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Abstract: Motivation: The discovery and assessment genetic variants for Next Generation Sequencing (NGS), including 

Restriction site Associated DNA sequencing (RADSeq), is an important task in bioinformatics and comparative genetics. The 

genetic variants can be single-nucleotide polymorphisms (SNPs), insertions and deletions (Indels) when compared to a 

reference genome. Usually, the short reads are aligned to a reference genome at first using NGS alignment software, such as 

the Burrows- Wheeler Aligner (BWA). The alignment is usually stored into a BAM file, a binary format of standard SAM 

(Sequence Alignment/Map) protocol. Then analysis software, such as Genome analysis Toolkit (GATK) or SAMTools [30] 

[31], together with scripts written in R programming language, could provide an efficient solution for calling variants. We 

focused on RADSeq-based marker selection for Arabidopsis thaliana. RADSeq consists short reads that do not cover the 

whole reference genome. Finally, SNPs as output in Variant Call Format (VCF) have been visualized by Integrative Genomics 

Viewer (IGV) software. We found that the visualization of SNPs and Indels is helpful and provides us with valuable insights on 

marker selection. We found that applying Chi-Square test for all target genotypes, which are homozygous reference 0/0, 

heterozygous variants 0/1 and homozygous variants 1/1, to test Hardy-Weinberg Equilibrium (HWE) in order to reduce false 

positive rate significantly and we showed that our pipeline is efficient in RADSeq-based marker selection. 
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1. Introduction  

The critical state of identification genetics variants in the 

next generation sequencing (NGS), specifically, Restriction-

site associated DNA sequencing (RADSeq) is well 

established in bioinformatics and comparative genomics [3] 

[4]. We are able to extract genetic markers information from 

data stemming using RADSeq, such as marker position and 

genotypes at the unique regions on the chromosome, by 

investigating single nucleotide polymorphisms (SNPs). SNPs 

can be defined as a difference in a single nucleotide of DNA 

at a particular location in the genome. Therefore, that 

necessitates the application of data processing in order to 

determine the reliable markers using RADSeq data, then 

evaluate them and obtain reliable SNPs [15] [17] [18]. 

Illumina [23], which is a recent technology, is used to 

sequence DNA and provides high- throughput sequencing 

(NGS) in order to study genomics. NGS is based on the 

recent method commonly known as Restriction-site 

Associated DNA sequencing (RADSeq) [4]. RADSeq can be 

described as extensive parallel sequencing. RADSeq has 

been produced or generated by shearing DNA molecules into 

collections of numerous small fragments which are called a 

library. Moreover, the fragments are called reads which 

produce the contiguous strings. In order to discover SNP 

using RADSeq, mapping to an available reference 

Arabidopsis thaliana (TAIR10) is performed [1] [14] [33].  

2. Datasets and Data Analysis  

2.1. Datasets 

This project is to work on Arabidopsis thaliana or thale 

cress, a model plant organism, which is a member of the 

largest families of flowering plants, also known as 

Brassicaceae. TAIR10 is a reference genome which has been 
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used [13]. Datasets, which are original material in FASTQ 

format [27 ] of RADSeq, have been derived from department 

lab for Illumina sequencing data. Datasets consist of 191 

individuals from the next generation (F2). The F2 of these 

individuals has been produced by crossbreeding of two 

different strains: the mother strain, which is not yet published 

RADSeq 6216_2251, can be described as having a highly 

serrated leaf and the father strain, which is the common lab 

strain A. thaliana research: Col-0 the seed stock is N28167 [5] 

[26], has a simple leaf phenotype. Additionally, the father 

strain should be identical to the reference genome, however, 

since there were many generations in between, some SNPs 

may occur. Both strains are crossbred to identify target 

genotype DNA sequence polymorphisms in their offspring. 

Clustering of genetic markers (genetics variants) in their 

offspring is applied in order to compare the genetic variants of 

two populations. 

The aim of this experimental design is to call variants in 

all individuals using RADSeq. The father strain, RADSeq 

Col-0: N28167 [5] [26], carries homozygous reference 0/0. 

Both alleles are the same as the reference alleles. The mother 

strain, RADSeq-2251, that carries homozygous variants 1/1, 

both alternate alleles are different from the reference alleles. 

Moreover, for every SNP at each position on the loci, the 

alleles frequencies must remain stable from generation to 

generation according to HWE [21].  

 
Figure 1. General workflow for this project. 

2.2. Pre-Processing Data for Mapping Sequences 

In order to prepare data using RAD Sequences, for 

downstream analysis, aligning sequences is performed. RAD 

sequences data is typically in a raw state. Data is present in 

the form of FASTQ files, which are used to store short reads 

data from high-throughput sequencing experiment before 

mapping and record each sequence with quality score for 

each nucleotide [27]. The preprocessing stage is the main 

step in preparing RAD sequences in order to continue usable 

variant discovery analysis. The goal of this step is to obtain 

an analysis-ready BAM file [30]. The Burrows Wheeler 

Aligner, or BWA-MEM, which is the common software 

package, is used in order to identify low-coverage genomes 

in metagenome samples. Therefore, BWA-MEM is the 

preferred algorithm to be applied in this pipeline data 

analysis [25] for Illumina sequence reads [2].  

The advantages of the BWA-MEM can be noted as the 

following: 1) it is more powerful, 2) it allows for local 

alignment to obtain the optimal solution for mapping 

problems, thereby decreasing false positives, and 3) it 

produces highly accurate results and relies on an algorithm 

that finds exact nucleotide matches [2] [10]. 

There are two procedures to generate a BAM file which is 

required in downstream analysis for calling variants, as 

shown in Figures 2 and Figure 3. The first step for mapping 

RAD sequences is to promptly place short reads of RADSeq 

along the reference genome, and then build an index for the 

fragments. Then, BWA-MEM is applied to find the most 

likely sequence location for each read. The next step is to 

convert the alignments to a more standard format. In order to 

quickly and conveniently extract reads from genome location, 

BAM index files (*.bam.bai) are created. 

 

Figure 2. The workflow for generating BAM file.  

Finally, SAM stands for Sequence Alignment / Map, which 

is the format, that is used to store large nucleotide sequence 

alignments in a human readable format. Although, both BAM 

and SAM formats are designed to contain the same 

information but SAM format is more human readable, and 

easier to process. In contrast, the BAM format provides 

binary versions of most of the same data, and is designed to 

compress reasonably well [22].  

The main goal of performing local realignment around 

indels is to correct errors of mapping-related artifacts in order 

to minimize the number of mismatching bases across all the 

reads. The process is based on realigning the target list of 

intervals which have been created.  
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Figure 3. The workflow for generating realigned BAM file. 

2.3. Processing Data for Calling Variants 

Calling variants using RADSeq data can be defined as a 

computational method to establish an event of genetic 

variants resulting from NGS experiments. Furthermore, 

variant calling involves small-range variants such as SNPs, 

short insertions and deletions (indels). Moreover, variants 

calls are implemented in four procedures that are described in 

more detail in Figure 4 and Figure 5 [9] [23]. 

The drawback of variants discovery processing is that 

some of the variation have been observed due to mapping 

and sequencing artifacts, so that the biggest challenge is to 

balance the requirement for sensitivity versus specificity. 

That aims to minimize false negatives such as failing to 

identify real variants and to minimize false positives such as 

failing to reject artifacts. This challenge is addressed by 

applying this process which aims to identify the sites where 

RAD-Seq data displays variation relative to the reference 

genome, then by calculating genotypes for each SNP at that 

site [15]. 

Several bioinformatics tools such as SAMTools and 

Genome analysis ToolKit (GATK) software are useful in 

order to incorporate different datasets for reliable variants 

calling. In theory, a SNP is identified when a nucleotide from 

an accession read differs from the reference genome at the 

same nucleotide position indicating an alteration in the most 

common DNA nucleotide sequence [15]. 

There are several approaches to call variants which are 

based on GATK software and SAM Tools. Furthermore, there 

are two workflow pipelines for each one as shown in Figure 

4 and Figure 5 [3] [10].  

First, the algorithm checks the active region containing the 

genetic variants for both haplotypes using the 

HaplotypeCaller with joint genotypes [32]. In other words, 

whenever the program detects a region that is showing signs 

of variation, the program generates an intermediate genomic 

gVCF for each individual. Then, joint genotyping are applied 

for all individuals in a manner that is considered to be highly 

efficient [3] [10]. 

The main goal of the Unified Genotyper Algorithm is to 

call SNPs and indels on a per-locus basis, which is based on 

a Bayesian genotype likelihood model, in order to determine 

simultaneously the most likely genotypes and allele 

frequency in RADSeq that are satisfied phred-scaled 

confidence value.  

 

Figure 4. The workflow for calling variants by (GATK).  
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Figure 5. The workflow for calling variants by SAM Tools. 

The main concept of SAMTools is to calculate the 

likelihood of mapping sequences, which contains the 

genotype, and relies on the summary information in the input 

BAMs. Then, these likelihoods are stored in the BCF format 

in which call variants have not yet been performed. Therefore, 

the SAMTools mpileup provides the summary of the 

coverage of mapped reads on a reference sequence at each 

single base pair [28]. The important application of BCF Tools 

is to perform the actual calling that is based on the prior 

likelihoods in the BCF format. Moreover, selecting variants 

is perfomed by using Select Variants -select_Type 

SNP/GATK software in order to extract only a subset of 

SNPs. The goal of that is to facilitate certain analyses such as 

filtering status [10].  

By comparing between two outputs VCF files, which have 

been generated using GATK, we noticed that additional 

annotation, Haplotype-Score, of each SNP has been obtained 

by using Unified Genotyper Algorithm [19] [32]. Also 

because Haplotype Caller does a local reassembly, applying 

indel-realignment is not necessary. For other variant callers, 

such as Unified Genotyper, which do not perform a local 

reassembly, this process is recommended in performing 

indel-realignment [19]. By comparing VCF files which have 

generated by GATK and SAMTools, we noticed that VCF 

files which have been produced by SAMTools provide us 

with only one annotation, Mapping Quality score (MQ), for 

each SNP at loci. 

2.4. Advanced Data Analysis for Evaluation Call-Sets SNPs  

In order to generate highly accurate call sets, hard filtering 

is applied. The filtering is performed based on the annotation 

of each single variant in order to obtain a higher accuracy for 

each call. Also, filtering uses fixed thresholds on specific 

variant annotations, as the goal of this project is to obtain 

reliable SNPs [29]. 

After extracting the genetic variants SNPs from the call set 

by Select Variants–select Type SNP/GATK software, the 

parameters for filtering SNPs are determined. This relies on 

extracting the essential information from a Variants Call 

Format (VCF) in a direct fashion by using Variants To 

Table/GATK software and gaining a comprehensive 

understanding of the information that is biologically 

significant. Then, filtering the SNP call-set is applied by 

Variant Filtration/GATK software under specific conditions 

(see table 1). The final product of this protocol is a VCF file 

containing high-quality variant calls that can be used in 

downstream analysis. Therefore, all SNPs which match any 

of these filtering conditions are considered as being of poor 

quality, are filtered out and are marked as FILTER in the 

output VCF file. In contrast, SNPs which do not match these 

fitering conditions are considered as good and marked PASS 

in the output VCF file [3] [10] [12]. 

R program language  
In order to view the distribution of the annotations for each 

SNP at loci, kernel density plots is used. The distribution 

allows comparing the same annotations, such as Mapping 

Quality (MQ), in each file call-set, while the y-axis indicates 

proportion. Therefore, low scores of these parameters are 

examined and only reliable SNPs have to be kept.  

Moreover, in order to obtain reliable SNPs with higher 

genotype quality, both Chi- Square test and P-HWE are 

computed by VCFTools [7]. However, selecting an appropriate 

level of certainty has been done initially. For example, a 

certainty, is referred as the P value or alpha value can be chosen; 

in this case, a certainty of 0.05 means that there is a 5% 

probability of there being a difference, when no such difference 

exists. For most scientific purposes, the level of certainty is 

arbitrarily set at 0.05, meaning there is only a 5% probability 

that the difference between observed and expected is due to 

chance alone [5] [14] [19] [20]. 

2.5. Visualization by Integrative Genomics Viewer (IGV) 

Data visualization plays a critical role in genomic data 

analysis such as Next Generation Sequencing NGS. The 
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major challenge with data visualization is dealing with large 

and diverse data which has been produced by sequencing. 

Nevertheless, the intuitive visualization of Integrative 

Genomics Viewer (IGV) relieves this problem.  

IGV [29] is known as a desktop platform for visual 

interactive exploration of integrated genomic datasets such as 

all NGS alignments. It is focused on visualization of the best 

validation and confirmation analysis results. Also, IGV is 

considered as a supporting tool for visualization at all scales 

of the genome, particularly NGS data due to its main 

characteristic, breadth. Moreover, IGV is a high-performance 

visualization tool and written in the Java programming 

language, that runs on different platforms such as Linux, for 

supporting researchers in visualization of genomic data 

including NGS data, variant calls. The goal of IGV 

visualization is to determine SNPs at the position on the 

chromosome. Moreover, IGV are stable, easy to assay and it 

allows for distribution along the genome with higher density. 

Therefore, IGV provides extensive platforms for supporting 

viewing variants which are stored in the VCF format. This 

format allows for encoding all variant calls such as SNPs as 

well as the supporting genotype information for each 

individual RADSeq [29]. 

3. Results of Data Analysis  

3.1. Pre-Processing Data for Mapping Sequences 

Bioinformatics tool, SAMTools flagstat, is used for 

statistical analysis such as which is used in order to determine 

the number of reads, the number of mapped reads, the number 

of base pairs and the length of fragments. Moreover, 

SAMTools depth calculation is used to determine coverage per 

locus as well as the Lander/Waterman equation [8] [11]. The 

range length of all RADSeq is between 30 and 150 base pairs 

(bp). However, the number of mapped reads can vary from 

each other as not all of the reads have been mapped. We have 

observed that some of the mapped reads are less than the total 

coverage of reads. The highest number of reads and mapped 

reads are detected in the same sample of next generation 

sequences (F2). Furthermore, the total number of reads is 

indicated, including mapped and unmapped reads. The 

maximum number of reads that is found in RADSeq datasets is 

1,127,969 in a sample RADSeq 334. In contrast, the minimum 

number of reads is 1,713 in sample RADSeq 285. Moreover, 

28.63% is the low map quality of the dataset that is detected in 

sample RADSeq 198 which then is excluded before calling 

variants. The reason for the lower map quality score is 

contamination during extraction of the RADSeq in the 

laboratory. In contrast, a higher map quality score reflects the 

presence of a sufficient amount of data, such as in the case of a 

sample RADSeq 301 (F2) where a score of 99.36% is 

determined. A higher coverage in shotgun sequencing is 

desired because it can overcome errors in base calling. 

Furthermore, it indicates a sufficient dataset can be obtained 

such as in a sample RADSeq 334 which is observed with the 

highest score of 46.48% that means each base in the reference 

genome has been sequenced between 46 and 47 times on 

average. In contrast, if the fragment has low depth of coverage, 

it is removed out before downstream analysis. The reason for 

filtering is to obtain a higher accuracy genotype which requires 

an increase in the average depth of coverage across all loci.  

For example, the sample RADSeq 276 is detected with an 

average coverage of only 1.515% as a minimum score which 

means that the average of each base in the reference genome 

has been sequenced only between one and two times in this 

sample.  

An example of IGV visualization of BAM file is shown in 

Figure 6 that insights into divergence regions for the 

alignments sequences are depicted. The visualization shows 

that for both mismatched bases, the A and G nucleotides have 

higher allele frequencies, while the T nucleotide has low 

allele frequency, such as in RADSeq 259, RADSeq 307 and 

RADSeq 338. 

 
Figure 6. Screenshot from IGV for mismatched and an insertion of a base A at Chr 5: 13,520,387-13,520,442.  

3.2. Processing Data for Calling Variants 

Both Genome Analysis Toolkit software and SAMTools 

are given the VCF, which is the main goal for variants 

discovery. VCF is a generic format that is used to store DNA 

polymorphism data, such as SNPs, with rich annotations in 

order to retrieve the variants from a range of positions on the 

reference genome. Although the call variants discovery is 
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able to detect mismatched nucleotides, some of these 

mismatches are introduced as errors. 

The reasons of these errors can be noted as the following: 

1) preparing the sample libraries at the wet lab, 2) machine 

errors when sequences are generated from the libraries, and 3) 

software and mapping artifacts when the reads are aligned. 

Therefore, quality filtering of variant calls is an essential step 

that is performed due to the fact that not all variants that we 

called are necessarily of good quality. Therefore, 

understanding the annotations comprehensively is useful for 

filtering data.  

3.3. Advanced Data Analysis for Evaluation Call-Sets SNPs 

By determining the parameters for the hard-filtering step, a 

higher quality of normalization of the depth of sample reads 

can be obtained by Qual by Depth (QD). Additionally, the null 

hypothesis indicates that the number of heterozygotes under 

HWE has been studied. Moreover, Moreover, when the 

mapping qualities, or the root mean square (RMS), are around 

60, the site is considered to be good which indicates that the 

RMS has a higher accuracy. In practice, when evaluating the 

variant quality, we only filter out low negative values for all of 

the annotations of MQ Rank Sum, Read Pos-Rank Sum Test 

and Base Quality Rank Sum. The reason for filtering these low 

negative values is to filter out variants for which the quality of 

the data supporting the alternate allele is comparatively low. 

Moreover, there are some missing values in some tests such as 

Rank Sum Test due to that this test has only been applied on 

heterozygous alleles, with a mix of reads bearing the reference 

and the alternate alleles [23]. Additionally, hard filtering allows 

to update the new recalibrated VCF file which stores only 

variants with higher accuracy.  

3.3.1. Hard Filtering Results 

All SNPs`annotaions that are used in order to filter out bad 

SNPs as shown in Table 1. 

Table 1. 1st caller-Haplotyper with joint genotypes, 2nd-caller Unified 

Genotyper, 3rd SAMTools, 4th refinement SAMTools.  

Annotations 1st 2nd 3rd 4th 

QD < 2.0  < 2.0  - - 

Excess Het   > 8.0 > 8.0  - - 

MQ   > 62 | | <57  > 60 | | <58  <57.4 <57.4 

MQ Rank Sum  < -0.5  < -6.0  - - 

Read Pos Rank Sum  < -1.0 < -16.0  - - 

Base Quality Rank Sum  < -2.0  < -4.0  - - 

FS  > 15.0  > 6.0  - - 

SOR  < 2.0 | | >2.5 <1.45 | | >1.75  - - 

Haplotyper Score - > 1.8 - - 

Two examples for data distribution in Figure 7 and Figure 

8 which show values for SOR test and QD test for all SNPs 

which have been called by Haplotype Caller with Joint 

Genotypes. 

 
Figure 7. SOR values distribution for unfiltered variants. 

 
Figure 8. QD values distribution for unfiltered variants. 

The generic filtering recommendation for QD is to filter 

out variants with QD below 2. This is because homozygous 

variants RADSeq contribute twice as many reads supporting 

the variant than do heterozygous variants. Moreover, The 

hard filtering recommendations tell us to fail variants with an 

SOR value greater than 2.5 or less than 2.  

The goal of statistical analysis is to calculate how many 

genotypes of each SNP present at each loci. In order to be 

more specific, the times of genotype at each chromosome are 

computed. The most prevalent genotype repeats indicates the 

genotype majority in a population for the RADSeq, while the 

minority of individuals is represented by the least prevalent 

genotype repeats at this loci. The main aspect to determine 

genotype frequencies in a population is to test how they are 

in the next generation sequences. Therefore, Hardy-Weinberg 

equilibrium (HWE) principle is studied comprehensively 

because it informs us about the probability of genotype 

frequencies in that population [15]. Finally, both the Chi-

Square and P-value according to HWE are calculated by 

VCFTools in order to indicate that the frequency of alleles in 

a population remains stable from generation to generation. 

Moreover, the statistical test, Chi-Square test, is considered 

as the goodness of fit to determine whether the SNPs at each 

position have a significant difference between the number of 

actual (observed) genotypes and expected genotypes or not 

[33]. 

3.3.2. Results of Critical Values for Chi-Square Test  

The certainty cutoff of critical value for Chi-Square test is 

determined by 3.84. Reliable SNPs have a critical value of 

Chi-square less than 3.84 and their distribution is shown in 

Figure 9. 
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Figure 9. Density distribution for critical value of Chi-Square test for each 

SNPs. 

3.3.3. Results of P-Values 

The four plots shown in all Figure 10, Figure 11, Figure 12 

and Figure 13 show the distribution of all P-values calculated 

for each SNP at loci. Reliable SNPs have P-value greater 

than 0.05. In contrast, all SNPs that have P-values < 0.05 are 

rejected (false positive). We noticed that only by Haplotype 

Caller with joint genotypes algorithm have more reliable 

SNPs, which have been detected. 

 

Figure 10. P-values by first procedure. 

 
Figure 11. P-values by second procedure. 

 
Figure 12. P-values by third procedure. 

 
Figure 13. P-values by fourth procedure. 

3.4. Visualization for Reliable SNPs 

Figure 14 shows a first example for visualizing genomic 

data of RADSeq. This variant has a higher genotype quality 

score more than 20 that indicates higher accuracy at this 

position, which has been called by Unified Genotyper 

algorithm.  

 
Figure 14. Screenshot from IGV for visualization shows the homozygous 

reference (gray color) with only one heterozygous variant (dark blue), 

RADSeq 254. 

Figure 15 shows a second example having homozygous 

variants (cyan color) such as in RADSeq 192 at this position 

which has been called by Refinement SAMTool Caller 

algorithm. 
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Figure 15. Screenshot from IGV for homozygous variants such as in 

RADSeq 192 at this position. 

The third example, Figure 16, of RADSeq 197 shows 

homozygous reference (gray color) and homozygous variants 

(cyan color) with heterozygous variants (dark blue) which 

has a higher genotype quality score more than 60 and 

indicates higher accuracy of (more than 99.9999%) that has 

been called by Haplotype Caller algorithm. 

 
Figure 16. Screenshot from IGV for visualization data in RADSeq 197. 

Results of Chr C: 

The fourth example is shown in Figure 17 of SNPs in 

genetic material on the chromosome of chloroplast (Chr C). 

These should all be 1/1 homozygous variants as mother`s 

alleles such as the genetic variants at this position has been 

called by Unified Genotyper procedure of Chr C. 

 
Figure 17. Screenshot from IGV for homozygous variants for SNPs in 

genetic material for Chr C. 

4. Conclusions & Suggestions 

The goal of this new genomic study was to identify high 

density of markers across genomes using NGS techniques 

such as RAD-Seq, particularly in organisms for which few 

genomic resources presently exist. RAD-seq data was used to 

identify SNPs and distinguish homozygous and heterozygous 

variants in a population of Arabidopsis thaliana obtained by 

crossbreeding two strains. To accomplish this, a customized 

pipeline was used that included four different variant callers 

which are based on the Genome Analysis Toolkit (GATK) 

[30] and SAMTools/BCFTools [11] [15] [30]. Both GATK 

and SAMTools produce genotype information in groups of 

individuals. These tools are meant to operate on top of a 

genome, for example by detecting nucleotide variants 

through matches to the reference sequence.  

Other previous pipeline is available to provide several 

common output formats to integrate Stacks-generated 

genotype data of RAD-Seq with downstream analysis 

packages. In contrast, SAMTools/BCFTools and GATK can 

call SNPs in multiple samples of RAD-Seq and then can 

generate allele frequencies, but all populations are managed 

by hand as merging all BAM files in order to obtain one VCF 

file that consists of multiple samples, as compared to the 

integrated way that this occurs in Stacks. Furthermore, Stacks 

was developed to have at its core a catalogue that works as an 

internal reference for each project regardless according to the 

presence of a genome [6].  
All of these tools, the analysis ends with lists of SNPs 

(‘analysis ready variants’) that can be used in subsequent 
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analyses but with some difficulty for the following reasons. 

First, some SNPs have been detected due to errors during 

variant calling. We could divide the SNP calling errors into 

three classes: 1) preparing the sample libraries at the wet lab, 

2) machine errors when sequences are generated from the 

libraries, 3) software and mapping artefacts when the reads 

are aligned. Therefore, quality filtering of variant calls is an 

essential step that has been applied in order to minimize false 

positive. Therefore, in order to obtain high specificity, a 

number of filters were applied to eliminate false positives. 

Second, parameters/thresholds required for the filters needed 

to be set comprehensively in dependence of the data obtained. 

Third, the final step consisted of the visualization of the 

variants using Integrative Genomics Viewer (IGV) is 

required. In contrast, a Stacks analysis starts with raw 

sequencing reads and then progress through all analysis steps 

to generate allele and genotype calls, a number of core 

population genetics statistics and formatted output files [6].  

Finally, the results in this study were very consistent and 

indicated new pipeline for variants calling using NGS data, 

especially RAD-Seq is developed. Thus, the pipeline presents 

a valuable tool for exploring homozygous and heterozygous 

variants. We concluded that results from our study will 

provide practical and comprehensive guidance to more 

accurate and consistent variant identification. On this basis 

further research might be conducted as in the following: 1) A 

comprehensive study of those genotypes for variants that 

have been detected and refined. As most SNPs are found 

within protein coding regions, to characterize the function 

impact of each SNP would be interesting. For example, if the 

coded amino acid does not change the protein, it is called a 

synonymous SNP (as the codon is a 'synonym' for the amino 

acid), while if the coded amino acid causes a change in the 

protein, it is called a non-synonymous SNP, 2) the 

identification of genetic markers that have typically been 

involved in marker discovery of SNPs using RAD-Seq could 

be used in the future to associate with the phenotypes. That is 

to study variants which are associated with a phenotype 

could be comprehensively studied in the future. 
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