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Abstract: In this paper we are concerned with the Bolza problem (PC) for second order differential inclusions (SODIs). The 

aim is to derive sufficient conditions of optimality for a problem (PC). The basic concept of obtaining these conditions is the 

locally adjoint mappings (LAMs). Besides the transversality conditions, approaches to the general problem therefore involve 

distinctive Euler-Lagrange and Hamiltonian kind of adjoint inclusions. Furthermore, the aim of the considered “linear” 

problem with SODIs is to show the reader, by example, how the obtained results can be applied in practice. 
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1. Introduction 

Optimal control problems with partial and first order 

discrete and differential inclusions and their applications 

have been extensively developed since the 1985s (see, for 

example [1], [6-8], [10, 11], [13-15], [17-21]). The 

optimality problems accompanied with the second order 

discrete [16] and differential inclusions are rather 

complicated because of the existing higher order derivatives. 

As a consequence, a convenient procedure for eliminating 

the difficulty is to construct an adjoint SODIs and the 

transversality conditions. Notice that on the whole in 

literature are investigated only the qualitative problems 

with SODIs [2-5], [9, 12, 16]. 

The first viability result for the SODIs in the nonconvex 

case has been studied by Lupulescu [9] and Cernea [5] in the 

finite dimensional case. In [16] the existence of Lyapunov 

functions for SODIs the analyses are carried out by using the 

methodology of the viability theory. A necessary assumption 

on the initial states and sufficient conditions for the existence 

of local and global Lyapunov functions are obtained. An 

application is also provided. 

In the paper [4] the existence of solutions for initial and 

boundary value problems for second order impulsive 

functional differential inclusions in Banach spaces are 

investigated. The paper [5] gives necessary and sufficient 

conditions ensuring the existence of solutions to the SODIs 

with state of constraints. Furthermore, the second order 

interior tangent sets are introduced and studied to obtain such 

conditions. 

The investigated optimization problem is the logical 

continuation of work done in previous paper of Mahmudov 

[12], where is studied discrete approximation of the Bolza 

problem of optimal control theory given by convex and 

nonconvex SODIs. The main goal in [12] is to derive 

necessary and sufficient optimality conditions for a Cauchy 

problem of second order discrete and discrete approximation 

inclusions. Therefore, on this path the most natural approach 

to formulation sufficient conditions of optimality for SODIs 

is the use of the optimality conditions for discrete 

approximation problems and derivation of Euler-Lagrange 

and transversality conditions for Bolza problem (PC) is 

implemented by passing to the formal limit as the discrete 

steps tend to zero. 

The paper is organized in the following order: 

In Section 2, the needed facts and supplementary results 

from the book of Mahmudov [15] are given; Hamiltonian 

function H and argmaximum sets of a set-valued mapping 
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F , the locally adjoint mapping (LAM) are introduced and 

the Cauchy problem for SODIs are formulated. 

In Section 3 employing LAM in Hamiltonian and Euler-

Lagrange forms we derive sufficient conditions of optimality 

for the SODIs. The posed problems and the corresponding 

optimality conditions are new. The sufficient conditions, 

including distinctive transversality ones, are proved by 

incorporating the Euler-Lagrange and Hamiltonian type of 

inclusions. As it is shown in these problems, generally, the 

second order adjoint inclusion involves an auxiliary adjoint 

variable *( )v ⋅ , which in the concrete problems is eliminated 

and the same inclusion involves only the “main” variable, 

that is *( ).x ⋅  

2. Needed Facts and Problem Statement 

Necessary notions can be found in [15]. Let nR  be a n -

dimensional Euclidean space, ,x q  be an inner product of 

elements , ,nx q R∈ ( ,x q ) be a pair of ,x q . Let ( )nP R  be a 

family of subsets of nR . Assume that 2: ( )n nF R P R→ is a 

multivalued (set-valued) mapping from 2nR  into ( )nP R . 

Then : ( )n n nF R R P R× →  is convex if its graph 

{( , , ) : ( , )}gph F x p q q F x p= ∈  is a convex subset of 3nR . 

The multivalued mapping F  is convex closed if its graph is 

a convex closed set in R 3n
. F  is convex-valued if ( , )F x p  

is a convex set for each ( , )x p dom F∈ . 

Let us introduce the Hamiltonian function and 

argmaximum set for a multivalued mapping F  

{ }* * *( , , ) sup , : ( , ) , ,n

F
q

H x p q q q q F x p q R= ∈ ∈

{ }* * *( , ; ) ( , ) : , ( , , )
F

F x p q q F x p q q H x p q= ∈ =  

respectively. 

For a convex mapping F  a multifunction defined by 

( ) { }* * * * * * * *; ( , , ) : ( , ) : ( , , ) ( , , )gph FF q x p q x p x p q K x p q= − ∈
 

is called a LAM to F  at a point ( , , )x p q gph F∈ , where 

gphFK ( , , )x p q is the cone of tangent directions. 

The LAM to “nonconvex” mapping F  is defined as 

follows 

{

}

* * *

1 1

*

1 1

2 *

1 1

( ; ( , , )) : ( *, *) : ( , , )

( , , ) *, *, ,

( , ) , ( , , ) , ( , ; ).

F

F

n

F q x p q x p H x p q

H x p q x x x p p p

x p R x p q gph F q F x p q

=

− ≤ − + −

∀ ∈ ∈ ∈

 

Clearly for the convex mapping *( , , )H q⋅ ⋅  is concave and 

the latter definition of LAM coincide with the previous 

definition of LAM. Note that, the similar notion is given by 

In Section 3 we deal with the optimization of Cauchy 

problem for SODIs: 

minimize 

1

0

[ ( )] ( ( ), ) ( (1))J x g x t t dt xϕ⋅ = +∫           (1) 

(PC) [ ]( ) ( ( ), ( )), a.e. 0,1 ,x t F x t x t t′′ ′∈ ∈          (2) 

0
(0)x x= , 

1
(0)x x′ =                       (3) 

Here 2: ( )n nF R P R→
 
is multivalued mapping, g  is 

continuous function
1( , ) : ng t R R⋅ → , and 0 1

,x x  are fixed 

vectors. The optimization problem is to find the trajectory 

( )x tɶ of the problem (1) – (3) satisfying (2) almost 

everywhere (a.e.) on [ ]0,1  and the initial conditions (3) on 

[0, 1] that minimizes the Bolza functional [ ( )]J x ⋅ . We label 

this problem as (PC). Here, a feasible trajectory ( )x ⋅  is 

understood to be an absolutely continuous function on a time 

interval [0,1]  together with the first order derivatives for 

which ( )1( ) [0,1] .nx L′′ ⋅ ∈  Notice that such class of functions is 

a Banach space, endowed with the different equivalent 

norms. 

3. Sufficient Conditions of Optimality for 

SODIs 

Let us formulate an adjoint differential inclusion (i) and 

the transversality condition (ii) for problem (PC) in the 

convex case ( F and ( , ),g t ϕ⋅  are convex) crucial in what 

follows: 

(i)
( )( )

( ) { } [ ]

2
* *

2

*( ) *( )
, *( ) ( ); ( ), ( ), ( )

( ), 0 , a.e. 0,1 ,
x

d x t dq t
q t F x t x t x t x t

dtdt

g x t t t

  ′ ′′+ ∈ 
 

− ∂ × ∈

ɶ ɶ ɶ

ɶ

 

(ii) ( )*(1)
*(1) (1) , *(1) 0

dx
q x x

dt
ϕ+ ∈ ∂ =ɶ . 

Note that formulation of the conditions (i) and (ii) appear 

due to a limiting process in the conditions of Theorem 4.4 

[12]. 

According to terminology of Mordukhovich [17], 

Mahmudov [15] we will call the inclusion (i) as the Euler-

Lagrange inclusion. We remind that our notation and 

terminology are generally consistent with those in 

Mordukhovich [17], Mahmudov [14] for first order 

differential inclusions. 

In what follows we assume that *( )x t , [0,1]t ∈  is 

absolutely continuous function together with the first order 

derivatives and ( )1* ( ) [0,1]nx L′′ ⋅ ∈ . Besides [ ]*( ), 0,1q t t ∈
 

is absolutely continuous and ( )1* ( ) [0,1]nq L′ ⋅ ∈ . 

Moreover we get one more condition ensuring that the 

LAM F * is nonempty at a given point: 

(iii) ( )
2

2

( )
( ), ( ); *( )

d x t
F x t x t x t

dt
′∈

ɶ
ɶ ɶ , a.e. [ ]0,1t ∈ . 

It turns out that the following assertion is true. 

Theorem 3.1 Suppose that [ ] 1: 0,1ng R R× →  is continuous 
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and convex with respect to x , and F  is a convex mapping.  

Then for the optimality of the arc ( )x tɶ  in the convex 

problem (1)-(3) it is sufficient that there exists a pair of 

absolutely continuous functions { }*( ), *( )x t q t , [0,1]t ∈  

satisfying a.e. the Euler-Lagrange inclusion (i), (iii) and 

transversality condition (ii). 

Proof. Obviously by Theorem 2.1 [15] * *( , ( , , ))F q x p q  

*

( , ) ( , , ),x p FH x p q= ∂  *( , ; )q F x p q∈ . Then by using the 

Moreau-Rockafellar theorem [15, 17] and the conversation 

that ( , ) ( ( , ))
x x
g t g t−∂ ⋅ = ∂ − ⋅  from condition (i) we obtain the 

adjoint differential inclusion of second order 

( )
( ) ( ) ( ) [ ]

2
*

( , )2

*( ) *( )
, *( ) ( ), ( ), ( )

( ), ( ), , ( ), ( ), ( ), , 0,1 .

x p F

d x t dq t
q t H x t x t x t

dtdt

g x t x t t g x t x t t g x t t t

 
 ′+ ∈ ∂  

 

′ ′− ≡ ∈

ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

 

On the definition of subdifferential set of the Hamiltonian 

function 
F

H  we rewrite the last relation in the form: 

( ) ( )
2

2

( ), ( ), *( ) ( ), ( ), *( ) ( ( ), ) ( ( ), )

*( ) *( )
, ( ) ( ) *( ), ( ) ( ) .

F FH x t x t x t H x t x t x t g x t t g x t t

d x t dq t
x t x t q t x t x t

dtdt

′ ′− − +

′ ′≤ + − + −

ɶ ɶ ɶ

ɶ ɶ
 (4) 

In turn by using the definition of the Hamiltonian function, 

(4) can be converted to the relation 

2 2

2 2

2

2

( ) ( )
, *( ) , *( ) ( ( ), ) ( ( ), )

*( )
, ( ) ( ) *( ), ( ) ( ) .

d x t d x t
x t x t g x t t g x t t

dt dt

d x t d
x t x t q t x t x t

dtdt

− − +

≤ − + −

ɶ
ɶ

ɶ ɶ

 

For convenience, let us rewrite the latter inequality as 

follows 

( )2

2

2

2

( ) ( )
( ( ), ) ( ( ), ) , *( )

*( )
, ( ) ( ) *( ), ( ) ( ) .

d x t x t
g x t t g x t t x t

dt

d x t d
x t x t q t x t x t

dtdt

−
− ≥

− − − −

ɶ
ɶ

ɶ ɶ

           (5) 

Integrating (5) over the interval [ ]0,1 and taking into 

account that ( ), ( )x x⋅ ⋅ɶ  are feasible 0
( (0) (0) )x x x= =ɶ  we can 

write 

[ ] ( )

( )

21 1

2

0 0

2

2

21

2

0

( ) ( )
( ( ), ) ( ( ), ) , *( )

*( )
, ( ) ( ) *(0), (0) (0)

( ) ( )
*(1), (1) (1) , *( )

d x t x t
g x t t g x t t dt x t

dt

d x t
x t x t dt q x x

dt

d x t x t
q x x x t

dt

 −
− ≥ 




− − + −



 −
− − = 



∫ ∫

∫

ɶ
ɶ

ɶ ɶ

ɶ
ɶ

   (6) 

2

2

*( )
, ( ) ( ) *(1), (1) (1)

d x t
x t x t dt q x x

dt


= − − − −


ɶ ɶ  

Let us transform the expression in the square parentheses 

on the right hand side of (6) as follows 

( )

( )

2 2

2 2

( ) ( ) *( )
, *( ) , ( ) ( )

( ) ( ) *( )
, *( ) , ( ) ( ) .

d x t x t d x t
x t x t x t

dt dt

d x t x td d dx t
x t x t x t

dt dt dt dt

−
− −

−
= − −

ɶ
ɶ

ɶ
ɶ

 

Then we can easily compute the integral on the right hand 

side of (6) 

( )21 2

2 2

0

( ) ( ) *( )
, *( ) , ( ) ( )

d x t x t d x t
x t x t x t dt

dt dt

 −
− − 

  
∫

ɶ
ɶ  

( ) ( )(1) (1) (0) (0)
, *(1) , *(0)

*(1) *(0)
, (1) (1) , (0) (0) .

d x x d x x
x x

dt dt

dx dx
x x x x

dt dt

− −
= −

− − + −

ɶ ɶ

ɶ ɶ

  (7) 

Since *(1) 0x =  by condition (ii) of theorem, and 

[ ]( ), 0,1x t t ∈  is a feasible 0( (0) (0) ,x x x= =ɶ

1(0) (0) )x x x′ ′= =ɶ
 solution in (7), we have 

( ) ( )(1) (1) (0) (0)
, * (1) , *(0)

*(0)
, (0) (0) 0

d x x d x x
x x

dt dt

dx
x x

dt

− −
=

= − =

ɶ ɶ

ɶ

 

and so (7) can be rewritten as follows 

( )21 2

2 2

0

( ) ( ) *( )
, *( ) , ( ) ( )

d x t x t d x t
x t x t x t dt

dt dt

 −
− − = 

  
∫

ɶ
ɶ

*(1)
, (1) (1)

dx
x x

dt
− − ɶ .                    (8) 

Thus (6) and (8) implies 

[ ]
1

0

( ( ), ) ( ( ), )g x t t g x t t dt− ≥∫ ɶ
*(1)

, (1) (1)
dx

x x
dt

− − ɶ  

*(1), (1) (1) .q x x− − ɶ                        (9) 

Now remember that by the condition (ii) for all feasible 

arcs [ ]( ), 0,1x t t ∈ we have 

( ) ( ) *(1)
(1) (1) *(1) , (1) (1)

dx
x x q x x

dt
ϕ ϕ− ≥ + −ɶ ɶ .   (10) 

Finally adding the inequalities (9), (10) we obtain that 

[ ][ ( )] [ ( )], ( ), 0,1J x t J x t x t t≥ ∀ ∈ɶ  i.e. [ ]( ), 0,1x t t ∈ɶ is 
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optimal. 

Below we prove that if in the problem (PC) a mapping F

depends only on x , then the adjoint inclusion involves only 

one conjugate variable, that is, there are no an auxiliary 

adjoint variable *( )q t  in the conjugate SODIs. Besides, note 

that the condition *(1) 0x =  is the analog of the condition of 

classical optimal control theory with free right-hand endpoint 

constraints. 

Corollary 3.1 Suppose that for the convex problem (PC) a 

mapping F  doesn’t depend on derivative ( )x t′  i.e. 

( , ) ( )F x x F x′ ≡  and that the conditions of Theorem 3.1 are 

satisfied. Then the Euler-Lagrange SODI and transversality 

condition of Theorem 3.1 consist of the following 

(i) ( )( ) ( )
2

* *

2

*( )
( ); ( ), ( ) ( ),x

d x t
F x t x t x t g x t t

dt
′′∈ − ∂ɶ ɶ ɶ  a.e. 

[ ]0,1t ∈ , 

(ii) ( )*(1)
(1) , *(1) 0

dx
x x

dt
ϕ∈ ∂ =ɶ , 

(iii) ( )
2

2

( )
( ); *( )

d x t
F x t x t

dt
∈

ɶ
ɶ , a.e. [ ]0,1t ∈ . 

Proof. Indeed in the presented case domain of the 

multifunction is dom ,
n

F ×ℝ  which means that 

[ ]*( ) 0, 0,1q t t≡ ∈
 
and so from conditions of Theorem 3.1 

we have the needed result. 

Corollary 3.2 In addition to assumptions of Theorem 3.1 

let F be a closed multivalued mapping. Then the conditions 

(i), (iii) of Theorem 3.1 can be rewritten in term of 

Hamiltonian function as follows 

( )
2

*

( , )2

*( ) *( )
, *( ) ( ), ( ), ( )

x p F

d x t dq t
q t H x t x t x t

dtdt

  ′+ ∈ ∂ 
 

ɶ ɶ

( ) { }( ), 0x g x t t−∂ ×ɶ , 

( )*

2

2

( )
( ), ( ); *( )Fq

d x t
H x t x t x t

dt
′∈ ∂

ɶ
ɶ ɶ

, a.e. [ ]0,1t ∈ . 

Proof. Indeed [15, Theorem 2.1] the LAM at a given point 

and argmaximum set are the subdifferential on and on *q  of 

the Hamiltonian function 

( )* * *
( , ), ( , , ) ( , , )x p FF q x p q H x p q= ∂ , 

*
* *( , ; ) ( , , )Fq

F x p q H x p q= ∂  

respectively. Note that for the validity of the second formula 

it is taken into account Lemma 2.1 [14], which follows 

immediately from Theorem 1.31 [15] Then the assertions of 

corollary are equivalent with the conditions (i), (iii). 

Note that the results of Theorem 3.1 can be generalized to 

the “nonconvex” case as follows. 

Theorem 3.2 Let us consider the nonconvex problem (1)-

(3) that is [ ] 1: 0,1ng R R× →  and ϕ  are nonconvex with 

respect to x , and F  is a nonconvex mapping. Then for the 

optimality of the arc ( )x tɶ , [0,1]t ∈
 
in the problem (1)-(3), it 

is sufficient that there exist a pair of absolutely continuous 

functions { }*( ), *( )x t q t , [0,1]t ∈  satisfying the conditions: 

(a) ( )( )
2

* * *

2

*( ) *( )
( ), *( ) ( ); ( ), ( ), ( )

d x t dq t
x t q t F x t x t x t x t

dtdt

  ′ ′′+ + ∈ 
 

ɶ ɶ ɶ , 

a.e. [ ]0,1t ∈ , 

(b) ( , ) ( ( ), ) * ( ), ( )g x t g x t t x t x x t− ≥ −ɶ ɶ , x∀ nR∈ , 

(c) * (1)
( ) ( (1)) * (1) , (1) ,

dx
x x q x x

dt
ϕ ϕ− ≥ + −ɶ ɶ  x∀ nR∈ , 

*(1) 0x = , 

(d) ( )
2

2

( )
, *( ) ( ), ( ); *( )F

d x t
x t H x t x t x t

dt
′=

ɶ
ɶ ɶ , a.e. 

[ ]0,1t ∈ . 

Proof. By condition (a) and definition of LAM in the 

nonconvex case (see Section 2) 

( ) ( )
2

2

( ), ( ), *( ) ( ), ( ), *( )

*( ) *( )
*( ), ( ) ( ) *( ), ( ) ( )

F FH x t x t x t H x t x t x t

d x t dq t
x t x t x t q t x t x t

dtdt

′ ′−

′ ′≤ + + − + −

ɶ ɶ

ɶ ɶ

 

whereas 

2 2

2 2

2

2

( ) ( )
, *( ) , *( )

*( ) *( )
*( ), ( ) ( ) *( ), ( ) ( ) .

d x t d x t
x t x t

dt dt

d x t dq t
x t x t x t q t x t x t

dtdt

−

′ ′≤ + + − + −

ɶ

ɶ ɶ

 

From the latter inequality and condition (b) is justified (5). 

Thus, the furthest proof of theorem is similar to the one for 

Theorem 3.1. 

We note that in the convex case, the conditions (b), (c) of 

Theorem 3.2 are equivalent to the conditions 

( )*( ) ( ),xx t g x t t∈∂ ɶ  and (ii), respectively. Then in the 

convex case, it is easy to see that from the conditions (a), (b) 

of Theorem 3.2 we have the inequality (4). It means that the 

conditions of Theorems 3.2 in the convex case coincide with 

the conditions of Theorem 3.1. 

Suppose now we have so-called “linear” convex problem 

for the SODIs: 

minimize 
1

0

[ ( )] ( ( ), ) ( (1))J x g x t t dt xϕ⋅ = +∫ , 

[ ]( ) ( ( ), ( )), a.e. 0,1 ,x t F x t x t t′′ ′∈ ∈  

0
(0)x x= ,

1
(0)x x′ = ,                              (11) 

1 2
( , )F x p A x A p BU= + +  

where ( , )g t⋅  and ϕ  are continuously differentiable convex 

functions, 
iA , 1,2i =  and B are n n×  and n r×  matrices, 

respectively, U is a convex closed subset of 
rR . The problem 

is to find a controlling parameter ( )u t U∈ɶ such that the arc 
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( )x tɶ  corresponding to it minimizes [ ( )]J x ⋅  

Theorem 3.3 The arc ( )x tɶ  corresponding to the controlling 

parameter ( )u tɶ  minimizes ( ( ))J x ⋅  in the problem (11) if 

there exists an absolutely continuous function *( )x t  

satisfying the second order adjoint differential equation, the 

transversality condition and Pontryagin’s maximum principle 

[19]: 

2
* *

2 12

*( ) *( )
*( ) ( ( ), )

d x t d x t
A A x t g x t t

dtdt
′= − + − ɶ  a.e. [ ]0,1t ∈ , 

( )*(1)
(1) , * (1) 0

dx
x x

dt
ϕ ′= =ɶ , 

( ), *( ) sup , *( )
u U

Bu t x t Bu x t
∈

=ɶ . 

Proof. In this problem we are proceeding on the basic of 

Theorem 3.1. Thus by using Theorem 3.1 we can establish 

the following result 

2
*

12

*

2

*( ) *( )
*( ) ( ( ), ),

*( ) *( ).

d x t dq t
A x t g x t t

dtdt

q t A x t

′+ = −

=

ɶ
            (12) 

Differentiating second equation of (12) and substituting 

into first equation we immediately have the second order 

adjoint differential equation. The rest of the conditions of 

theorem is immediate from the conditions (ii), (iii) of 

Theorem 3.1. Note that here is taken into account that 

*(1) 0x =  implies 
*

2*(1) *(1) 0q A x= = . The proof is 

completed. 

4. Conclusion 

In this paper is presented a new method for solving a 

Bolza problem with second-order differential inclusions 

which are often used to describe various processes in science 

and engineering. This approach plays a much more important 

role in derivation of second-order adjoint discrete-

approximate inclusions. Thus, a sufficient conditions of 

optimality for such problems are deduced. There has been a 

significant development in the study of optimization for 

differential equations and inclusions in recent years [2, 5, 7, 

19]. Finally, it is concluded that the proposed method is 

reliable for solving the various optimization problems with 

second -order differential inclusions. Theoretical analysis and 

practical results show that our method is simple and easy to 

implement and is efficient for computing optimal solution of 

the second order differential inclusions. 
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