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Abstract: This article describes small neurotransmitters as particles of a spinless quantum field. That is, the particles are 

Bosons that e.g. can occupy equal energy levels. In addition, we consider the particles of the presynaptic region before 

exocytosis occur as elements of a grand canonical ensemble that is in a thermodynamic equilibrium. Thus, the particles obey 

the Bose-Einstein statistics, which also determines the corresponding information entropy and the corresponding density 

matrix. When the release of neurotransmitters occur, the equilibrium collapses and the Bose-Einstein distribution transfers to 

the Poisson distribution. Moreover, the particles transmit as wave packets, with quantized energies and momenta, through the 

chemical synapses, where we also describe the effects of the quantum fluctuations. We mark this symmetry braking process 

that corresponds to a non-equilibrium phase transition by a threshold, which mainly depends on the mean of the particles 

number, with defined quanta. We model the connections of synaptic neurons of a population to a network by Hamiltonians that 

include both Bosons and Fermions and their interactions. Bosons are the carriers of messages (information) and Fermions are 

the switches, which forward these messages, with a modified content. The effects we observe in such a neural circuitry reveals 

a strong dependence of the solutions from the initial values and, more relevant, solutions with chaotic behavior exist. These 

circuitry-based ramifications together with possible internal malfunctioning of particular neurons (e.g. intermitted flow) of the 

network cause a sustainable reduction of the synaptic plasticity.  

Keywords: Quantum Field of Bosons, Thermodynamics, Symmetry Braking, Quantum Fluctuations,  

Neural Quantum Circuitry 

 

1. Introduction 

Several authors over years already analyzed and described 

quantum effects in the brain as a part of the comprehensive 

field of quantum biology [20]. For example, quantum 

computation in the brain and consciousness [3], [10], 

quantum dynamics in noisy environment [15], and molecular 

robotics [21]. 

Here, we focus upon internal processes of synaptic 

neurons and their connections to non-dendritic networks by a 

combination of the methods of the quantum field theory and 

thermodynamics. This implies that we consider small 

neurotransmitters as particles of a spinless quantized field 

that obey the commutation rules of Bosons, and the 

correlation function of two Bosons at different times is zero, 

when their momenta are unequal. The last mentioned effect is 

relevant when we analyze the impact of quantum fluctuations 

(coherent or incoherent solutions) of the released wave 

packets into the synaptic cleft. 

A grand canonical ensemble characterizes the 

thermodynamic equilibrium of the particles before their 

release; therefore, the Bose-Einstein distribution function is 

relevant. The ensemble represents an open system, with 

reversible transitions. This implies that the number of 

particles in the ensemble changes, when we evaluate the 

variations of free energy and of the entropy. Here, the 

entropy plays a dominant role; because it also delivers the 

density matrix evaluated by a combination of quantum field 

theory and the Bose-Einstein statistics.  

We describe the release process of particles, with respect 

to a particular variance-based threshold defined by the 

relevant distribution function. Well beneath this threshold, 
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the Bose-Einstein statistics is applicable; since the 

equilibrium state of the grand canonical ensemble is stable 

and no particles are send out. In the region of the threshold, 

the Bose-Einstein statistics with an intermediate variance 

characterizes this region. We approximate the corresponding 

distribution function by a Gaussian function, whose variance 

is equal to the mean expectation value of quanta with a given 

value. Well above the threshold, the equilibrium collapse, 

because the released particles transmit with higher quantized 

momenta through the chemical synapses and the on-going 

processes in the cleft inhibit a thermodynamic equilibrium. 

However, the spilling out of particles nevertheless represent 

discrete events, which are now “governed” by the Poisson 

distribution. This distribution describes a steady flux of 

particles and stable densities of them, where both effects 

together are strong enough to cause persisting, non-

intermitting effects at receptors.  

The transition from the equilibrium state to a non-

equilibrium state together with the variation of the 

distribution functions represent a symmetry braking that is 

called non-equilibrium phase transition [13].  

The interplay of “senders” (SNAREs and vesicle fusion at 

the active zone) and receivers represent a kind of self-

organization between the pre- and postsynaptic regions of 

two connected neurons. We distinctly extend the aspect of 

self-organization, when we describe a linear network of 

neurons, which also could be to a ring. We calculate this part 

of our contribution is completely with methods of quantum 

field theory, where we also include the interaction between 

Bosons (carriers of messages) and Fermions (switches of 

messages). We perform these investigations to present what 

kinds of effects of non-linear dynamics and chaotic effects 

are observable in continuous quantum circuitries. Such 

networks are not comparable digital quantum computers 

(coherent states) since quantum fluctuations and noticeable 

noise effects occur.  

The relevant, temporal threshold of a neuron is the time to 

fill, exocytose and recycle synaptic vesicles that is regularly 

done within one minute [23]. Thus, disruptions or 

retardations of the synaptic transmission in one neuron can 

cause e.g. malfunctioning of receivers (neurological 

diseases). However, we also have to consider the additional 

effects, e.g. chaotic behavior that might occur in neural 

networks, since these effects reinforce the malfunctioning of 

individual neurons.  

2. Particles (Materials) 

2.1. Small Neurotransmitters Are Components of a  

Non-Relativistic Quantized Field 

We investigate in this contribution to that parts of the 

transmission cycle of chemical synapses, performed by nano-

sized neurotransmitters like amino acids (approximately 

1nm) or amines (approximately 1-2 nm). Moreover, we 

presume that these small molecules are Bosons, which we 

treat as components of the corresponding non-relativistic 

quantized field [22]. In other words, each small molecule 

represents one field quantum, with quantized energy �� =ℏ��	and momentum 	� = ℏ	�, where k is a discrete wave 

vector and ��	 denotes the circular frequency. The wave 

vector k is discrete, since we use the box normalization, 

because small regions (e.g. cell, synaptic cleft) enclose the 

particles. The operator �	�
(�) creates and the operator �	�(�) 
annihilates one field quantum at time t, where for reasons of 

clarity operators we label operators by a “hat”		̂. Further, we 

point out that all our calculations are perform in the 

Heisenberg picture [26], [14], therefore, these two operators, 

as all operators, are time dependent. We chose this 

representation with respect to the frequent time dependent 

changes of states, e.g. in synapses. The operator product 

�	�
(�)	(�)	�	�(�) = 	���(�)	  defines the number operator, 

whose eigenvalue ��(�)  counts the number of particles, 

which are in the state k at time t. More formally, the 

eigenvalue equation of the number operator reads 

���(�)|��(�) >= ��(�)|��(�)�, with	��(�) = 0, 1,2, ….  (1) 

where the normalized eigenvector reads 

|��(�)� = �
(��(�)!)�/�  �	�
(�)!

��
	
(�)	|0�.                 (2) 

The many particle state takes the form  

|���(�), ���(�), … , ��"(�) >,                       (3) 

where the different eigenvalues ��#(�) = 0, 1, … , $ = 1… , � 

of the number operators ���#(�) describe different particles, 

which all exist in parallel (simultaneous eigenfunctions of ���#(�)).  
The field momentum %  and the field energy �  of an 

ensemble of non-interacting spinless particles at some time t 

are 

% = ∑ ��(�)ℏ	�� = ∑ ��(�)	���  and	� = ∑ ��(�)ℏ�� = ∑ ��(�)���� ,                                         (4) 

where ��(�)  counts the number of particles, which are in 

state	�. 

Since, each ��(�) specifies only the number of identical 

particles, with energy state ��	and momentum state ��  (k-

mode of the field that corresponds to a particular oscillator), 

the bosonic particles are indistinguishable. 

For a spin 1 field (massive vector field) we have to amend 

the previous formulas (4) by the polarization parameter ' 

% = ∑ ∑ ��,((�)��)(*��  and � = ∑ ∑ ��,((�)��)(*�� .        (5) 

For brevity, we evaluate in the following the situation of 

spin 0 particles. Further, we relinquish to the description of 

additional details of the quantum field theory and refer to the 

literature, e.g. [4], [25]. 

2.2. Small Neurotransmitters Are Components of a Grand 

Canonical Ensemble in a Thermodynamic Equilibrium 

State 

We consider all Bose particles (neurotransmitters) as 
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elements of a grand canonical ensemble before the exocytosis 

occur. In more details, there exist two systems +,-� and +.�� , 
separated by a semi-permeable membrane (vesicle 

membrane) and both are as well in thermal as in diffuse 

contact. Therefore, between both systems can exchange heat 

and particles. The greater, outside system +,-�  denotes the 

cytosol of a presynaptic neuron, which serves as a thermal 

reservoir (heat-bath) and a particle reservoir. The external 

system +,-�  enclose the smaller, open system +.��  that 

denotes the inside of a vesicle, which represents an open, 

reversible system. Since +.�� is open, diffusion processes of 

neurotransmitters can take place from +,-�  into the vesicles 

and vice versa from +.��  into +,-�  (e.g. GABA and 

Glutamate). 

The total number of particles ��/�of both systems 	��/� =�,-� + �.�� , where ��/�  also includes all neurotransmitters, 

which diffuse from the extracellular fluid, e.g. GABA and 

Glutamate, into the cytosol (+,-�) of the presynaptic terminal. 

The total number of particles is time-dependent, but for a 

short time period about 60 s we assume that ��/� is constant 

as it requested for a grand canonical ensemble. We chose the 

duration of this temporal condition, because within one 

minute the vesicles are filled, exocytosed and recycled [23]. 

Two chemical potentials: 1,-�  and 	1.�� drive the exchange 

of particles (influx and efflux) between both systems [19], 

[17]. When, for example	1,-� > 1.��, then the particles flow 

from the particle reservoir +,-� into	+.�� . The standard unit of 

the chemical potential is k G, where G is one Gibbs	= J mol⁄ ; 

in our case the unit: J number	of	particles⁄  (resp. chemical 

energy per particle) is more appropriate.  

The two systems +,-�  and +.��  are in a thermodynamic 

equilibrium, when they are in a thermal equilibrium state at 

constant temperature T and no diffusion of particles appear 

(1,-� = 1.��). This also implies that a quantum-mechanical 

system in a thermodynamic equilibrium can exist in one or 

another state of temperature, where different numbers of 

particles constitutes each of these states. The effective energy 

of both systems is 	�,CC = �,-� + �.�� − 1�/� , where 

1�/� = 1,-� + 1.��  denotes the total chemical potential of 

both systems. 

We chose the representation of a grand canonical ensemble 

as a supplement to the quantum field approach, because it 

also comprises all relevant thermodynamic quantities. 

Moreover, such an ensembles delivers an appropriate 

description of open systems without interactions (free 

particles). We describe the relevant quantities of a grand 

canonical ensemble, e.g. free energy and information entropy 

in sub-chapter 3.1. 

3. Processes 

We investigate quantum processes in the following three 

neural areas [8], [9]: Presynaptic area, synaptic cleft and 

postsynaptic region. Furthermore, we describe a population 

of neurons that as well shows chaotic effects. In the 

presynaptic region, we focus to the pre-release phase, where 

we proceed from a grand canonical ensemble (sub-section 

2.2.) 

The processes in the synaptic cleft (excluding the release 

phase) do not more describe a grand canonical ensemble, 

because the system is in a thermodynamic non-equilibrium 

state. The reasons for this non-equilibrium are fourfold.  

At first, we have to apply for particular components of the 

cleft the principles of the thermodynamics of dilute solutions. 

That is, we can evaluate the corresponding expression for the 

entropy, energy, free energy etc. in a similar way, as we will 

do it in sub-chapter 4.1. For example, the differential change 

of the entropy S in a diluted solution, while the energy and 

the volume change, but the quantities �E, ��, … , ��  do not 

vary [6] [16] 

(F+)GH,,…,G"F+ = IJ
K = �

K∑ �.(FL. + MFN.)�.*E ,        (6) 

here �E moles of the solvent (typically water) are present and 

the quantities �� to �� denote the moles of several dissolved 

substances O.. Further, L. represents the energy of one mole 

of the fraction �. �E⁄  of the solute O.  and N.  marks the 

volume of one mole of the same fraction as for the internal 

energy	L.. However, we will not calculate these expressions 

since they are not relevant for quantum based processes.  

At second, typical solutes are dissolvable 

neurotransmitters (e.g. Acetylcholine) and ions like 	NaQ,	ClS,	CaTQ , etc. All processes, where solid substances 

dissolve can also be in states of chemical equilibria in 

solutions. However, we do not consider such states in this 

article, since we do not want to describe chemical equilibria 

in solutions.  

At third, there also exist proteins, which not hydrolyze, but 

can interact with other proteins. Further, also small 

transmitter molecules can interact. Therefore, not all such 

interactions are part of a grand canonical ensemble in 

equilibrium state. 

At forth, the enzymatic degradation remove in parts 

transmitted neurotransmitters from the synaptic cleft during 

their transmission [2]. This removal represents an interaction, 

and not a reduction of a particle number in a varied 

thermodynamic equilibrium state. The remaining 

mechanisms to remove particles from the cleft are the 

diffusion through the extracellular fluid and re-uptake goes 

on after the released neurotransmitters reacts with 

postsynaptic receptors [18]. 

It is obvious that we do not direct this article to the 

investigation of the quantum-based thermodynamics of dilute 

solutions. In the cleft region, we focus at first to the release 

of the small transmitters, which corresponds a non-

equilibrium phase transition. We describe this process by a 

threshold that differentiate between the two different 

distribution functions: Bose-Einstein probability function 

beneath the threshold and the Poisson distribution above the 

threshold. At second, we describe the corresponding 

variations of the relevant thermodynamic quantities.  

We already described the quantum-based diffusion of 

neurotransmitters through the cleft in [15], therefore, we omit 

it here.  

In the postsynaptic region we delineate our impact to two 

different distributions (Bose-Einstein statistics and Poisson 
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processes) generating pulse-trains (spiking neurons) that take 

place at random times.  

In short, we consider three different types of processes. 

First, we consider open systems where reversible processes 

occur, which are in the states of thermal equilibrium. The 

entropy of reversible cycles is zero. Second, we assume that 

the thermodynamic equilibrium states can get unstable and 

non-equilibrium transitions emerge. This means that a 

threshold exist, which separates the states of the system in 

two parts. Beneath this threshold, the system is in an 

equilibrium state, above the threshold the system changes to 

a non-equilibrium state. This is a typical case of symmetry 

braking [13].  

4. Results 

4.1. Pre-Release Phase: Particles are Components of a 

Grand Canonical Ensemble in Thermodynamic 

Equilibrium States 

Now, we focus our attention entirely to the small 

subsystem system +.��  of a grand canonical ensembles, 

because the number of particles �.�� is much smaller as that 

one of �,-�	(�.�� ≪ �,-�) and this inequality pertains for the 

energies 	�.�� ≪ �,-� . We consider the great system +,-� 	 as 

an assembly of copies of the small subsystem	+.�� . For this 

reason, we drop the subscript $�� for all relevant quantities 

(e.g. 1 = 1.��) of +.��. Further, in this sub-section we will not 

derive these characteristic quantities and do not elaborately 

discuss them. 

The distribution function of the Bose-Einstein statistics at 

the thermodynamic equilibrium at temperature T and 

chemical potential 1 of +.�� is  

VWX(��(�)) =  YSZ(X�	S[)!��(�)(1 − YSZ(X�	S[)),        (7) 

where ��(�)  denotes the of number of Bosons at time t, 

which occupy the energy level ��	(resp. are in the state 	�), 

the Boltzmann´s constant \W	and the absolute temperature T 

determine the parameter ] = 1 \W^⁄ .  

In our quantum-based approach, the transformation of 

formula (7) into the following equivalent expression is more 

appropriate  

VWX(��(�)) = _ 〈��(�)〉	
〈��(�)〉Q�b

��(�) �
(〈��(�)〉Q�),                  (8) 

where 〈��(�)〉 denotes the mean number of the particles, with 

energy ��	 at time t.  

Notice that in our approach both quantities ��(�)  and 〈��(�)〉	are time dependent (Heisenberg representation) as we 

mentioned already in the previous subsection 2.1. This means 

that in thermodynamic equilibrium, with greater duration, 

e.g. the quantities ��(�) and 〈��(�)〉 stay constant as in the 

classical time-independent approach. Only if the system 

transfers into a new equilibrium state (reversible system), 

then we observe for both quantities new values, since e.g. the 

temperature changes. 

The calculation of the expected value 〈��(�)〉 needs some 

explanation, with respect of the connection between the 

accustomed evaluation of such values in the QFT [26] and 

the calculation of expectation values by the Bose-Einstein 

statistics, expression (8). 

A state in a many particle system of non-interacting, 

identical particles is denoted by the normalized particle 

state 	|���(�), ���(�), … , ��#(�), … c , where each ��#(�)	 
represents the occupation number of the ith one-particle state, 

equation (2). The expectation value	〈��#(�)〉 reads 

〈��#(�)〉 = 〈���(�), ���(�), … , ��#(�), … |		��#(�)	|���(�), ���(�), … , ��#(�), …	〉.                                     (9) 

Obviously, this calculation of 〈��#(�)〉 is not the one which 

delivers the transformation between the formulas (7) and (8). 

To achieve this transformation we presume at first, that all 

particular expected values are settled by the 

presumption 	〈��#(�)〉 = 〈��#(�)|		��#(�)	|��#(�)〉 = ��#(�) , 

that is ��H(�) = 0, ���(�) = 1, etc.  These specific expected 

values are then multiplied with the probability 	MWX(��) , 

expression (7), and finally we sum up these products 

〈��(�)〉 = (1 − YSZ(X�	S[))∑ 〈��#(�)|		��#(�)	|��#(�)〉 YSZ��#(�)(X�	S[)! =��#eH
�

,f(g�	hi)S�                                   (10) 

The combination of QFT-methods with the Bose-Einstein 

statistics is presumably more understandable if we operate 

with the density matrix 

j�(�) = �
k� YSZ	G�l	, with ��m = (��	 − 1)��# , $ = 0, 1, . . .. (11) 

The normalization factor n� (trace j� = 1)	 is defined by 

the partition function  

n� = trace YSZ(X�	S[)G�#(�)! = 	∑  YSZ��#(�)(X�	S[)!��#eH = �
�S,hf(g�	hi)                                        (12) 

The expected value of the number of particle, which are in the same state k  

〈��(�)〉 = trace	(j����) = �
k� ∑ 〈��#|		��# 	|��#〉 YSZ��#(X�	S[)! =��#eH 	                                              (13) 
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1
n� o ��# YSZ��#(�)(X�	S[)! =

��#eH
 1 − YSZ(X�	S[)! YSZ(X�	S[)

 1 − YSZ(X�	S[)!T = 1
YZ(X�	S[) − 1 

is equivalent to the result of the direct calculation of ∑ ��(�)	MWX(��(�))��(p) . The total internal energy and the 

total number of particles follow both obviously from 

expression (13) 

〈�〉 = ∑ trace( �
k� YSZ	G�l(�)	q) 	=	� ∑ 〈��(�)〉	��	� .     (14) 

The expected value of the total number of particles is 

〈�〉 = ∑ 〈��(�)〉� .                               (15) 

In addition, we express the expectation value of the field 

momentum by 

〈%〉 = ∑ 〈��(�)〉	��� .                             (16) 

The change of the mean internal energy of a system in 

thermal equilibrium is  

F〈�〉 = ^F+ − MFr + 1F〈�〉.                      (17) 

When the volume changes at a constant temperature, then 

the variation of the expected energy 〈�〉  is caused by the 

change of the heat Fs = ^F+  received by the system, S 

denotes the entropy (26), and the work performed by the 

external forces on the system is denoted by−MFr, where p is 

the pressure and V the volume. The third energetic 

component 1F〈�〉 completes the law of energy conservation; 

it indicates the energy originating by the variation of the 

number of particles through their exchange with the 

environment. It is obvious that we formally can determine 1 

by the following partial derivative, while we held ^	and	r 

constant 

1 = _t〈X〉
t〈G	〉bK,u .                                 (18) 

We achieve another essential characterization of the 

quantity 1	  when we indicate that the free energy F 

(respectively the entropy S) of a system is changing if we 

increase or decrease the number of molecules 〈�〉 (particle 

exchange with the environment). Hereby, the transport of 

molecules from a region of higher particle concentration to 

lower particle concentration release free energy. Altogether, 

it is obvious that the chemical potential is an abstraction of 

molecular  

The following equation defines the free energy F  

v = 〈�〉 − +^ = 	 〈�〉 − \W^∑ ln(〈��(�)〉 + 1)� − (〈�〉 − 1〈�〉) =                                        (19) 

−\W^∑ ln(〈��(�)〉 + 1) + 1	〈�〉� , where 

〈��〉 + 1 = n�.                                   (20) 

The free energy has a minimum, when no work by the 

system or by the environment has been performed, that is the 

system is in a state of stable thermodynamic equilibrium: 

Fv= 0 and	1F〈�〉 = 0. 

Besides the distribution function (7) and the chemical 

potential, 1  the following thermodynamic quantities are 

characteristic for a grand canonical ensemble. The quantum 

mechanical partition function of a grand canonical ensemble 

is 

w = ∏ trace	 YSZG�l(�)! = ∏ ∑ YSZ��(�)(X�S	[)���� = ∏ n�� ,                                                   (21) 

where n�	 represents the partition function of the canonical 

ensemble which is only composed by one kind of particles. If 

m different particles compose this ensemble then we have to 

supplement the exponent of partition function w  (21) by a 

sum of modified exponential terms  

wy = ∏ ∑ YSZ��z(�)(X�S	[�)��z ,��{ ,…��|e}	� YSZ��z(�)(X�S	[�). . . YSZ��|(�)(X�S	[~),                                 (22) 

= � �� n�[#
� �� , 

where the index $ = 1, 2, … ,�	 specifies the kind of the 

transmitters and the particular partition function reads 

n�[# = �
�S,hf(g�	hi#).                                 (23) 

For the sake of simplicity, we will in the following only 

consider one kind of particles because all quantum relevant 

features of free particle are already visible, when we focus to 

one kind of particles (e.g. amino acids).  

The partition function w  (21) has the remarkable feature 

that we can derive important thermodynamic quantities from 

it. Therefore, the thermodynamic potential (grand potential) 

at constant pressure is 

Φ = −\W^	ln	w = −\W^	 ∑ 	ln� (〈��(�)〉 + 1) = v − 1	〈�〉,                                            (24) 

which again delivers important items of the statistical physics 

by calculating partial derivatives, where some parameters 

held fixed. Therefore, for example the entropy +  and the 

expected value of all particle of the ensemble 〈�	〉	are  

	+ = −_t�tKbu,[and 〈�	〉 = − _t�t[bK,u	                  (25) 
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Φ  gets minimal at a stable thermodynamic equilibrium, 

while we held the pressure constant. 

Despite this obvious, remarkable usefulness of the 

thermodynamic potential Φ  we prefer to operate with the 

distribution function MWX  of the Bose–Einstein statistics 

because this method can also be applied to different 

distribution functions, which are relevant for systems that are 

not in an equilibrium state (non-equilibrium phase 

transitions), [13]. Thus, if we calculate the entropy S with the 

aid of the distribution function (6) then we get  

+ = −\W ∑ MWX(��(�))	ln	MWX(��(�)) =�,�� .         (26) 

\W o ln(〈��(�)〉 + 1)� + 1
^ (〈�〉 − 1〈�〉) 

The entropy S is of great importance because it delivers the 

information of the whole ensemble and it provides a measure 

of the emitted power of the whole system. The entropy S is a 

maximum in a stable thermodynamic equilibrium. Again, we 

can reproduce the expression (26) by its calculation by the 

use of the density matrix	j�(�), formula (11) 

+ = −\W ∑ trace	(� j�(�)lnj�(�)).                  (27) 

We will perform the same calculations (26) and (27) in 

sub-chapter 3.2. for systems, which are not in an equilibrium 

state, therefore we call these quantities information entropy, 

because they do not determine the quantity entropy in a 

strong sense, which is only defined in equilibrium states. 

The connection of the free energy F with the entropy +, 
while keeping the volume constant, is expressed by  

t�
tK = −+ + 1 t

tK (〈�〉) = −+ + 1 Z
K 	∑ (�� − 1)	��T� .   (28) 

Here, 	��T	 denotes the variance  

��T = 〈��T〉 − 〈��〉T = 〈��〉(〈��〉 + 1) = ,f(g�hi)
_,f(g�hi)S�b�,   (29) 

where the term 〈��T〉 is given by  

〈��T〉 = ,f(g�hi)Q�
_,f(g�hi)S�b�                          (30) 

This kind of variance (29) is characteristic for the Bose 

Einstein statistics. This means e.g. that the released 

transmitters into the synaptic cleft exert a bunching effect 

which cause a strong variation of the density of transmitters 

(number of transmitters) during a fixed time interval. There is 

no continuous flow of transmitters, which impinge on 

receivers. The same effect also occurs for the emitted 

photons of a lamp. 

It is obvious, if 
t
tK (〈�〉)	is zero, then the second term on 

the right side of equation (28) can be dropped and the 

standard equation 
t�
tK = −+ gets valid.  

The infinitesimal change of the entropy (F+)u  during a 

reversible state transformation, while keeping the volume V 

constant, is given by 

(F+)u = IJ
K − 1F〈�〉,                           (31) 

where Fs is the amount of heat received by the open system 

(s ≠ 0) at the temperature T [6].  

When F〈�〉 = 0 then we get for the infinitesimal variation 

of the entropy the result  

(F+)u = t�
tK F^ = Z

K� 	∑ ��(�� − 1)	��T� F^ = IJ
K = I〈X〉

K ,  (32) 

When 	F〈�〉 ≠ 0, then the calculation of F+  delivers the 

standard formula  

(F+)u = IJ
K − 1F〈�〉 = Z

K� ∑ (�� − 1)T� 	��T dT.     (33) 

The specific heat (heat capacity) �u	  of a substance 

confined in a constant volume is defined by the partial 

derivative  

�u = ^ _t�
tKbu = t

tK (s − 1〈�〉)u = t
tK (〈�〉 − 1〈�〉)u = Z

K 	∑ (�� − 1)T��T� 	.                                 (34) 

This quantity characterizes the amount of the variation of 

the reduced heat	s − 1〈�〉 that is absorbed by the molecular 

substance to increase the temperature T (or vice versa). The 

specific heat �u is a measure of the thermal efficiency of the 

substance [12]. 

Up to now, we did not varied the volume V of the system 

at a constant temperature. We already expressed the 

corresponding infinitesimal change of the expected total 

energy by equation (17). The amount of this change of the 

energy can be directly derived from the equation (15) and 

from the explicit calculation of the expression	1F〈�〉: 
F〈�〉 = ∑ 	F��	〈��〉 −� ]∑ 	��	F��	��T − 1]� ∑ F��	��T	� .   (35) 

The first term denotes the expression	−MFr , the second 

term constitutes Fs and the last term indicates	1F〈�〉 [7]. 

The infinitesimal change of the entropy	(F+)K, when the 

volume is varied, the temperature T is held constant and the 

variation of the expected particle number is not zero	(F〈�〉 ≠0), is expressed by 

(F+)K = −\W] ∑ 	F��	〈��(�)〉� + �
K (F〈�〉 − 1F〈�〉) =   (36) 

− �
K ∑ 	F��	〈��(�)〉� + �

K (Fs − MFr) =
− �

K ] ∑ ��	F��	��T� = IJ
K . 

The system generates the heat themselves (exothermic 

process), therefore the quantity Fs  is negative. The 

correctness of the expression (36) can be easily confirmed, 

when we solve the equation (17) for 	F+ . According to 

equation (17), the general, differential variation Fv  of the 

free energy (19), while the volume V, temperature T and the 

particle number is not constant, reads 
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Fv = −+F^ − MFr + 1F〈�〉 = −+F^ + ∑ 	F��	〈��(�)〉 +� 1 Z
K 	∑ (�� − 1)	��T� .                                      (37) 

4.2. Release Phase: Non-Equilibrium Phase Transition 

In the molecular view, the arrival of action potential r�� 

triggers the opening of a gated calcium channels (selective 

permeability) for CaTQions. The driving force that initiates 

the diffusion of CaTQions due to their high concentration at 

the presynaptic membrane into the region of low calcium 

concentration at the cleft we can describe by additional ionic, 

chemical potentials 1����, 	and	1����,C� . The resulting elevation 

of the presynaptic calcium concentration causes the release of 

the neurotransmitters. The calcium influx into the synaptic 

cleft terminates, when the corresponding ionic equilibrium 

state is established if	1����, = 1����,C� . 
The diffusion from the particles of the system +.�� into the 

system +��,C�  is driven by 	1.�� > 1��,C� . The ionic and 

particle efflux into the synaptic cleft destroys the 

thermodynamic equilibrium state of +.�� and generate a non-

equilibrium state of +��,C� . The influx of ions and particles 

into the cleft terminates when both kinds of chemical 

potentials get equal.  

In the following we neglect the chemical and molecular 

details of the release phase and concentrate on distribution 

functions (sub-section 3.2.1.) and on dominant 

thermodynamic quantities in non-equilibrium states as the 

information entropy S and the free energy F (sub-section 

3.2.3.). 

4.2.1. Transition of the Bose-Einstein Distribution 

Function to the Poisson Distribution 

Here, we describe the release of neurotransmitters into the 

synaptic cleft. In the view of thermodynamics, this process 

represents a non-equilibrium transition. The previous 

thermodynamic equilibrium of the grand canonical ensemble 

resolves and converts to a system that is no more in a stable 

equilibrium state. The most particles of the ensemble are 

directly emitted into the diluted solution of the synaptic cleft. 

At first, we now ask; “What is the probability to observe ��(^)  particles, during a time interval T, when the mean 

value 〈��(^)〉 of particles is fixed? We introduce the new 

notation e.g. ��(^), where the capital T represents a time 

period in opposition to the so far used Heisenberg notation ��(�); where, the lowercase t indicates the actual time. We 

make this change of notation to comply with the standard 

definition of the Poisson distribution. The answer is given by 

the Poisson distribution, where the kind of particles are still 

Bosons) is  

V�/.�(��(^)) = 〈��(K)〉"�(�)
��(K)! YS〈��(K)〉.              (38) 

When, the time period is sufficient long, then both ��(^) 
and 〈��(^)〉 get time independent, however we stay to use T 

in order to differentiate it to the actual time t applied in the 

Heisenberg notation. 

The notation of the Poisson distribution given by (38) may 

be unaccustomed for some reader; therefore, we rewrite this 

formula into the common form [5] 

V�/.�(��, ^) = (〈��〉	K)"�(�)
��(K)	!

	 YS〈��〉	K, =                  (39) 

where 〈��〉 = 〈��〉
K  is the mean counting rate of particles, with 

state �, during the time interval T. However, when we ask: 

“What is the probability that a particle is emitted during an 

infinitesimal time interval	F�, where t is centered?” Then the 

answer is [7]  

V(�)	F� = 〈��〉YS〈��〉�F�                         (40) 

Characteristic for the distribution (38) is the equivalence of 

the mean value 〈��(^〉 and the variance 

���T(^) = 〈��(^)〉,                             (41) 

where the tilde ~  denotes the variance of the Poisson 

distribution. This identity characterizes the effect that the 

emitted particles are not bunching as in the case of the Bose-

Einstein statistics (29). We consider this anti-bunching effect 

of the “Poisson region” as the appearance of an ordered 

structure.  

The thermodynamic reason that initiate the transfer of the 

equilibrium Bose-Einstein distribution (7) to the Poisson 

distribution is the non-equilibrium phase transition, which 

also cause the massive increase of particles in the synaptic 

cleft. 

We characterize this symmetry braking transition that leads 

to the dominant transition of the original Bose-Einstein 

distribution function to the Poisson regime by the function 	�WXS� , where the reasonable value �WXS� = 1 2⁄  marks the 

threshold ,  where this change occurs. To calculate this 

function we rewrite the general variance expression as  

〈(��(�) − 〈��(�)〉)T〉 = 〈��(�)〉(1+〈��(�)〉	�WXS�) = 〈��(�)〉 + 	〈��(�)〉T�WXS�.                                     (42) 

Thus, the function �WXS�〈��〉  describes the transition 

between the regions below the threshold, when �WXS� = 1 

and above the threshold, when 	�WXS� = 0 . If we resolve 

equation (42) for �WXS� we obtain the continuous expression 

[12] 

�WXS�(�) = 〈���(�)〉	S	〈��(�)〉�
〈��((�)〉� − �

〈��(�)〉,                  (43) 

where this function is measurable. When we calculate with 

this function the variance at the threshold then it reads  

��T(�)��� = 〈��(�)〉 _〈��(�)〉
T + 1b = �

T 	(��T(�) + 〈��(�)〉)  (44) 

Our goal is the definition of the three distribution functions 

that are valid below the threshold, at the threshold and above 

the threshold. We achieve this goal by the continuous 
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approximation of the discrete Poisson distribution (38) by the 

following Gaussian distribution function],  

�(��(^) = �
〈��(K)〉√T� � YS (-�(K)S〈��(K)〉)�

T〈��(K)〉�
�
S� ,          (45) 

where the discrete variable ��(^)  is replaced by the 

continuous variable ��(^) . The expectation value and the 

variance of this distribution function are both equal to 〈��(^)〉 as the Poisson distribution (38) prescribes it. This 

approximation gets even better as 	��(^) increase [5]. When 

we presume that a Gaussian distribution also governs the 

threshold value, then we can rewrite expression (44) as  

���T(^)��� = 〈��(^)〉 _〈��(K)〉
T + 1b.	                 (46) 

The corresponding Gaussian based approximation reads 

�(��(^) = �
 � �	 (K!p¡¢√T� � YS (-�(K)S〈��(K)〉)�

T � ��(K!p¡¢
�
S�          (47) 

This function has the mean value 〈��(^)〉  and 

variance	���T(^)��� . We can continue the approximation for 

each value of �WXS� that is greater than		�T. 

Therefore, the series of variances begins with the Bose-

Einstein statistics (7), continues to the threshold value and 

(45) ends up (well above the threshold 	�WXS� = 1 2⁄ ) with 

the Poisson distribution (38). It reads  

��T(�)WX	 → ���T(^)��� → ���T(^)�/.� = 〈��(^)〉.      (48) 

4.2.2. Product of the QFT Based Probability with the 

Poisson Probability 

In the previous sub-chapter 3.1. we asked: “What is the 

probability that ��(�) particles are in the � state (occupy a 

state of energy level	�� = ℏ��) at the time t?” The answer 

was the Bose-Einstein probability (8). 

As already mentioned, the average number of quanta of 

state � at time t reads in the Heisenberg picture as 

¤¥¦�	�
(�)	�	�(�)	¦¥c = 〈��(�)〉,                  (49) 

where ¥ is a state vector. 

Now, we even go one-step further and ask: “What is the 

probability V(〈��/�(�)〉)	 of observing at time t a total 

expectation value by averaging over all particular expectation 

values 〈��(�)〉 , where each of them is multiplied by its 

relative frequency of its occurrence (Poisson distribution). 

This probability reads 

V(〈��/�(�)〉) = ∑ ¤¥¦		�	�
(�)	�	�(�)	¦	¥c 〈��(K)〉"�(�)
��(K)! YS〈��(K)〉� .                                                 (50) 

We cannot ask; “What is the probability to find a particle 

at position x in state � at time t?” because the uncertainty 

principle of Heisenberg 	∆�∆(ℏ\) ≥ ℏ
T , meaning that these 

two quantities cannot measured simultaneously. However, we 

simultaneously can observe the energy of a particle, since −� 

and +�  both contribute to the same energy 	��	 = ℏ��		 =(ℏ�	)�
T© . Thus, the properly normalized probability amplitude ª 

to observe at position x at time t ��(�) particles, with energy ��	  during the period 	^ , while 〈��(^)〉	  is held constant, 

reads 

ª(«; �) = ­«	(�)|��(�)�	 〈��(K)〉"�(�)
��(K)! YS〈��(K)〉,           (51) 

where, the bra |«(�)� is defined by  

|«(�)� = 	 ®̄
(«, �)	=	∑ 	�°�
(�)� L�∗ (x)|0�.              (52) 

That is, we expand the field operator ®̄
(«, �) in terms of 

the energetic steady-state functions (eigenfunctions) L�∗(�) of 

the time-independent Schrödinger equation. We already 

defined the ket |��(�)� by equation (2), where for each k-

value only one particle is created. The expression ­«	(�)	|��(�)� denotes a scalar product [4], [24]. 

Next, we consider an n-particle system and ask: “What is 

the probability amplitude ª(�)  that ���(�)  particle are 

localized at time t at the different positions «�, «T, …, «� , 

with the energy ��z = ℏ��z = (ℏm�)�
T© , ���(�)  particle with 

��� = ℏ��� = (ℏm�)�
T© , ��"(�)  particle with ��" = ℏ��" =

(ℏm")�
T© ,	during a time period ^?” The answer is  

ª(�)(«�, «T, …, «�; �) = ­«�(�), «T(�), … , «�(�)|���(�), ���(�), … , ��"(�)c	                                       (53) 

²〈���(K)〉"��(�)
���(K)! YS〈���(K)〉³

	
²〈���(K)〉"��(�)

���(K)! YS〈���(K)〉³…

²〈��"(K)〉"�"(�)
��"(K)! YS〈��"(K)〉³, 

where the sum of all possible occupied energy levels is 

restricted to � = ���(�) + ���(�) …+ ��"(�), because only n 

locations exist. 

4.2.3. Impact of Quantum Fluctuations: Coherent and 

Incoherent Solutions of Quantum Field’s Correlation 

Until now, we do not considered the release of many 

(about up to 10´)  neurotransmitters for example from one 

vesicle. We treat this set of particles as an emitted wave 

packet, spilled out into a very narrow spatial region of the 

synaptic cleft and their different k-values are close together. 

We expand such field operators by wave packets, where the 

correlation between two different field operators has a 

coherent and incoherent solution. Hereby, we evaluate only 

noise-free solutions; noisy solutions we will describe in sub-

chapter 4.4.3.  

We begin our corresponding evaluations by picking up 

equation (52), rewriting it for an one dimensional 

annihilation field operator  
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®̄	(�, �)	=	∑ 	�°m(�)m Lm	 (x)|0�,                       (54) 

then project this field on the eigenfunctions L�	 (x). Thus, we 

obtain the equation  

	�°mµ (�) = − .
ℏ�m	 	�°m(�) − ¶	�°m(�) + v�(�),               (55) 

where we included a damping constant ¶  the fluctuating 

force vm(�). We get the results for tree dimensions when we 

multiply the one-dimensional results with each other.  

The initial point of our calculation is the following 

correlation between field operators at different positions and 

different times 

〈Φ(0)|®̄
(�´, �´)	®� 	(�, �)|Φ(0)〉.                   (56) 

We write the initial state in the form 

Φ(0) = ∑ ¸mm 	�°�
(0)|0�.                        (57) 

We here refrain from all details of the calculation of the 

coherent and incoherent solution of equation, (56), because it 

given in [14]. Therefore, we just represent the two solutions, 

whose complete solution sum defines the correlation function 

(56). 

The coherent part of the correlation function (56) is 

independent of the fluctuating force. We obtain the 

correlation function at the location x at the time t and the 

position x´ at time t by the expectation value of the product 

〈®̄
(�´, �´)	®̄	(�, �)〉¹º», with                         (58) 

®̄	(�, �) = _ ©	¼½
√�(©�Qℏ���(¼½)�)b

�
�
 exp ¾− -�©�(¼½)�

T(©Q.ℏ�(¼½)�)¿	YSÀ� .                                                  (59) 

Here the expansion factors used in equation (57) describe a 

Gaussian wave packet, with variance (Δk)T(58) and the mass 

m of the particle. The important result is that the coherent 

solution (59) is damped out, with the factor 	YSTÀ�. 

We obtain the incoherent part of the correlation (56) by the 

following summation 

〈®̄
(�´, �´)®̄	(�, �)〉ÃÄ¹º» =.                     (60) 

∑ |¸m|TLm´∗ (�´)m Lm	 (x)	〈�m(^)〉	Y #
ℏXl(�´S�)ÅYSÀ(�S�´) − YSÀ(�Q�´)Æ. 

The term 〈�m(^)〉 denotes the average number of particles 

with quanta k at temperature T. 

Here, the relevant result is the difference of the 

exponential terms in the square bracket. This effect is clearly 

visible if we set � = �´ , then we get the expression Ç1 −YSTÀ�È. This means that the incoherent part, which describes 

the impact of quantum fluctuations restore the probability 

that the mean number of particles still arrive at their goals 

(receivers). 

4.2.4. Information Entropy Well Above the Threshold 

Above the threshold, we use the Poisson distribution (38) 

to calculate the information entropy S  

+� = −\W É∑ 〈��(K)〉
��(K)!

��(K) YS〈��(K)〉	ln	 �〈��(K)〉
��(K)!

��(K) YS〈��(K)〉�	��(K) Ê =                                          (61) 

−\W É〈��(^)〉(ln〈��(^)〉 − 1) −
YS〈��(K)〉 ∑ 〈��(K)〉"�(�)

��(K)	!��(K) ln(��(^)!)Ê, 
(Notice that T denotes a period and not an absolute 

temperature as in sub-section 4.1.).  

We insert the following approximation into equation (61) 

ln(��(^)!) ≈ (��(^)ln(��(^)) − (��(^) + �
T ln(��(^)) ≈                                                  (62) 

��(^)(ln	��(^) − 1) 
Thus, the results for the approximated quantity S reads 

+� ≈ −\W �〈��(^)〉	ln〈��(^)〉 − YS〈��(K)〉 ∑ 〈��(K)〉"�(�)
��(K)	!��(K) ��(^)	ln	��(^)�                                (63) 

To find the final information entropy	+	we have to sum up 

over all � values as in expression (26) 

+ = ∑ +�� .                                        (64) 

When we insert formula (39) into equation (63), then the 

rewritten information entropy is  

+� ≈ −\W �〈��〉	^	ln(〈��〉	^) − YS〈��〉	K ∑ (〈��〉	K)"�(�)
��(K)	!��(K) ��(^)	ln	��(^)�.                                     (65) 

The direct comparison between the entropy (26) and the 

information entropy (equation 64) is only possible by a 

numeric comparison of both values, because the different 

variables of each expression. Here, we consider the 

neurotransmitters above the threshold as particles of a non-

interacting field that is not in an equilibrium state. The 
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expectation value of the energy of this field is  

〈�〉 = ∑ 	〈��(^)〉	��	� .                      (66) 

The mean value of the total number of particles reads 

〈�〉 = ∑ 	〈��(^)〉� .                       (67) 

We consider the expression (64) as the information of the 

field, whilst we overtake the pre-factor 		\W	from	the	definition	of	the	entropy	(26). 
4.3. Postsynaptic Region 

The binding of specific neurotransmitter to particular 

receptors (proteins), distributed in the postsynaptic 

membrane, denotes the postsynaptic response to the release 

of the transmitters. The synaptic integration combines all 

resulting multiple synaptic potentials within one neuron. In 

this article we concentrate to the small neurotransmitters 

(quantized particles) not G-protein coupled receptors, 

therefore a particular spike of sequence of them represents an 

integration of EPSPs (excitatory postsynaptic potential) [1].  

In the following, we describe the probability of such a 

sequence of spikes with respect to threshold 	�WXS� = 1 2⁄ , 

equation (42). Beneath this threshold, the Bose-Einstein 

statistics has its “regime. Above this threshold, the Poisson 

distribution “governs” the description of a spikes train and 

the spikes trains of a population of neurons. Beneath and 

above the threshold, we proceed on the assumption that such 

sequences are Markov processes. 

4.3.1. Generation of Spikes Train Represented by Markov 

Processes 

We assume that a Markov process gives the probability 

that the nth spike occurs at the time 	��. The corresponding 

probability V�(��) is  

V�(��) = � …���� � F��S� …�"�"h� F��V(��; ��S�; … ; �E), �m > �mS�, \ = 1, 2, …, n,                                            (68) 

where P(��; ��S�; … ; �E)	 denotes the joint probability. 

Further, we percept that the spatial shift between two 

succeeding spikes is constant Ñ� (�� = �Ñ�); therefore we 

omit to integrate the location ��	in in this formula. Due to the 

chain rule, we evaluate the integrand of expression (68) by a 

successive product of conditional probabilities  

P(��; ��S�; … ; �E) = p(��|��S�)p(��S�|��ST)… p(��|�E). (69) 

4.3.2. Spike Trains of the Bose-Einstein Statistics 

In this sub-chapter, we “speculate” that some particles can 

be emitted very close beneath the threshold; therefore, we 

calculate the spike trains for this unexpected case. To 

calculate the probability of a sequence of spikes that is 

generated by one neuron, we rewrite the standard form of the 

Bose-Einstein distribution MWX (8) by setting	〈�(^)〉 = 〈�〉	^, 

where 〈�〉  denotes the mean rate over a period T. So, the 

rewritten distribution function reads 

MWX(�(	^)) = _ 〈�〉K
〈�〉KQ�b

�(	K) �
(〈�〉KQ�),                    (70) 

where �(	^)  indicates number of emitted spikes (events) 

during the time interval T.  

To use the Markov formula (69) we have to define the 

conditional distribution function 	MWX(�m|�mS�) . We achieve 

this task when we reduce the time interval T to a particular 

time spot t. We fulfill these two conditions by the following 

conditional probability 

MWX(��|��S�) = ��
(〈�〉(�ÒS�Òh�))�

(〈�〉�ÒQ�)Ó , Ô = 1, … , �            (71) 

Further, we set 	〈�〉 = 2, meaning that in the considered 

short time difference only two spikes are emitted. The 

normalization factor of (71) is  

�� =	 T〈�〉(〈�〉��Q�)�
T(�Q�)�ÕÄ	(〈�〉��Q�)S)〈�〉���	�ST〈�〉��

, �� =	 )
〈�〉� _

(〈�〉�ÒQ�)
�Ò

b
)
, Ô = 2, … , �.                                     (72) 

Here, we set for the calculation of this normalization 

factor	�E = 0.  

We illustrate the calculation of expression (68) by the 

evaluation of  

VT(�T) = ���T � F����
��*E M(�T|��)M(��|�E = 0) = ���T � F����

��*E
(〈�〉(��S��))�
(〈�〉��Q�)Ó

(〈�〉��)�
(〈�〉��Q�)Ó 	= ��

)	〈�〉�
��Ó

� F����
��*E

(��S��)����
(〈�〉��Q�)Ó .  (73) 

The result of the analytic calculation of this integral takes the following “unsymmetrical” form, despite the symmetrical 

form of the original expression (73)  

VT(�T) = )
〈�〉���Ó

_〈�〉T�TT + 6(〈�〉	�T + 1) − 〈�〉Ó��Ó()〈�〉��Q´)
T(〈�〉��Q�)� ÕÄ(〈�〉��Q�)S)〈�〉����ST〈�〉��

b                                               (74) 

The calculation of the probability that the third spike happens at time �) delivers  

V)(�)) = ���T�) � � F���Ó
�� F�T��

��*E
(〈�〉(�ÓS��))�
(〈�〉�ÓQ�)Ó

(〈�〉(��S��))�
(〈�〉��Q�)Ó

(〈�〉��)�
(〈�〉��Q�)Ó                                                          (75) 
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=	�) � F�T	VT(�T) (〈�〉(�ÓS��))�
(〈�〉�ÓQ�)Ó

�Ó
�� . 

It is tedious to calculate analytically this probability and 

furthermore, we cannot represent the result in a comprised 

form, as it was possible to 	VT(�T). Figure 1 represents the 

trajectories for 	V)(�)), where four different values (0.5, 0.6, 

0.7. 0.8) are taken for the previous spiking time 	�T . We 

observe that the probability that at time �)  the third spike 

occurs stays approximately constant with increasing 	�) . In 

contrast to this observation, the Poisson distribution, that we 

describe in the next subsection decreases and converge to 

zero, when the time point 	�) increases [5].  

The probability that the nth spike occurs at time �� is 

	V�(��) = �� � F��S�	V�S�(��S�) (〈�〉(�"S�"h�))�
(〈�〉�"Q�)Ó

�"
�"h�

       (76) 

 

Figure 1. The probability V)(�)) given by expression (75). The upper curve represents the value �T = 0.5, and then we always increase the values for �T by 0.5 

until to the lowest curve, with the value �T � 0.8. For all possible values of �T between 0.5 and 0.6, the corresponding trajectories lie between the curve for 

�T � 0.5 and for �T � 0.6, and so forth. In the headline of this figure, we denote the mean rate 〈�〉 simply by r. 

4.3.3. Spike Trains Calculated by an Approximated Poisson 

Distribution 

We reformulate the density function the Gaussian 

approximation (47) by the following density function  

p��
 � 	 �
ÖT�〈�〉K	 	exp	ØD

��S〈�〉K
�
T〈�〉K Ù.                        (77) 

The expectation value and the variance of the 

corresponding distribution function are both equal to 	〈�〉^. 

This equality distinctly characterizes the Poisson distribution. 

Our approximation and is more suited for the following 

calculations as the original, discrete Poisson distribution (49). 

The conditional probability density is expressed by  

p�	�m	|�mS�
 � �	exp	ØD ��lS�lh�S〈Ú〉
�
T〈Ú〉	 Ù,              (78) 

where 〈Û〉  marks the mean time distance between to 

subsequent spikes, because after each individual event a 

refractory time span occurs. The normalization factor 

is	� � 1 Ö2Ü〈Û〉	⁄ . 

The probability that at the time ��  the nth spike occurs, 

which one neuron generates, is  

V����
 � ��expØD �
T�〈Ú〉 ��� D �〈Û〉
TÙ, with	�� �	1 �Ö2Ü�〈Û〉⁄ .                                              (79) 

We now extend this approach to a population of M 

different neurons by applying the method of path integration 

[7], with the result [14] 

P�,�/���
 � ��/�	exp ¾D �
T〈Ú〉" Ý�� D �	〈Û〉
T¿.      (80) 

The normalization factor is given by  

��/� � _ Þ
T�〈Ú〉"b

�/T
                          (81) 

We evaluate the coefficient 
�

�T〈�〉K	
" by  

〈Û〉� � �
Þ∑ 〈Û〉�,[Þ[*� ,                         (82) 

where the sub-index n still denotes the nth spike and 1 

characterizes each of the M different neurons. The expression 

〈Û〉�,[ describes the temporal distance of the nth spike and the 

previous one that the 1th neuron both generates.  

We modify the two variables t and 〈Û〉	by the following 

constraints:  

� � �
Þ ∑ ��,[Þ[*� .                                        (83) 

〈Û〉 � �
Þ ∑ 〈Û〉[Þ[*�                                         (84) 

The quantity ��,[  characterizes the time, when the nth 

spike of the 1th  neuron occurs; the expression 〈Û〉[ 

represents the mean distance between all pairs of two 

succeeding spikes of the 1th neuron.  

It is obvious that the fluctuations of the different spiking 

trains make the production of n spike trains more reliable 

with respect to the uncertainty in total time t (83), even if the 
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individual spikes fluctuate in time (varying time ��,[). 

4.4. Non-Dendritic Networks of Neurons 

4.4.1. Model Outline 

Here, we present a basic model of a linear chain of neurons 

without additional dendritic inputs. We formally base this 

approach on the sender/receiver paradigm. Figure 2 

summarizes this model, where a ring of neurons can be 

constructed, when we fuse the first neuron ß�  with the last 

one �G (new	ß�/�G block). We consider this connection as a 

simplified contribution to plasticity in the brain. The first 

neuron (e.g. sensory neuron) denotes the initial sender ß� , 

where the succeeding units in this line (except the final 

receiver �G, e.g. a motor neuron)represent neurons, which are 

considered as a combined block that consists of a of a 

receiver and a sender component. Such a receiver/sender 

(�./ß.Q� ) neuron is a general model of the internal neural 

processes that we described e.g. in the previous third chapter.  

 

Figure 2. Linear chain of N neurons that mainly consists of pairs of receiver/sender neurons (�./ß.Q�), except the initial sender ß� and the final receiver	�G. 

All messages á. ($ � 	1, 2, … , �) that are send or received 

represent complex molecules that correspond to the 

concentrations of different neurotransmitters, which at the 

end triggers the appropriate spikes train. Each receiver/sender 

block ( �./ß.Q�, $ � 	1, 2, … , � D 1 ) internally process the 

incoming message á.  and transfers it then as the modified 

outgoing message á.Q� . We represent in our model these 

messages by Bosons. The operator á.


 creates a Boson and 

the operator á. annihilate a Boson. This is in a close analogy 

to our treatment of small neurotransmitters. For simplicity, 

we relinquish in this chapter the “hat” label to mark an 

operator.  

A simple model for a sender /receiver unit is a two states 

system, that rest in a ground state and is in an active state, 

when it sends a message. Such a system corresponds to a 

simple switch. We describe the dynamics of such a two-level 

system by two Fermi operators âã

 � äãQ�


 äã (ground state j, 

exited state 	å 0 1 ; å � 0. 1, … , �
  and its Hermitian 

conjugated âã � äã
äãQ� , where âã



 and âã  are both flip 

operators. The Bose operators fulfill the commutation 

rule	Å	á. , áã
Æ � 	 á.áã
Dáã
á. � Ñ.ã, where the Fermi operators 

fulfill the anti-commutation principle æä. , äã

ç � ä.äã
 0

äã
ä. � Ñ.ã; the mixed commutator is zero, Å	ä. , áã
Æ � 0. 

Classical Hamiltonians already can show different kinds of 

bifurcations and attractors [28], where these effects are 

caused by the dynamics of non-linear systems [27], [11]. In 

quantum mechanics similar effects also occur, however we 

want to point out that the goal of sub-chapter 4.4. emphasizes 

two additional points. First, in quantum mechanics the real 

and imaginary parts of the operators interact, where these 

interdependencies leads to a different bearings as in case of 

real variables. Second, a circuitry of quantum-based neurons 

is not comparable with a network of corresponding modules 

of quantum computers, since their internal states must be 

coherent. This request is in quantum biology not fulfilled. 

Even more, neurons are analog “devices” not digital 

modules, which operate with Q-bits. 

4.4.2. The Interaction Hamiltonians 

We write down the Hamiltonians in the interaction picture, 

where we can neglect the contributions of non-interacting 

particles. The equations of motion in this representation is 

identical to that one in the Heisenberg picture [14]. We 

specify the whole system by the following interaction 

Hamiltonians. 

The Hamiltonian that represents the first sender	ß�, which 

sends the message 	á�, reads 

qE � q�� � $�è� âE

á� D âE	á�
!,              (85) 

where 	âE

 � ä�


äE  and âE � äE

ä�  denote the two 

corresponding flip operators. The coupling constant is è�. 

The Hamiltonian that describes the whole chain of r/s pairs 

(except the first and last elements) is defined by 

q��/�
�/� � ∑ $� âm

�èmám 0 èmQ�ámQ�
 D 	âm	�èmám


 0 èmQ�	ámQ�

 	
!GS�m*�                                    (86) 

� o 	$� âm

ém D	âmém


!
GS�

m*�
� o 	qm

GS�

m*�
. 

Here, we use the abbreviations: ém � èmám 0 èmQ�ámQ� , 

ém

 � èmám


 0 èmQ�	ámQ�

 , \ � 	1, … , � D 1 . We assign the 

coupling constant èm  to the receiver part of the combined 

module and the coupling constant èmQ� corresponds to the 

sender part. 

We denote the Hamiltonian of the final receiver of áG by  

q�ê � qG � $�èG âG

áG D âGáG


!.                (87) 

4.4.3. The Heisenberg Equations of Motion of the 

Hamiltonian 	ëz 

We get first relevant impressions of the kind of the 

equations of motion and their solutions, when we consider 

the Hamiltonian of the first receiver/sender pair  
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q� = q��/�� = $� â�

(è�á� + èTáT) − â�(è�á�
 + èT	áT


	)! = $� â�

é� − â�	é�


!,                               (88) 

where we introduced the abbreviations: é� = è�á� +
èTáT , 		é�


 = (è�á�
 + èT	áT

	) . In addition, we will use the 

following abbreviations: the Hermitian inversion operator 

�� =	â�

â� − â�â�


 = äT

äT − ä�


ä�  and the two 

abridgements O� = è�á� − èTáT and O�

 = (è�á�
 − èT	áT


	). 
We present the general equations of motion in the 

Heisenberg picture, what means that these equations include 

damping constants and fluctuating forces. Since we present 

the equations of motion for the expectation values for the 

corresponding operators, we can neglect the expectation 

values for the fluctuating forces, because they are zero. Thus, 

the equations of motion read as follows, where a point marks 

the temporal derivation and the ¶ ´s denote the damping 

constants:  

âµ�
 = −	é�

�� − ¶ì�â�



; (âµ� = −é��� − ¶ì�â�),      (89) 

��µ = 	2	 é�

â� 0 é�â�


! D ¶����,                 (90) 

áµ�
 � D	è�	â�

 D ¶í�á�
,                        (91) 

áµT
 � D	èT	â�

 D ¶í�á�
,                        (92) 

éµ�
 �	D�è�T 0 èTT
â�

 D ¶W�é�



,                    (93) 

Oµ�
 �	D�è�T D èTT
	â�

	 D ¶î�O�



.                     (94) 

For simplicity, we relinquish to explicitly mark the 

expectation values by angle brackets, e.g. 〈âµ�
〉, because we 

only work with the expectation values of the operators in this 

article. However, we must consider expectation values as 

complex numbers; therefore, we differentiate between the 

real and imaginary solutions of an expectation value.  

Undamped Solutions  

In a first step, we present the solutions of the equations 

(89) to (94) without damping coefficients, because we want 

to present their symmetry, later on we will describe how this 

symmetry is brakes when damping coefficients are included. 

Figure 3 depicts the phase portrait of the three real parts of 

variables (expectation values) without damping effects: 

Re 	â�

 � �ì� , Re 	á�
 � �í� , Re 	�� � ��� ; we observe an 

attractive limit cycle. We anticipate the observed symmetry 

of the orbit presented in figure 3, because all particular 

solutions of the three variables show a periodic behavior. 

This is why we skipped the separate presentations of these 

three trajectories.  

 

Figure 3. Phase portrait of the three real variables �ì���� and �í� that are in the figure abridged called (�ï,	��, �í�). The resulting orbit is a slightly curved attractive 

limit cycle that does not lie completely in a plane. The parameter values are: �ì��0
 � 1, ����0
 � 1, �í��0
 � 1;	è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.  

We continue our presentation with the additional 

consideration of the imaginary parts. Supplementary, we 

minor change some initial conditions, with respect to the 

previous one in order to demonstrate collaterally the 

dependence of the solutions from the initial values. Figure 4 

sketches the phase portrait of the real part �ì� and imaginary 

part ñì�  of 	â�

 � �ì� 0 $ñì� . This phase portrait approves 

the strong interrelation between both variables, representing a 

fractal manifold. We can envision the generation of this 

manifold, when we consider the dynamics of this 

construction. We start with a triangle that is open by an 

amount of a small 	ò, and then we shift the next unclosed 

triangle a little bit, with respect to the first one. Then, we 

permanently repeat this “open triangle cycle”.  
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Figure 4. Phase portrait (fractal manifold) of the pair of real variables (Re	â�

 = �ì�, Im	â�


 = ñì�). The initial values are (�ì�(0
 �	1, ñì��0
 �	1), ����0
 �
0.8, ��í��0
 � 0.6, ñí��0
 � 1
. The remaining parameters are still unchanged: è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.  

The phase portrait shown in figure 5 represents a manifold that is a torus. This result confirms the suspicion (not proved by 

the corresponding Ljapunov coefficients) the orbits of the real (�í�) and imaginary part (ñí�) are both quasi periodic. 

 

Figure 5. Phase portrait of the pair (Re	á�
 � �í�, ô�	á�
 � ñí�), which represents a torus. The parameter values are: ��ì��0
 � 1, ñì��0
 �	1), ����0
 �
0.8, ��í��0
 � 0.6, ñí��0
 � 1
; è� � 0.4, èT � 0.6, 1, ¶ì� � ¶�� � ¶í� � 0.  
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Figure 6 shows the phase portrait of the triple of the real variables (�ì�, ��� , �í�).  

 

Figure 6. Phase portrait of the triple of the real variables: Re	â�

 = �ì�, õY	�� = ���, Re	á�
 = �í�. The parameter are: (�ì�(0
 � 1, ñì��0
 � 1
, ���� �

0.8, ñ�� � 0
, ��í��0
 � 0.6, ñí��0
 � 1
; è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0. 

Figure 7 demonstrates the phase portrait of the corresponding triple of the imaginary variables (ñì� , ñ�� , ñí�
. 

 

Figure 7. Phase portrait of the triple of the imaginary variables: Im	â�

 � ñì�, ô�	�� � ñ��, Im	á�
 � ñí�. The parameter are: ��ì��0
 � 1, ñì��0
 � 1
, ��� �

0.8, �ñ�� � 0, �í��0
 � 0.6, ñí��0
 � 1
; è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0. 

Damped Solutions  

Now, we slightly turn on the damping constants: ¶ì� � ¶�� � ¶í� � 0.05, where all other initial conditions and parameter 

values remain. Figure 8 demonstrates that the trajectory e.g. of Re á�
 � �í� after some oscillation as expected converges to the 

attractive fixed point 0, as we expect. Due to the strong similarity to �í� , we disregard to present the trajectory of �í� .  
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Figure 8. Trajectory of	õY	á�
 = �í� . The parameter values are: �í�(0
 � 1;	è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.05.  

Figure 9 displays the modified phase portrait of the triple (�ì� , ��� , �í�), when a slight damping is turned on. The previous 

symmetry observed in figure 3 is broken; the trajectory starts at the symmetric limit cycle, shown on the top of this figure, but 

then abandons it very quickly and spirals down to the fixed point 0. 

 

Figure 9. Phase portrait of the triple of the real variables: Re	â�

 � �ì� , Re	á�
 � �í� , Re	�� � ��� . The parameter values are: �ì��0
 � 1, ����0
 �1, �í��0
 � 1;	è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.05. 

Remarkable is the change of the phase portrait of both variables (�ì� , ñì�) sketched in figure 10 compared with figure 4 (no 

damping). The periodicity of constructing open triangles is broken, but the principle to generate triangles (even if there are 

distorted) survives. We observe a chaotic like convergence to the fixed point (0, 0) by trajectories that are composed by 

triangle-like sub-orbits. 
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Figure 10. Phase portrait of the pair (�ì�, ñì�). The initial values are: (�ì�(0
 �1, ñì��0
 �1), ����0
 � 0.8, ��í��0
 � 0.6, ñí��0
 � 1
. The remaining 

parameters are still unchanged: è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.05.  

The phase portrait of the triple of imaginary variables (ñì� , ñí�, ñí�). is shown in Figure 11.  

 
Figure 11. Phase portrait of the triple of the imaginary parts (ñì� , ñí�, ñí�). The initial values are ��ì��0
 �1, ñì��0
 �1), ����0
 � 0.8, �	�í��0
 � 0.6, 

ñí��0
 � 1
, �	�í��0
 � 0.4, 	ñí��0
 � 1
. The remaining parameters are still unchanged: è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.05.  

4.4.4. Stochastic, Undamped Solutions of the Heisenberg Equations of Motion of the Hamiltonian ëz 

Up to now, we solved the equations (89) D (94) without considering noise. In this sub-section, we present particular 

undamped solutions of the same equations; however, we include a separate stochastic variable that obeys a uniform distribution 

and lie in the domain ÇD 0.1, + 0.1]. Figure 12 demonstrate how noise change the fractal phase portrait of the pair (�ì�, ñì�
 
that we previously have shown in figure 4. 
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Figure 12. Stochastic phase portrait (fractal image) of the pair of real variables (Re	â�

 = �ì�, Im	â�


 = ñì�). The initial values are: (�ì�(0
 �	1, ñì��0
 �	1), 

����0
 � 0.8, ��í��0
 � 0.6, ñí��0
 � 1
. The remaining parameters are still unchanged: è� � 0.4, èT � 0.6, ¶ì� � ¶�� � ¶í� � 0.  

Figure 13 presents the noisy phase portrait of the following three imaginary variables: (ñì� , ñí� , ñí� ). We already have 

shown the noise-free solution in figure 7, where it is again illustrative to know the symmetric solution.  

 

Figure 13. Stochastic phase portrait of the triple of the imaginary variables (I�	â�

 � ñì�, Im	á�
 � ñí� , ô�	áT


 � ñí�). The initial values are: �ì��0
 �1, 

ñì��0
 �1, ����0
 � 0.8, ��í��0
 � 0.6, ñí��0
 � 1
, ��í��0
 � 0.7, ñí��0
 � 0
. The remaining parameters are still unchanged. è� � 0.4, èT � 0.6, ¶ì� �
¶�� � ¶í� � 0.  

4.4.5. The Damped Heisenberg Equations of Motion of the 

Hamiltonianø	ëz 0 ë{ 

The previous sub-chapter demonstrated already the 

dominant features of the equations of motion of a 

receiver/sender pair (figure 2). Therefore, we do not continue 

to present the complete description of all solutions of the 

remaining Hamiltonians listed in sub-chapter 4.4.2.  

For convenience, we repeat the Hamiltonian of the first 

two (r/s) pairs of the chain given by (86) 

q�/T � q� 0qT � $	� �â�

é� D	â�é�



 0 �âT

éT D âTéT



!.                                                         (95) 
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The corresponding equations of motion are: 

âµ�
=	−é�

�� + 2â�


 âT

éT D âTéT


! D ¶ì�â�


,          (96) 

âµT
=	DéT

�T 0 2âT


 â�

é� D â�é�


! D ¶ì�âT


,           (97) 

�µ� � 	2	 â�

é� 0 â�é�


! D ¶����,                      (98) 

�µT � 	2	 âT

éT 0 âTéT


! D ¶���T,                      (99) 

áµ�
 �	D	è�	â�

D¶í�á�
,                           (100) 

áµT
 �	D	èT	�â�

 0 âT



D¶í�áT


,                    (101) 

áµ)
 �	D	è)	âT

D¶íÓá)



.                            (102) 

Figure 14 sketches the convergence of 	Im	áT

 � ñí� . This 

trajectory shows a previous oscillation before it reach the 

fixed point 0. We present this figures to demonstrate that the 

principal behavior of a variable with respect to a chain of two 

blocks is very similar to that one shown in figure 8. 

 

Figure 14. Trajectory of the imaginary part of	ô�	áT

 � ñí�. The parameter 

values are: ��í��0
 � 1, ñT�0
 � 1
;	è� � 0.4, 	èT � 0.6. , ¶í� � 0.05. 

5. Conclusions 

This article combines particular quantum field-based 

effects of transmitter-based processes of synaptic neurons, 

with typical thermodynamic characterizations of a grand 

canonical ensemble. In more details, this implies that we 

consistently model the neurotransmitters as particles of a 

non-relativistic quantum field. In the pre-phase of the 

exocytosis, particles are elements of a grand canonical 

ensemble that is in a thermodynamic equilibrium. The release 

of neurotransmitters destroys this equilibrium. Therefore, we 

observe a non-equilibrium phase transition that brakes the 

symmetry. Supplementary, we describe the released 

neurotransmitters as wave packets, where we calculate the 

effects of the corresponding quantum fluctuations.  

A threshold separates the equilibrium region (no transmission 

phase) from the non-equilibrium region (transmission phase), 

where different probability distributions are applicable. Beneath 

the threshold, the Bose-Einstein statistics is relevant; above the 

threshold, the Poisson distribution is valid. We approximate the 

last mentioned distribution function by a Gaussian function, 

where we determine their variance by the mean value of the 

particle number that are in a defined k-state (momentum space). 

Beneficially, this approximation is also relevant at the threshold.  

Well above the threshold, the Poisson distribution 

determines the correct interplay between secreted particles 

and their receivers, because it describes a steady flux of 

particles, with nearly constant densities that impinges on the 

receivers. Furthermore, we calculate the resulting trains of 

spikes on the presumption of Markov processes, where we 

differentiate between the spikes of one receiver and the 

spikes of many different receivers that simultaneously fire.  

Ancillary, we characterize the two above-mentioned areas 

by two different information entropies. We use these two 

entropies to stipulate the quantities that are relevant in the 

two different regions.  

Finally, we connect the individual neurons to a non-

dendritic chain resp. a ring. We compose this neural circuitry 

by Bosons and Fermions to illustrate the quantum field-based 

interactions between these two different types of particles, 

which we represent by Hamiltonians that integrate both types 

of particles. Bosons are carrier of messages; Fermions 

represent information switches that can modify the incoming 

information before they transfer it to the neighbor neuron. 

Here, the important observation with respect to these 

interactions is the occurrence of chaotic solutions. 
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