�]	∑ G�H6JHD6 	!H� � 0        (30) 

()�*�&� 	K∑ G�H6 	JHD6 ,H� + ∑ G�H�JHD6 	!H�L + ��%�&� 	!�� = 0                                                     (31) 

The boundary conditions at external boundaries, (x=0 and x=L) can be written as follows: 
For a simply supported end: 

!�� = 0, [#�$� − ��	�
����
�	%�$�]	∑ G�H6 	JHD6 ,H� − ��	�
����
�	%�&� 	!�� 	= 0                                   (32) 

For a clamped supported end: 

!�� = 0, 9�� = 0                                                                                   (33) 

For a free supported end: 

()�*�&�K,�� 	+ 	∑ G�H6 	JHD6 !H�L 	= 0, [#�$� − ��	�
����
�	%�$�] 	∑ G�H6 	JHD6 ,H� −��	�
����
�	%�&� 	!�� 	= 0             (34) 

Where l =1 at x=0, while l =n+1 at x=L. 
At crack sites (x=dw , (l = 1, n)), the following conditions should be considered: 

!J� =	!6�56                                                                                     (35) 

#�$� 	uGJH6J
HD6 ,H� − ��		�
����
�	 x%�&�!J� + %�$� 	uGJH6J

HD6 ,H�y 

=	#�56$�56 ∑ G6H6JHD6 ,H�56 −��		�
��56��56
�	K%�56&�56!6�56 +	%�56$�56 ∑ G6H6JHD6 ,H�56L                   (36) 	
()�*�&�K9J� + ∑ GJH6JHD6 !H�L = ()�56*�56&�56K96�56 + ∑ G6H6JHD6 !H�56L                              (37) 

96�56 −	9J� = (� ∑ GJH6JHD6 ,H�                                                                  (38) 

Consider a numerical example of single wall carbon 
nanotube with diameter d = 0.678 nm, length L= 10d, 
Poisson’s ratio υ =0.19, and have effective tube thickness t = 
0.066 nm and E= 5.5TPa as given in [8]. 

4. Numerical Results 

For practical purpose, all field quantities are normalized 
such as: 

�̅ = �;	 	 , !| � = ��; 	 , 	}� = �� ��;��� 	 , ~ = 	 ������;� 	 , � = 	 ����
; 	 , � = ?	��	�	                                        (39) 

Where L is the length of the whole beam, λ 2 is the 
frequency parameter, Ω	is the shear deformation parameter, �	 is the scaling effect parameter and �  is the slenderness 

ratio. 
To ensure the validity of proposed scheme, the obtained 

results are compared with previous ones for cracked and un-
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cracked Euler- Bernoulli and Timoshenko problems. A 
quadrature numerical scheme is designed to solve cracked 
Euler- Bernoulli beam problems, equations (22-29). For each 
sub-beam, N is to be varied from 5-50 to determine N leading 
to accurate convergent results. As well as another scheme is 
designed for cracked Timoshenko beams. Tables (1-3) show 
the convergence of the obtained results compared with the 
previous ones for different supporting conditions. Further a 
parametric study is introduced using N=10 to investigate 
influence of crack severity K, scaling effect parameter � and 
crack location �	|  on the obtained results. 

Table 1 compares the obtained results for simply supported 
Euler- Bernoulli nanobeam with Loya [16], while it 
compares the obtained results for Timoshenko nanobeam 
with Torabi [21]. The obtained results for Timoshenko 
nanobeam are very accurate with the exact solution more 
than Torabi [21] as shown in Table 1. Tables 2, 3 show the 
obtained results for clamped-clamped, clamped simply 
supported and clamped-free nanobeam. Figures 2, 3, 4, 5, 6, 
7 show the influence of crack severity K, scaling effect 
parameter � and crack position �	|  on fundamental frequency 
parameter√}. 

The figures show that: 
The value of fundamental frequency parameter √λ , 

decreases with the increasing of crack severity K, as shown 
in Figures (2, 3). Also, the value of fundamental frequency 
parameter √λ decreases with the increasing of scaling effect 
parameter α as shown in Figures (4, 5). The location of the 
crack effects on the value of fundamental frequency 
parameter √λ as follows: 

In simply supported beam, the values of fundamental 
frequency parameter √λ are reduced as much as crack location 
moves away from the support and reach the minimum when the 
crack is in the middle of the span. While in clamped-clamped 
beam, the values of fundamental frequency parameter √λ are 
increased as much as crack location moves away from the 
support and reach the maximum when the place of the crack 
almost reaches x�	= 0.25, x�	= 0.75 then decreasing to reach the 
minimum when the crack almost is in the middle of the span. 
While in clamped-simple beam, the values of fundamental 
frequency parameter √λ are decreased as much as crack location 
moves away from the simple support, but it are increased as 
much as crack location moves away from the clamped support 
as shown in Figures (6, 7). 

Table 1. Comparison of the obtained frequencies	√}, for simply supported nano-beam, with the previous results: crack-severity K=0, crack site at �	| = 0.5. 

Theory 
scaling effect 

parameter 
N 

fundamental frequency 2nd frequency 3rd frequency 

Obtained √� Loya [16] Obtained √� Loya [16] Obtained √� Loya [16] 

Euler-
Bernoulli 
beam 

α = 0 

7 3.1404  6.2755  9.3129  

9 3.1416  6.2832  9.4311  
10 3.1416 3.1416 6.2832 6.2832 9.4254 9.4248 

12 3.1416  6.2832  9.4248  

α = 0.2 

7 2.8893  4.9508  6.3670  

9 2.8904  4.9566  6.4538  
10 2.8904 2.8908 4.9565 4.9581 6.4499 6.4520 

12 2.8904  4.9565  6.4495  

α = 0.4 

7 2.4773  3.8144  4.7078  

9 2.4783  3.8187  4.7732  
10 2.4783 2.4790 3.8187 3.8204 4.7703 4.7723 

12 2.4783  3.8187  4.7700  

α = 0.6 

7 2.1490  3.1764  3.8795  

9 2.1498  3.1800  3.9337  
10 2.1498 2.1507 3.1800 3.1815 3.9313 3.9329 

12 2.1498  3.1800  3.9310  

 

Theory  
scaling effect 

parameter 
N 

fundamental frequency 2nd frequency 

Obtained √� 

Exact 

[8] 

Torabi 

[21] 

Loya [16] 

(Euler) 

Obtained √� 

Exact 

[8] 

Torabi 

[21] 

Loya [16] 

(Euler) 

Timoshenko beam 

α = 0 

8 3.0933    5.9427    
9 3.0933    5.9426    
10 3.0933 3.0929 3.1252 3.1416 5.9426 5.9399 6.1583 6.2832 
12 3.0933    5.9426    

α = 0.2 

8 2.8563    4.8125    
9 2.8563    4.8124    
10 2.8563 — 2.8795 2.8908 4.8124 — 4.9225 4.9581 
12 2.8563    4.8124    

α = 0.4 

8 2.4594    3.7506    
9 2.4594    3.7505    
10 2.4594 — 2.4744 2.4790 3.7505 — 3.8024 3.8204 
12 2.4594    3.7505    

α = 0.6 

8 2.1381    3.1338    
9 2.1381    3.1337    
10 2.1381 — 2.1494 2.1507 3.1337 — 3.1755 3.1815 
12 2.1381    3.1337    
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Theory  
scaling effect 

parameter 
N 

3rd frequency 

Obtained √� 
Exact 

[8] 

Torabi 

[21] 

Loya [16] 

(Euler) 

Timoshenko beam 

α = 0 

8 8.4536    

9 8.4509    

10 8.4512 8.4444 9.0328 9.4248 

12 8.4512    

α = 0.2 

8 6.1605    

9 6.1584    

10 6.1586 — 6.4222 6.4520 

12 6.1586    

α = 0.4 

8 4.6210    

9 4.6194    

10 4.6196 — 4.6087 4.7723 

12 4.6196    

α = 0.6 

8 3.8210    

9 3.8197    

10 3.8198 — 3.9212 3.9329 

12 3.8198    

Table 2. Comparison of the obtained frequencies	√}, for clamped-clamped nano- beam, with the previous results: crack-severity K= 0.35, crack site at �	| � 0.5. 

Theory 
scaling effect 

parameter 
N 

fundamental frequency 2nd frequency 3rd frequency 4rth frequency 

Obtained √� 
Loya [16] 

Obtained √� 
Loya [16] 

Obtained √� 
Loya [16] 

Obtained √� 
Loya [16] 

Euler-
Bernoulli 
beam 

α = 0 

7 4.3494  7.8387  9.8692  15.2823  

9 4.3567  7.8532  10.1117  14.1630  

10 4.3566  7.8533  10.1052  14.1353  

12 4.3566 4.3566 7.8533 7.8532 10.1028 10.1028 14.1374 14.1372 

α = 0.2 

7 3.8775  6.0249  6.5282  8.7282  

9 3.8856  6.0352  6.6094  8.4651  

10 3.8855  6.0353  6.6098  8.4614  

12 3.8855 3.8855 6.0352 6.0352 6.6089 6.6089 8.4624 8.4624 

α = 0.4 

7 3.2057  4.5910  4.8933  6.2889  

9 3.2142  4.5977  4.9300  6.1497  

10 3.2141  4.5978  4.9304  6.1498  

12 3.2141 3.2141 4.5978 4.5978 4.9302 4.9302 6.1504 6.1504 

α = 0.6 

7 2.7311  3.8112  4.0697  5.1532  

9 2.7392  3.8164  4.0937  5.0493  

10 2.7391  3.8165  4.0938  5.0500  

12 2.7391 2.7391 3.8165 3.8165 4.0939 4.0939 5.0505 5.0505 

 

Theory 
scaling effect 

parameter 
N 

fundamental frequency 2nd frequency 

Obtained √� Loya [16] (Euler) Obtained √� Loya [16] (Euler) 

Timoshenko beam 

α = 0 

8 4.1617  6.9588  

9 4.1618  6.9586  

10 4.1618 4.3566 6.9586 7.8532 

12 4.1618  6.9586  

α = 0.2 

8 3.7744  5.6621  

9 3.7744  5.6617  

10 3.7744 3.8855 5.6617 6.0352 

12 3.7744  5.6617  

α = 0.4 

8 3.1664  4.4051  

9 3.1664  4.4047  

10 3.1664 3.2141 4.4047 4.5978 

12 3.1664  4.4047  

α = 0.6 

8 2.7122  3.6768  

9 2.7122  3.6764  

10 2.7122 2.7391 3.6764 3.8165 

12 2.7122  3.6764  
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Theory 
scaling effect 

parameter 
N 

3rd frequency 4rth frequency 

Obtained √� Loya [16] (Euler) Obtained √� Loya [16] (Euler) 

Timoshenko beam 

α = 0 

8 8.6241  11.1318  
9 8.6207  11.1290  
10 8.6210 10.1028 11.1280 14.1372 
12 8.6210  11.1282  

α = 0.2 

8 6.2240  7.6826  
9 6.2221  7.6799  
10 6.2221 6.6089 7.6783 8.4624 
12 6.2222  7.6785  

α = 0.4 

8 4.7373  5.6879  
9 4.7365  5.6860  
10 4.7365 4.9302 5.6846 6.1504 
12 4.7365  5.6847  

α = 0.6 

8 3.9576  4.6893  
9 3.9572  4.6878  
10 3.9572 4.0939 4.6866 5.0505 
12 3.9572  4.6867  

Table 3. Comparison of the obtained frequencies	√}, for Clamped–simply supported and Clamped-free Euler-Bernoulli nano-beam, with the previous results: 

crack-severity K=0.35, crack site at �	| � 0.5. 

boundary condition 
scaling effect 

parameter 
N 

fundamental frequency 2nd frequency 

Obtained √� Bahrami [19] Obtained √� Bahrami [19] 

clamped-simply 
supported 

α = 0 

7 3.6155  6.9480  
9 3.6182  6.9660  
10 3.6181 3.6195 6.9657 6.9700 
12 3.6181  6.9657  

α = 0.2 

7 3.2742  5.3204  
9 3.2768 3.2780 5.3393 5.3428 
10 3.2768  5.3390  
12 3.2768  5.3390  

α = 0.4 

7 2.7563  4.0345  
9 2.7587  4.0495  
10 2.7587 2.7597 4.0493 4.0523 
12 2.7587  4.0492  

α = 0.6 

7 2.3689  3.3439  
9 2.3711  3.3561  
10 2.3711 2.3719 3.3560 3.3585 
12 2.3711  3.3559  

Clamped–free 

α = 0 

7 1.8032  4.1505  
9 1.8033 1.8052 4.1575 4.1607 
10 1.8033  4.1574  
12 1.8033  4.1574  

α = 0.2 

7 1.8241  3.6243  
9 1.8243 1.8263 3.6333 3.6352 
10 1.8243  3.6332  
12 1.8243  3.6332  

α = 0.4 

7 1.9104  2.8223  
9 1.9109 1.9135 2.8276 2.8280 
10 1.9109  2.8276  
12 1.9109  2.8276  

Table 3. Continued. 

boundary condition 
scaling effect 

parameter 
N 

3rd frequency 4rth frequency 

Obtained √� Bahrami [19] Obtained √� Bahrami [19] 

clamped-simply 
supported 

α = 0 

7 9.3292  14.1368  
9 9.4805  13.2023  
10 9.4756 9.4775 13.1930 13.1997 
12 9.4744  13.1908  

α = 0.2 

7 6.3419  8.1943  
9 6.3943 6.3945 7.7840 7.7923 
10 6.3941  7.7864  
12 6.3937  7.7851  

α = 0.4 

7 4.7653  5.9213  
9 4.7869  5.6381  
10 4.7871 4.7874 5.6388 5.6436 
12 4.7870  5.6383  

α = 0.6 

7 3.9574  4.8549  
9 3.9706  4.6266  
10 3.9707 3.9710 4.6268 4.6307 
12 3.9707  4.6264  
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boundary condition 
scaling effect 

parameter 
N 

3rd frequency 4rth frequency 

Obtained √� Bahrami [19] Obtained √� Bahrami [19] 

Clamped–free 

α = 0 

7 7.8016  9.8328  
9 7.8480 7.8541 10.1186 10.1175 
10 7.8468  10.1118  
12 7.8465  10.1077  

α = 0.2 

7 5.9285  6.4417  
9 6.0629 6.0618 6.6839 6.6733 
10 6.0589  6.6732  
12 6.0583  6.6687  

α = 0.4 

7 4.4421  4.7375  
9 — — — — 
10 —  —  
12 —  —  

 

Figure 2. Variation of the obtained fundamental frequency √}	with the crack severity K, for Euler-Bernoulli beam subjected to different supporting conditions 

and different scaling effect parameter �: crack site at �̅	= 0.5. 

 

Figure 3. Variation of the obtained fundamental frequency √}	with the crack severity K, for Timoshenko beam subjected to different supporting conditions and 

different scaling effect parameter �: crack site at �̅	= 0.5. 
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Figure 4. Variation of the obtained fundamental frequency √}	with scaling effect parameter �, for Euler-Bernoulli beam subjected to different supporting 

conditions and different crack severity K: crack site at �̅	= 0.5. 

 

Figure 5. Variation of the obtained fundamental frequency √}	with scaling effect parameter �, for Timoshenko beam subjected to different supporting 

conditions and different crack severity K: crack site at �̅	= 0.5. 

 

Figure 6. Variation of the obtained fundamental frequency √}	with the crack position �̅, for Euler-Bernoulli beam subjected to different supporting conditions 

and different crack severity K: scaling effect parameter � � 0. 
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Figure 7. Variation of the obtained fundamental frequency √}	with the crack position �̅, for Timoshenko beam subjected to different supporting conditions and 

different crack severity K: scaling effect parameter � � 0.2. 
5. Conclusion 

A numerical scheme based on differential quadrature 
method, is successfully examined for free vibration analysis 
of cracked Euler-Bernoulli beam and Timoshenko beam. The 
obtained results agreed with previous ones of N=10. Further 
a parametric study is employed to investigate the influence of 
crack severity K, scaling effect parameter �  and crack 
location on the obtained results. 

a. The value of fundamental frequency parameter √λ	 
decreases with the increasing of crack severity K. 

b. The value of fundamental frequency parameter √λ	 
decreases with the increasing of scaling effect 

parameter �. 
c. The influence of crack severity K is very small on 

frequency parameter √λ, when the crack locates near to 
the clamped support. 

It is aimed that these results may be useful for design 
purposes and structural health monitoring. 
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