
 

European Journal of Biophysics 
2016; 4(4): 22-41 

http://www.sciencepublishinggroup.com/j/ejb 

doi: 10.11648/j.ejb.20160404.11 

ISSN: 2329-1745 (Print); ISSN: 2329-1737 (Online)  

 

A Quantum Field Based Approach to Describe the Global 
Molecular Dynamics of Neurotransmitter Cycles 

Paul Levi 

Institute for Parallel and Distributed Systems (IPVS), Faculty for Informatics, Electrical Engineering and Information Technology, 

University Stuttgart, Stuttgart, Germany 

Email address: 
paul.levi@ipvs.uni-stuttgart.de 

To cite this article: 
Paul Levi. A Quantum Field Based Approach to Describe the Global Molecular Dynamics of Neurotransmitter Cycles. European Journal of 

Biophysics. Vol. 4, No. 4, 2016, pp. 22-41. doi: 10.11648/j.ejb.20160404.11 

Received: September 22, 2016; Accepted: October 2, 2016; Published: October 27, 2016 

 

Abstract: Descriptions of neurotransmitter cycles in chemical synapses are generally accomplished in the field of 

macroscopic molecular biology. This paper proposes a new theoretical approach to model these cycles with methods of the 

non-relativistic quantum field theory (QFT) which is applicable on small neurotransmitters of nano size like amino acids or 

amines. The whole cycle is subdivided into the standard five phases: uptake, axonal transport, release and reception. Our ansatz 

is concentrated to quantum effects, which are relevant in molecular processes. Examples are quantization of momentums and 

energies of all small transmitters, definition of the density based quantum information; quantization of molecular currents 

because densities of generate them quantized particles. Our model of the neurotransmitter cycle of chemical synapses was 

created by the emphasis of possible essential quantum effects; therefore, we neglect many additional molecular aspects that do 

not lead us to quantum impacts. We elucidate the ramification of our quantum-based approach by the definition of particular 

Hamiltonians for each of the five phases and by the calculation of the corresponding molecular dynamics. The transformation 

from the particle representation to usual wave functions yields the probability to find at the same time n neurotransmitters of 

different energy states at different positions. Our results have far-reaching implications and may initiate animated discussions. 

The validation or the disconfirmation of our hypothesis is still open. 
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1. Introduction 

In the past decade spiking neurons received much attention 

and remarkable progress has been achieved, e.g. in the 

visualization of multi-dimensional neural connections by the 

Blue Brain Project [27] and in the development of the NEST 

simulator [30]. Today, all these efforts are continued and 

extended by the Human Brain Project (HBP) that is a FET 

Flagship Project in Horizon 2020. Here, we point out that all 

these ongoing works can be resumed by the two fundamental 

characteristics of neurons. At first, we cite their ability to 

generate firing rates by action potentials. The amplitudes and 

frequencies of spiking neurons are relevant for the internal 

presynaptic firing rate and even more essential for the 

external signal input to the brain and the corresponding pulse 

trains out of the brain. This topic is also extensively treated in 

the literature [8], [13], [14]. At second, we name the ability 

of internal molecular signaling which is based on complex 

chemical processes, [19], [1], [9], [28]. All above-mentioned 

research activities to obtain a deeper understanding of the 

two fundamental neural abilities are usually done on the 

macroscopic level. 

Our contribution is devoted to the description of the 

synaptic transmission cycle in the framework of molecular 

biology (second neural ability). However, the main difference 

of our methodology to the common techniques, which are 

applied in this field, is the utilization of the operations of the 

non-relativistic quantum field theory (QFT). 

There are two central reasons to elaborate this particular 

approach. First, the considered small neurotransmitters have 

a size of around 1nm (amino acids, amines). Hereby, we note 

that the double-slit effect already has been observed with 

atoms of equivalent sizes, e.g. for He atoms [22] and for C�� 

atoms [3]. Certainly, both experiments have been performed 

under vacuum conditions. However, quantum effects also are 

observed under real, biological conditions, where for 
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example water, salt, different temperatures and other 

interacting molecules exist. Examples of quantum effects 

under such conditions are reported e.g. in the photosynthesis 

[29] and in the magneto reception of migrant birds [23]. 

Additional, particular quantum based neural topics are e.g. 

molecular dynamics in noisy environment [20], quantum 

processes in the brain concerning consciousness [5], quantum 

computation [15]. Finally, the well-established discipline of 

quantum chemistry get new impacts, e.g. by [34], [18], [25]. 

Second, various applications of the QFT methods are 

applied in solid-state physics [6], [16] in superconductivity, 

in elementary particle physics [35] and in super fluidity [31], 

[11]. Recently, molecules also are handled as nano particles 

using quantum theory in molecular robotics [32], [17]. 

Moreover, quantum theory methods are already have been 

applied to the study of DNA nano robotics [33]. 

In summary, the application of quantum methods 

essentially demonstrates that molecules can show wave like 

aspects (particle wave duality) and the synchronization of a 

huge amount of molecules by running quantum waves [24]. 

Furthermore, in biological systems molecular densities, 

molecular currents, and their dynamics play a dominant role, 

this is why the particle representation of the QFT is well 

suited to describe these features. 

2. Materials and Processes 

2.1. Materials (Particles) 

Small neurotransmitter are treated as Bosons [36] because 

many of them have integer spins like amines and in real 

applications very often only the angular momentum 

(quantized rotation modes) of molecules are significant. 

Aside from this remark, we cite in favour of our bosonic 

conjecture the following two facts. First, Bosons obey the 

Bose-Einstein-distribution 

�����	
 = �
���			 	��	
�	 .                         (1) 

Here, we have: �	  = 0, 1, … defines the number of the 

released neurotransmitters (eigenvalue of the corresponding 

particle operator �	 , where 	  marks wave number vector) 

with the defined energy quant �	 = ℏ�	 = �ℏ�
�
��� , m� 

indicates the particle mass, Z = 
�

� 
���		 denotes the partition 

function Z, parameter ! is given by 
�
�"#, $� 	is the Boltzmann 

constant, T is the temperature in Kelvin. Thus, the mean 

number of particles 〈�	〉  with energy ℏ�	  of a system in 

thermal equilibrium is calculated by the well-known formula 

of statistical physics 

〈�	〉 = ∑ �		�����	
 =	 �

�ℏ(	 �,                 (2) 

where 	)*ℏ+	  is positive and for lower energies slightly 

greater as 1. Hence, if we replace in this expression the 

particular energy �	  by the mean energy 〈�		〉  (standard 

normalization of the energy scale), then we observe that the 

most particles can be found at the mean energy and only few 

particles with higher energy (similar to the Boltzmann 

particle number). While, for Fermions the mean particle 

number does not ensure such a steady energetic distribution 

of particles because, the spectrum of these particles is much 

broader. So, only one particle can be found at the mean 

energy. 

Second, we cannot principally exclude that also Fermions 

exist in the synaptic cleft. Nevertheless, in consequence the 

additional integration of Fermions in the Hamiltonians they 

get dominantly more complex and we have to model the case 

that two Fermions (e.g. hydrogen molecule	H�) or even more 

Fermions can generate a Boson by spin interactions. Further, 

also all kinds of spin-spin interaction have to be calculated. 

Therefore, the analytic complexity of the Hamiltonians and 

of the corresponding equations of motion dominantly 

increases and the numerical effort to solve these equations of 

motion noticeable grows up. Therefore, we consider finally 

only Bosons in our approach for reasons of simplification 

and better understandability. 

We calculate the typical de Broglie wavelength -  of 

neurotransmitters for simplification in the linear box 

normalization of the synaptic cleft. Hereby, the momentum is 

� = ℏ	$ = ℏ 	.	/01 . We assume that L = 50 nm (maximal 

length of the cleft) then this yields 	- = �1
/0 = 	���2

/0 	m. The 

corresponding energy is 	�� = ℏ�
�3� �/0	.1 �

�
. For clarification, 

we cite the molecular mass of two typical small mass 

neurotransmitters: GABA with 4� = 17.18 10 �7  g and 

dopamine with 4�= 25.63 10 �7 g. Therefore, the energy for 

example of a dopamine molecule is 	�� = ���	769	10 �;	J =���	480.6	eV. 

For comparison, if we calculate -  in the “continuous 

normalization”, where we use the GABA mass and set T 

equal to the body temperature T = 310.14 K (≈37 ℃
	then 

we get the value - = D
E3��"#	 = 2.3 10 ;	 m. This result is of 

the same order of magnitude as for the box normalization, 

but - is not quantized. 

The differentiation between inhibitory and excitatory 

chemical synapse will be described by the type of the 

neurotransmitter molecule, e.g. GABA is an inhibitory 

transmitter and glutamate an excitatory transmitter, 

acetylcholine can either excite or inhibit depending on the 

type of receptor its binds to. In electrical descriptions 

excitatory neurotransmitter open cation channels, so influx of NaH  depolarize the postsynaptic membrane. Inhibitory 

neurotransmitters open channels e.g. KH,  which reduce the 

excitatory influence to depolarize the postsynaptic 

membrane. We mentioned these electrical aspects of 

polarization and respectively depolarization for reasons of 

understanding the complexity of the processes of chemical 

synapses. In this contribution, we only focused on chemical 

processes, which generate these polarization resp. 

depolarization effects. 

2.2. Processes 

This contribution takes up the QFT approach and extends 
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it to an abstract, global model of the transmission cycle of 

small sized neurotransmitters in chemical synapses. The 

whole process is arranged in five phases: loading (uptake) of 

transmitters in vesicles, their transport along microtubules of 

a presynaptic axon, the release of neurotransmitters into the 

synaptic cleft, their transmissions through the synaptic cleft, 

and finally their reception by particular transmitter−gated ion 

channels at the postsynaptic plasma membrane. For reasons 

of simplicity and ease of understanding we concentrate only 

on cationic channels, neglecting anionic channels and 

channel regulations by second messengers (G-proteins) [2], 

[21]. Details of the axonal transport of the vesicles by 

molecular robots (motor proteins like kinesin, dynein, and 

myosin) have been already published [24], therefore we 

exclude in this article the detailed description of the four sub-

phases of the axonal transport and condense them in one-

step. 

Next, we prefer to reason why we have accomplished a 

global model of the neurotransmitter cycle and do not 

consider the characteristic features of these five phases. 

Therefore, one principal goal of our work is the development 

of a description of a quantized n-particle system on a 

molecular physics level, which considers only the relevant 

quantum-based interactions of the particles during the whole 

neurotransmitter cycle. This decision is apparently 

understandable if we just consider all relevant processes 

(interactions) which occur at the presynaptic side, in the 

synaptic cleft and at the postsynaptic level. 

At presynaptic side: synthesizing of neurotransmitters, 

loading of vesicles and the parallel transport along 

microtubules in both directions (anterograde, retrograde for 

recycling) involve several steps, the organization of vesicles 

is complex at the active zone and many proteins interacts 

with vesicles, the process of the release of neurotransmitters 

into the cleft requires a number of operations (exocytosis), 

membrane potentials change (polarization, depolarization), 

each single vesicle emits about 10L and there are dozens of 

out spilling vesicles in the active zone, so about 10�	transmitters are emitted in milliseconds, etc. 

At the cleft level: a big amount of neurotransmitters of 

different types is e.g. congregated together with ions, ion-

gates, solutes, salt and water. Therefore, many inter-

molecular interactions occur, ions react with ion-gates 

(proteins), neurotransmitter can be inactivated (enzymatic 

destruction), support of reuptake into the presynaptic axon 

terminal is going on, the stabilization of the parallel 

orientation of the pre synaptic and post synaptic plasma 

membrane occur, etc. 

At postsynaptic side: the distribution of receptors is not 

constant like on a flat screen but it is 3-d curved and clusters 

of PSD proteins exist, the receptors are mobile, because there 

are interactions with membrane binding sites, different 

possibilities exist how ions can permeate channels, diffusion 

through the extracellular fluid back to presynaptic axon 

terminal (reuptake), generation of a new action potential 

(synaptic integration), etc. 

It is obvious that the description of the transmission cycle, 

where all relevant features are considered, is very difficult, 

ambitious and nearly impossible. Therefore, the most authors 

model correctly particular processes of this cycle. Thus, we 

know about the complexity and difficulty to construct a 

correct, detailed model of the transmission cycle, therefore 

we pursue the direction to evaluate a more abstract n-particle 

system with appropriate interactions of all five-transmission 

phases. The main impact to proceed this way is given by the 

elicitation of the one important point: quantum effects can 

characterize the transmission cycle and in consequence of 

these effects the density matrix M and the biological relevant 

information (-M	lnM) are also quantized at the level of particle 

numbers. This means that in all five phases particular 

interactions procced considerably different as it is usually 

reported. Nevertheless, the most processes described above 

(presynaptic level, etc.) are not relevant with respect to 

quantum biology, therefore we disregarded them. 

3. Methods 

For each of the five phases (with exception of the 

approaches: multiple scattering and diffusion in phase 4) we 

define at first the corresponding Hamiltonian PQ/R  in the 

interaction representation which allow us to neglect the 

Hamiltonian for free particles, e.g. P� = ∑ ℏ���S		T�S		 , 

where the operator �S		T  creates a neurotransmitter and �S	 

annihilates an neurotransmitter. We utilize the box 

normalization, with discrete wave vectors 	 (e.g. see above 

the de Broglie wavelength). Afterwards, the resulting 

equations of motion are presented in the Heisenberg picture 

U
URV = Q

ℏ 	WPQ/R , VX − YV − Z[,                    (3) 

where V�\, S ) is a time-dependent operator, and WPQ/R , VX 
denotes a commutator. In addition, the full equation (3) can 

be supplemented by a damping constant Y and by fluctuating 

forces	Z[. However, since we are looking for solutions of our 

equations of motion in form of expectation values we will 

abandon the fluctuating force in all corresponding equations 

because their expectation values are zero. 

The solutions of the equations of motions of all five phase 

are mostly numerically calculated and diagrammed by 

figures. Exceptions of this approach only occur in the 

transmission phase (phase 4), where we also present analytic 

solutions. 

4. Results 

4.1. First Phase: Loading 

Hamiltonian of the loading phase 
The load of neurotransmitters on a microtubule denotes the 

first step of this phase by molecular robots. That is, we 

introduce three different creation operators (indicated by a 

dagger 	† ) and their corresponding annihilation operators. 

First, we define the creation operator of a molecular robot 

(motor protein) \̂_	,	`
T

 which operates as a carrier protein and 

is specified by its discrete position 	\a  (b = 1, … , �a
  on a 

microtubule (lane) as a part of the axon of the presynaptic 
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side and its wavenumber vector 		d . Second, we need a 

container in which the cargo is carried. The suitable container 

is a vesicle, which is created by the operator 	e\_	T . The 

subscript \a specifies its actual lane position. Third, we have 

to consider the cargo, which is loaded in a vesicle. 

Obviously, the loads are neurotransmitters. The 

corresponding operator �S3f`,\g,	g	T
 creates a neurotransmitter 

of particular molecular type 	4Rd, (tr = 1, …, n) at the spatial 

location \h, with the wavenumber vector 		h. The molecular 

type 4Rd	  of a neurotransmitter opens transmitterK gated 

channels of suited receptors. The subscript j denotes the 

position and respectively the wave number vector of an 

individual neurotransmitters of type 	4Rd; simply expressed, 

it enumerates neurotransmitters of the same type. 

The product of the vesicle creation operator and n 

annihilation operators of neurotransmitters 

e\_	T �S3f`,\i,	i …�S3jk,\�,	�                      (4) 

depicts the loading of the vesicle with n neurotransmitters at 

the microtubule position 	\a. The operator product 

\̂_	,	`
T e\_	T 	�S3f`,\i,	i …�S3jk,\�,	�                (5) 

complements the loading process. At the same time, a 

transport robot 	 \̂_	,	`T
 and a vesicle are both created e\_	T 	  at 

the lane position	\a and all neurotransmitters	are annihilated. 

The Hermitian conjugate of this operator product models the 

unloading activity (reverse process). Thus, the complete 

interaction Hamiltonian reads 

PQ/RalmU �⁄ � opal ∑ � \̂_	,	`T e\_	T �S3f`,\i,	i …�S3jk,\�,	�		 K �S3f`,\� ,	�T …�S3f`,\i,	iT e\_ \̂_,	`�	Rd,	`,\_,q\g	,	gr,d,a              (6) 

The coupling constant pal  parametrizes the load phase. 

The individual molecular robots 	̂` ,\_
T

 operate at different, 

discrete lane positions 	\a. 
Equations of motion of the loading phase 
The equations of motion of the three relevant operators of 

the loading phase and the time dependence of the molecular 

density are given by the equations (7) to (9). 

ŝ\t,	`	
T

=	pal ∑ �S3f`,\i,	i
T …�S3f`,\�,	�

T e\tRd,	`,q\g	,	gr KYk \̂t,	`
T

.    (7) 

The dynamics of a molecular robot during the loading is 

obtained by the creation of the neurotransmitters load and the 

annihilation of the wrapping vesicle. 

es\t	T �	pal ∑ �S3f`,ui,�i
T …�S3f`,u�,��

T	 ût,�` K YveutT 	.		Rd,�`,	qug	,�gr	  (8) 

The temporal change of the vesicle state is denoted by the 

creation of its molecular cargo and the annihilation of the 

transporting molecular robot. 

�s S3f`,\i,	iT �		Kpal ∑ �S3f`,\�,	� …�S3jk,\�,	�		 \̂_,	`T
	
	e\_	TRd,	`,\�,	�;…;\� ,	�,d,a		 K Y/R�S3f`,\t,	tT

                   (9) 

The dynamics of a particular neurotransmitter is 

characterized by the annihilation of all other transmitters 

(except the first one 
	and the simultaneous creation of a 

molecular robot together with a vesicle, both at the same 

position. 

The three solutions (7)	to (9) show a compliant behavior. 

After some oscillations at the beginning, they converge 

towards a stable fixed point. Such a common property is well 

reproduced by a phase diagram. Figure 1 shows the collective 

trajectory of the real part (red) and imaginary part (blue) of 

all three variables, where both parts start at the same position 

and end at another equal location. 

 

Figure 1. Phase diagram of the real part (red) and the imaginary part (blue) of the three variables 	 \̂t,	`T , e\tT  and �S3f`,\t,	t
T  (equations (7) to (9)). The 

common damping constant is Y � 0.175. 
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The equation of motion of the density of the loaded neurotransmitters is given by 

U
UR �	�S3f`,\i,	iT �S3f`,\t,	i� �

	Kpal ∑ 	 \̂_,	`T
Rd,	`,\�,	�;…;\� ,	�,d,{		 e\_	T �S3f`,\t ,	t�S3f`,\�,	� …�S3f`,\�,	� 	K

pal ∑ �S3f`,\t,	tT �S3f`,\�,	�T …e\_ \̂_,	` 			 K Y/R��S3f`,\t,	t
T �S3f`,\t,	t
Rd,	` ,\�,	�;…;\�,	� ,k,a		                    (10) 

A competitive balance between the first term (loading) and 

its reverse (unloading) characterizes the dynamics of 

equation (10). Figure 2 demonstrates this time-dependent 

behavior. Following two oscillations the real part (red) and 

imaginary part (blue) of the density remain stable and 

converge to the attractive fixed point zero. 

 

Figure 2. Trajectory of the real part (red) and imaginary part (blue) of the density of neurotransmitter during the loading phase (equation (10)). The 
parameters are: 	pal � 0.1, Y/R	 � 0.19 . The scale of time axis is characteristic for the loading process, here the numerical value 25 corresponds 
approximately 1s. 

4.2. Second Phase: Axonal Transport 

Hamiltonian of the axonal transport 
The second phase marks the anterograde axonal transport of neurotransmitters along a microtubule. Here, an individual 

molecular robot  \̂_	,	`
T

 which is loaded with an attached and filled vesicle e\{  moves from the inner lane position \a to the outer 

lane position at the releasable compartment \l (b | }; 	b, }	 � 1, … , �a
. The following Hamiltonian characterizes this axonal 

transport 

PQ/Rmu. Rdm/~�. �⁄ � 	∑ 	Rd,	` ,	`́,\�,q\g	,	g;\ǵ	ǵr,d,l,a 	
	
\̂�,	`́		
T e\�	T �S3f`,\�́,	�́	

T …�S3f`,\í,	í	
T

				
                            (11) 

T�	d́ , \/́, 	/́ …\�́, 	�́; 	d , \�, 	�…\/	, 	/�		�S3f`,\i,	i …�S3f`,\�,	�e\{ \̂{,	`	. 
Here, T describes the transfers between all individual 

triples �	d , \h	, 	h
	and	 �	d́ , \h́ 	, 	h́�, � � 1, 2, … , �. That is, T 

enforces the nearest neighbor restrictions (interactions) for 

each pair of individual triples: 

T�	d́ , \h́ , 	h́; 	d , \h	, 	h� � 0, if		d́ � �	`, �\h́ K \h� � �\f`,     (12) 

��	d́ , \h́ 	, 	h́� , K	h� � �	f` and	\h́ � \h;∀ �, 
where both kinds of the	epsilons are given by �\f` B 2nm 

and �	f` B 	.	
1 . Thus, a cluster of neurotransmitters should be 

concentrated to a restricted, spatial region and governed by a 

very narrow range of allowed momenta. 

These restrictions are given in a form, which is well suited 

if the solutions of the equations of motion of the 

corresponding Hamiltonian (11) are numerically calculated, 

which the standard use of this work is. In a classical physical 

view, T may be compared with two strong attractive 

potentials in the x-space and k space, (see e.g. (28)). 

These requirements ensure that after the axonal transport 
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all neurotransmitters remain in a very restricted spatial and 

momentum cluster. This bounded cluster property of 

neurotransmitters is essential for the simultaneous directed 

release of them into the synaptic cleft and their following 

transmission to the postsynaptic receptors. The nearest 

neighbor requirement is significant for the biologically 

correct description of the transmission and respectively e.g. 

for diffusion processes to the postsynaptic plasma membrane, 

because all transmitters are released at once in a close 

bounded cluster. 

Equations of motion of the axonal transport 
Its motion to the outer position \l and the change of its 

wave vector determines the dynamics of the molecular robot. 

At this new position a new vesicle is created together with 

the carried neurotransmitters. The vesicle and its load are 

annihilated at their previous locations. 

ŝ\t,	`T � o ∑ 	 \̂�,	´`T 	e\�	T 	�S3f`,\´�,	´�
T …�S3f`,\´i,	´i

T 					Rd,	`,	´`,q\g	,	g;\´g	,	´gr,d,l  

(13) 

T	�S3f`,\i,	i …�S3f`,\�,	�e\t K Yd \̂t,	`T
. 

The temporal behavior of the vesicle is governed by the 

creation of a molecular robot and a new vesicle with its 

corresponding cargo of loaded neurotransmitters at the new 

position 	\l . The molecular robot with the original 

coefficients �\�, 	d
  and the original neurotransmitters are 

annihilated 

es\t	T � 	o ∑ \̂�,	´`
T 	e\�	T �S3f`,\´�,	´�

T …�S3f`,\´i,	´i
T

				Rd,	`,	`,	´`,q\g	,	g;\´�	,	´�r,d,l  (14) 

T	�S3f`,\i,	i …�S3f`,\�,	� \̂�,	`	 K Yve\t 	T . 

The dynamics of a neurotransmitter is described by the 

creation of the molecular robot and the vesicle at a new 

position and the annihilation of these two entities at their 

original position. The neurotransmitters are annihilated at 

their previous locations and restored at new positions 

together with new wave vectors. 

�s S3f`,\f`t ,	f`t
T � 	o ∑ \̂�,	´`

T e\�	T 	�S3f`,\´�,	´�T … 	�S3f`,\´t,	´tT
Rd,	` ,	´`,q\g	,	g;\´�	,	´�r,d,l,a                             (15) 

T	�S3f`,\�,	� …�S3f`,\�,	� \̂{,	`	e\_ K Y/R	�S3f`,\t,	tT
. 

Figure 3 summarizes in a phase diagram the behaviors of the real part (red) and imaginary part (blue) of all three solutions 

(13) to (15) during the axonal transport. As in figure 1, both trajectories start at one common point end jointly at another 

location. 

 

Figure 3. Phase diagram of the real part (red) and the imaginary part (blue) of the three variable	 \̂t,	`T , e\tT and �S3f`,\t,	t
T (equations (13) S} (15)). The 

common damping constant is set to	Y � 0.001. 

The temporal derivative of the density of neurotransmitters 

at position \�  and wave vector 	�  governs the interplay of 

two different simultaneous processes. One process is 

responsible for the annihilation of a molecular robot together 

with a vesicle and the creation of the neurotransmitters. The 

second process denotes the reverse process. 

U
UR �	�S3f`,\t,	t

T �S3f`,\t ,	t� �                (16) 

∑ T� \̂{,	`	e\_ 		�S3f`,\´t,	´tT … 	�S3f`,\´�,	´�T
	
	

Rd,	` ,	´`,\�,q\g	,	g;\´�	,	´�r,d,l,a   

	K \̂�,	´`
T e\�	T 	�S3f`,\t,	t�S3f`,\�,	� …�S3f`,\�,	�� K

Y/R	�S3f`,\t ,	tT �S3f`,\t,	t . 

Figure 4 shows the temporal variation of the real part (red) 

and imaginary part (blue) of the density of neurotransmitters 

to which there are ruled. Both parts continuously converge to 

the fixed point 0 without showing any effect e.g. of a saddle 

point bifurcation. 
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Figure 4. Dynamics of the density of neurotransmitters (equation (16)) during the axonal transport. The real part is marked by red, the imaginary part	is 
sketched in blue. The damping constant is 	Y/R = 	0.001 . The scale of time axis is characteristic for the transport process, here 2000 corresponds 
approximately 50 ms/h. 

4.3. Third Phase: Release 

Hamiltonian of the release phase 
The first activity of the second phase describes the release 

of neurotransmitters into the synaptic cleft. This means the 

combination of the emission of the vesicle-bound 

neurotransmitters into the cleft and the opening of a cationic 

channel e.g. a Ca�H K  channel. The open channel allows 

inflow into the active region of the pre Ca�H K  synapsis 

(exocytosis). The impact of such channel operators are 

denoted by ����\�T  and ����\� which act at the axonal final 

position 	\l. 

The release interaction Hamiltonian reads 

PQ/Rd
a. �⁄ � 	opd
a ∑ 	� \̂�,	`
T e\�	T ����\�R	�S3f`,\i,	i …�S3f`,\�,	�	 K R	�S3f`,\�,	�f`�

T …�S3f`,\i,	i
T ����\�T e\� \̂�,	`�	

	
Rd,	`,\�,q\g	,	gr,d,l       (17) 

where pd
a  is the coupling constant, which is assigned to the 

release phase. Compared with the loading Hamiltonian 

PQ/RalmU �⁄  we extend this Hamiltonian by two channel 

operators 	����\�T  and respectively 	����\� . In addition to the 

condition (3.9), we require that for all released transmitters 

similar restrictions are fulfilled: 

R�\h	, 	h; 	\hH�	, 	hH�� � 0; � � 1, 2, … , �            (18) 

if each pair of the released transmitters fulfills the two 

conditions: 

�\h K \hH�� � �\	 � 2nm and �	h K 	hH�� � �	 � 1. 

Both epsilons ensure that only direct neighbors are 

considered. 

The whole cluster of the emitted (“ejected”) transmitters 

unalterably stays in a very restricted, spatial region and does 

not spread out in “all” directions. This requirement is 

expressed by the two following suprema 

sup��\Q K \h�, o � 	�� � �\	, sup��	Q K 	h�, o � 	�� � �	.  (19) 

The release process can also be considered as the 

simultaneous, multiple outgoing of plane matter waves. Due 

the fact that the k-value are approximately continuously 

distributed within a small k-interval, the plane wave can 

superpose to a wave packet. However, the surrounding 

environment operate as a heat-bath, which cause damping 

and fluctuations. Therefore, we assume that a wave packet 

will dissolve and therefore will not represent a coherent state 

(motion). However, we do not exclude that the wave packet 

can remain stable and then represents a coherent state. 

Equations of motion of the release phase 
This step is characterized by four equations, which 

describe the temporal derivatives of the operators 

representing molecular robots, neurotransmitters, vesicles 

and channels. 

The dynamics of a molecular transport robot is 

characterized by the simultaneously generation of n 

neurotransmitters together with the simultaneous opening of 

a CaH�  channel (����\�T ) and the annihilation of the cargo 

containing vesicle (e\t
. 
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ŝ\t,	`T
= pd
a ∑ R	�S3f`,\i,	iT …�S3f`,\�,	�T 	����\�T e\t K Yk \̂�,	`	.

T
			

Rd,	` ,q\g	,	gr,d	                                  (20) 

The time-dependent activities of an individual neurotransmitter is influenced by the coincident generation of all remaining 

molecules, the opening of a channel and the destruction of the corresponding vesicle and molecular robot, where all these 

activities occur at the same location	\l. 

�s S3f`,\t,	tT � pd
a ∑ 	 \̂�,	`T e\�	T ����\�R	�S3f`,\�,,	�	…�S3f`,\� ,,	�				Rd,	`,q\g	,	gr,d,l                              (21) 

KY/R�S3f`,\t ,	tT
. 

The equation of motion of the creator e\t	T  of a vesicle takes the form 

es\t	T � pd
a ∑ R	�S3f`,\� ,	�T …�S3f`,\i,	iT ����\tT 	 \̂t,	`	Rd,	` ,q\g	,	gr,d K Yve\t	T .                                 (22) 

The creator of an open CaH� - channel operates according to the following equation 

����s \t 	
T � Kpd
a ∑ \̂t,	`

T e�	TR	�S3f`,\i,	i …�S3f`,\�,	�	Rd,	`,q\g	,	gr,d K Y�m�D 	����\�T .                        (23) 

Figure 5 collects the behaviors of the solutions (real part (red) and imaginary part (blue)) of the three equations (21) to (23) 

in a phase diagram. Both parts start together at the same position and end up at a same location. This show again the behavior 

of the attraction of a fixed point. If the damping constant is decreased we observe the same principal behavior but with 

dominantly more oscillations. 

 

Figure 5. Phase portrait of the three variables �S3f`,\t,	t
T , e\t	T and ����\�T during the release phase (equations (21) to (23)). The real part is marked by red; the 

imaginary part is labeled by blue. The collective damping constant is	Y � 0.145, the damping constant gets the value	pd
a � 0.1. 

Equation (24) demonstrates the temporal change of the 

density of a neurotransmitter at position \� with wave vector 

	� , which is characterized by the competition of two 

processes. The first process denotes the creation of a 

molecular robot together with a vesicle and the simultaneous 

annihilation of the channel together with the 

neurotransmitters. The second process delineates the reverse 

process. Figure 6 portrays the time-dependent trajectories of 

the real and imaginary parts of the density of the 

neurotransmitters during the release step. At the “peak 

position”, the real part (red) goes up, and then it goes down 

and return to the null line. The trajectory of imaginary part 

(blue) shows a reverse course. 

U
UR ��S3f`,\t,	t

T �S3f`,\t,	t� � 	pd
a ∑ �	 \̂�,	`T 	e\�	T ����\�R	�S3f`,\t ,	t�S3f`,\�,	� …�S3f`,\�,	� 	
	

Rd,	`,\�,q\g	,	gr,d,l   (24) 

pd
a� �	 \̂�,	`T 	e\�	T ����\�R	�S3f`,\t ,	t�S3f`,\�,	� …�S3f`,\�,	� 	
	

Rd,	`,\�,q\g	,	gr,d,l
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� \̂�,	` 	e\�����\�T R	�S3f`,\t ,	tT …�S3f`,\� ,	�T �K	Y/R�S3f`,\t,	f`t
T �S3f`,\t,	t . 

 

Figure 6. Dynamics of the density of neurotransmitters (equation (24)) which happens during the release phase (real part: red; imaginary part: blue). The 
damping constant is set to Y/R � 0.145, the coupling constant takes the value pd
a � 0.1. The scale of time axis is characteristic for the release process; here 
the numerical value 20 corresponds approximately 5 ms. 

4.4. Fourth Phase: Transmission 

The fourth phase is devoted to the transmission of the 

neurotransmitters through the synaptic cleft. This process is 

essential and complex therefore we present three essential 

solutions for this process: multiple scattering, quantum-

diffusion and n-particle probability amplitude. 

Approach 1: Multiple Scattering 

The scattering process will be considered in the light of 

quantum effects, which denote wave phenomena. A scattered 

molecule experiences an interaction at a local potential, 

where such a process can be described by the perturbation 

theory of non-relativistic Green´s functions [12], [35]. The 

Green´s function for free Bosons is defined by 

���\
 , S
; 	\�, S�
 � Ko	 �S
 K	S�
�¡�\
 , S

	¡T�\�, S�
 K
¡T�\�, S�
¡�\
 , S


¢�                   (25) 

where   is the time ordering step function and ¡ respective 

¡T  represent quantum field operators in the interaction 

representation. So, for example the creation field operator is 

normalized in a box V and reads 

¡	T	�\	, S
 � �
√¤∑ �S¥3f`,		

T �0
	 ) Q	∙\HQ§	R	,             (26) 

where by �S¥3f`,	
T �0
  denotes a modified creation operator 

without annotation of the spatial position ¨	©	V  and the 

frequency ª	. 

The interaction Hamiltonian is defined as 

PQ/R�S
 � « 	¡	T	�\	, S
	¡	�\	, S
 ¬�\	, S
	­7¨,         (27) 

here ¬�\	, S
	  represents a radial potential for small 

molecules, e.g. the van der Waals potential 

¬vU®�^
 � ¯i
�°`	
d K ¯±

d±, where ²�and	²� are constants,  (28) 

and the parameter b represents the inverse of the equilibrium 

distance 
̂�3  at which the potential becomes minimal. A 

typical value for this distance for small-size transmitters is 


̂�3 B 0.3	nm. The Lenard-Jones potential is given by 

¬1´�^
 � µ±
d± K

µi�
di�, with the two constants ¶� and ¶��.  (29) 

Both potentials have as well as a repulsive and an 

attractive part (dispersion binding potential). The repulsive 

forces typically exert their influence in a distance, which is 

smaller than ca. 	�7 	 
̂�3 , which in our field of application 

means ca. 0.1	nm. The implication that repulsive or attractive 

forces may exert their mutual influences cause the effect that 

we may observe elastic scattering or inelastic scattering. In 

the last mentioned case, the momentum of the impinging 

molecule is strong enough, so it will not join to the other 

molecule but continue his now deviated path. However, for 

reasons of consistency of our quantum base objective we will 

not go into such molecular details and continue with our 
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previous executions. 

The Green´s function of a free particle is given by 

��	�\
 , S
;	\�, S�
 = −o �S
 −	S�
	 �¤∑ )Q	∙�\· \�
 Q§	�R· R�
		 . (30) 

In the following, we finally calculate the spatial 

perturbation expansion of the scattered fields until the third 

order. Hereby, we will in each order begin with the time 

dependent field and then transform it in a corresponding 

spatial and time representation. Both kinds of fields are also 

defined in the interaction representation, 

If a molecule is scattered once by a potential V then we can 

represent this process by the following field of first order 

Φ��
�S
 = ¢�0
 � �
ℏ « «¡	T	�\	, ¹
	¡�\	, ¹
		¬�\	, ¹
	¢�0
	­	¹	­7\R
� . 

(31) 

The integration is carried out over all locations and times 

(path integral). Hereby, we assume that the initial state is 

settled by 	¢�0
 = ¡	T	�\�, S�
	¢� . Such time dependent 

fields usually are applied to construct non-relativistic 

Feynman graphs [16]. However, for reasons of brevity we 

refrain from the description of such graphs in this article. 

The calculation of the following expectation value with 

respect of Φ��
�S
 provides us with the path of a molecule, 

which is scattered once at location �\	, S
 and delivers to us 

the searched Green´s function 

〈¢�|¡	�\
 , S

|Φ��
�S
〉 = 	o��	�\
 , S
; 	\�, S�
 �       (32) 

Q
ℏ« «��	�\
 , S
; 	\	, ¹
	¬�	\	, ¹
	��	�\	, ¹; 	\�, S�
	­	¹	­7\R
� = 	o��	�\
 , S
; 	\�, S�
 � ���
�\
 , S
; 	\�, S�
. 

Here, for reasons of generality the limits on the spatial integral have been expressed by	±∞. In a practical case these two 

limits are finite and are established by the applied potential. The second expression ���
�\
 , S
; 	\�, S�
 describes a particle 

which is scattered once at the potential ¬�	\	, ¹
. 
In the next step, we calculate the second term of the perturbation approach. Here, the time dependent field of double 

scattering is given by 

Φ��
�S
 = 	¢�0
 � 1ℏ½ ½¡	T	�\�	, ¹��	��	�\�, ¹�; 	\�, S�
	¬�\�	, ¹��	¢�	­7\� ­	¹�
R
�

� 

¾− oℏ¿
�½ ½ ½½¡	T	�\�	, ¹��	��	�\�	, ¹�; 	\�, ¹��	¬�\�	, ¹�� ��	�\�, ¹�; 	\�, S�
 ¬�\�	, ¹��

À�
�

R
�

 

	¢�	­7\�­	¹�­7\�­	¹�.                                                                          (33) 

The calculation of the corresponding expectation value is carried out as follows 

〈¢�|¡	�\
 , S

|Φ��
�S
〉 = 	o��	�\
 , S
; 	\�, S�
 �                                                         (34) 

o
ℏ½ ½ 	��	�\
	, ¹
; 	\�	, ¹��	¬�\�	, ¹��	��	�\�	, ¹�; 	\�, S��	­	¹�	­7\�

R
�

� 

¾− oℏ¿
� o ½ ­	¹�½ Á��	�\
	, S
; 	\�, ¹��	¬�\�	, ¹��	��	�\�	, ¹�; 	\�, ¹��¬�\�	, ¹�� ∙	

À�
�

R
�

 

	��	�\�, S�; 	\�, S�
	­7\�­	¹�­7\�. 
The last term of the expression (34) defines the Green´s function for double scattering	���
�\
 , S
; 	\�, S�
. 
If a molecule may be scattered triply then we have to calculate the following field of third order 

Φ�7
�S
 = ¢�0
 � �
Qℏ« «¡	T�\�	, ¹��	o��	�\�	, ¹�; 	\�, S��	¬�\�	, ¹��	R

� ­\�­¹� �                                    (35) 

¾− oℏ¿
�½ ­¹�

R
�

½ Á¡	T�\�	, ¹��	��	�\�	, ¹�; 	\�, S��¬�\�	, ¹��
À�
�

∙ 	��	�\�	, ¹�; 	\�, S��	¬�\�	, ¹��	­\�­¹�­\� � 

¾− oℏ¿
7½ ­¹7

R
�

½ ­¹�½ Â¡	T�\7	, ¹7�	��	�\7	, ¹7; 	\�, ¹��	¬�\7	, ¹7� ∙	
		

	

À�
�

ÀÃ
�

 

��	�\�	, ¹�; 	\�, ¹��	¬�\�	, ¹��	��	�\�	, ¹�; 	\�, S��	¬�\�	, ¹��	 ­\�­¹�­\�­\7. 

The calculation of the corresponding expectation value is carried out as before 

〈¢�|¡	�\
 , S

|Φ�7
�S
〉 = 	o��	�\
 , S
; 	\�, S�
 �                                                         (36) 
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o
ℏ½ ½��	�\
	, S
; 	\�, ¹��	¬�\�	, ¹��	��	�\�	, ¹�; 	\�, S��	­\�­¹�		

R
�

� 

¾ 1oℏ¿
�½ ½ Áo��	�\
	, S
; 	\�, ¹��¡	T�\�	, ¹��	o��	�\�	, ¹�; 	\�, S��	¬�\�	, ¹�� ∙

À�
�

R
�

 

	o��	�\�	, ¹�; 	\�, S��	¬�\�	, ¹��	­¹�­\�­\�­¹� � 

¾− oℏ¿
7½ ½ ½ Â��	�\
	, S
; 	\7, ¹7�	��	�\7	, ¹7; 	\�, ¹��	¬�\7	, ¹7� ∙	

		

	

À�
�

ÀÃ
�

R
�

 

��	�\�	, ¹�; 	\�, ¹��	¬�\�	, ¹��	��	�\�	, ¹�; 	\�, S��	¬�\�	, ¹��	­\�­¹�­\�­¹�­\7­¹7. 

Here, we tacitly assumed the time ordering restriction 	S < ¹7 < ¹� < ¹� < ¹�. Equivalent restrictions are also valid 

in the two previous calculations of order 1 and 2. The last 

term of expression (3.32) defines the Green´s function of 

third order, which describe the triple scattering of a particle 	��7
�\
 , S
; 	\�, S�
. 
In this subsection we are focused to scattering processes 

therefore we are mainly concerned with the corresponding 

Green´s functions of the three different orders. The total 

amplitude for motion of a transmitter molecule from �\�, S�
 

to �\
 , S

 with any number of scattering is given by	��	 ����
 � ���
 � ��7
 �⋯� ��/
. 
So far, we have introduced the Green´s function in the 

more accustomed (\, S
- representation. However, it can also 

be defined in the (	, S
- representation, which corresponds to 

the particle number representation of QFT. Here, the Green´s 

function of a free particle is denoted by �	�S
 = −o) Q§	R,	S ≥ 0, otherwise 0. 

The general Green´s function is defined by 

�	·,	��S
 , S�
 = −o	 �S
 −	S�
 〈¢|	�S¥3f`,	·		
	 �S

	�S¥3f`,	�		

T �S�
|¢〉.                                    (37) 

Thus, for example the twofold scattering in this space is expressed by 

�	·,	�,	i,	��S
 , S�; S�, S�
 = o7�	·,	��S
 , S�
	�	�,	i�S�, S�
	�	i,	��S�, S�
.                                    (38) 

Approach 2: Quantum Diffusion 

Our second approach describes the transmission as an 

elementary quantum diffusion process, meaning that we e.g. 

exclude in our approximation the description of a diffuse 

modulatory system [4]. We begin our description with the 

representation of a one-particle state and then extend this 

approach to an n-particle system. The one-particle field 

operator is normalized in a cube of volume ¬ and is given by 

a plane wave expansion 

¡�\, S
 = �
√Æ ∑ �S¥3f`,		�S
	)Q	∙\				 .               (39) 

Thus, the respective density of a particular 

neurotransmitter reads 

M�\, S
 = ¡	T�\	, S
¡	�\	, S
 =�
Æ∑ �S¥3f`,	

T �S
	) Q	∙\	 ∑ �S¥3f`,	´	�S
	)Q	´∙\		´		 .      (40) 

The corresponding particular molecular current density is 

Ç�\, S
 = −È	∇\	M�\, S
,                     (41) 

where È = 〈\�〉
�R = a�

�R = a
� 	〈v〉 is the diffusion coefficient [10]. 

It is given in terms of the mean free-path l and the mean 

velocity 	〈v〉 . Typical values are 	È ≈ �
�10 Ë �4� Ì⁄ , b ≈

10 Ë�4  and the time ¹ between two scattering processes 

is	¹ ≈ 10 ËÌ. By the use of the mobility 	Í = À
3, where m is 

the particle mass, we can define a temperature-dependent 

diffusion coefficient È = Í$�Î, with the Boltzmann constant $� and the temperature T. 

The divergence of the current defined by equation (39)) 

reads 

	∇\ ∙ Ç�\, S
 	= −È	∆\	M	�\, S
 =                 (42) 

Ð
¤ Ñ	∑ �	Ò � 	´Ò
	�S¥3f`,	

T �S
	�S¥3f`,	´�S
) Q�	 	´
∙\	,	´ Ó. 
The diffusion of the concentration of neurotransmitters 

through the synaptic cleft is subjected to the continuity 

equation 

Ô
ÔR M�\, S
 = −	∇\ ∙ 	Ç�\, S
 = D	∆\	M	�\, S
.        (43) 

The written− out version of this conservation law in the 

representation of creation and respectively destruction operators is 

Ô
ÔR Ö	�Æ∑ 	�	�S¥3f`,	

T �S
	�S¥3f`,	´�S
� 	) Q�	 	´
∙\	,	´ × =   (44) 

È Ö	�Æ∑ �	Ò � 	´Ò
	�S¥3f`,	
T �S
	�S¥3f`,	´�S
) Q�	 	´
∙\	,	´ ×. 

The integral form of the continuity equation given by 

expression (3.36) reads 

U
UR « M�\, S
­7\	

Æ	 = −« Ç ∙ Ø	­� = −« 	∇\ ∙ Ç	­7\	
Æ	

	
ÔÆ	 ,   (45) 

where ¬  is the normalizing volume, Ø  denotes the unit 

surface normal, ­�  represents the surface element, and the 

last integral invokes the Gauss´s theorem. The number 
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operator �Æ, which results from the integral over the volume 

V of the corresponding particle density 

�Æ�S
 = « 	M�\, S
	­7\ =	
Æ                    (46) 

∑ �S¥3f`,	
T �S
	�S¥3f`,	�S
		 =∑ 	�	�S
 =	 	M	�S
. 

Only the integration over the whole space (continuum 

normalization) would yield a time-independent total number 

operator [26] 

� = « M�\, S
	­7\ = ∑ �S¥3f`,	
T �0
	�S¥3f`,	�0
	HÙ

 Ù .    (47) 

After this remark we come back to the previous 

accomplishment with box normalized field operators and calculate 

the expectation value of the local number operator �	�S
 
〈¢q/r|	�	�S
|¢q/r〉 = 〈¢q/r|	�S¥3f`,	

T �S
	�S¥3f`,	�S
|¢q/r〉 = 〈�	〉, 
(48) 

which denotes the average number of particles of state 	 at 

time t. Even more, we can say that this expression can be 

interpreted as the probability to find a single neurotransmitter 

in quantum state 	  at time t, provided the following two 

conditions are fulfilled. At first, the function ¢q/r  which is 

not time-dependent and represents the simultaneous 

eigenstates of 	�	i , �	� ,…, 	�	�  by the appropriate number 

of creation operators 

¢q/r = �
�/	Ú!/	Ò!…/	�!�

i �⁄ �	�S¥3f`,	i
T �/	i�	�S¥3f`,	�

T �/	� …�	�S¥3f`,	�
T �/	�¢� (49) 

= |�	i , �	� , … . , �	� > 

is normalized. At second, the following condition must be 

fulfilled 

Ú
Ýf�f∑ 〈¢q/r|	�S¥3f`,	

T �S
	�S¥3f`,	�S
	|¢q/r〉			Þ� = 1, where �RlR = ∑ 〈�	〉		�Þ� .                                    (50) 

Both conditions are fulfilled; therefore, we consider each normalized matrix element 

�
Ýf�f 〈¢q/r|	�S¥3f`,	

T �S
	�S¥3f`,	�S
	|¢q/r〉 = �
Ýf�f 〈¢q/r|	M	�S
|¢q/r〉, 	 = 0,1, 2, …                              (51) 

as an element of the time-dependent, diagonal, density matrix M�	, S
	  in the particle representation. The equation (49) 

corresponds to the normalization of this matrix, trace 	M�	, S
 = 1. 

The expectation value of non-diagonal elements of matrix M�	, S
	 is expressed by 

〈¢q/r|	�S¥3f`,	
T �S
	�S¥3f`,	�S
	|¢q3r〉 = 〈�	〉	∏		à/	3	 .                                                 (52) 

Expectation values of a pair of different creation operators, which may occur in interaction Hamiltonians 

〈¢q/r|	�S¥3f`,	�
T �S
	�S¥3f`,	g�S
|¢q/r〉 = 	à/	�/	g , if		h = 	�, … , 	/; otherwise 0.                               (53) 

In the next step we carry out the calculation of the 

quantum information o�á�M	�0

 = −trace�M�	, 0
	lnM�	, 0
	
  at time S = 0 . 

We evaluate 	o�á�M�	, 0

 at S = 0 because we are interested 

in energetic steady-states which correspond to the 

Hamiltonian 	P = ∑ P	 = ∑ ℏ�	�	�� . This Hamiltonian 

represent the energy of a field of non-interacting spinless 

particles. It is obvious, that we get with this calculation 

without any remarkable, additional effort also the final 

expression for the density matrix for �Æ�0
 = ∑ �	� . We 

accomplish the energy-based evaluation the density matrix by 

the aid of the following general formula [17] 

M	�0
 = )ä äiå,                             (54) 

where the two parameters - and -� are Lagrange parameters. 

The - parameter is determined by )ä = æ	 and Z defines the partition function 

æ = trace	�) *ç	� = ∑ ) *�	 =	 ∑ ) *ℏ+	/		 = ∑ )� *ℏ+	
�		 .                                    (55) 

The second parameter is -� = ! = 1 $�Î⁄ . 

The calculation of o�á�M	�0

 is carried out by the application of equation (A) 

o�á��M�	, 0

 	= ) äÑ-	trace�) äiå� 	� -�trace�) äiå�HÓ =                                          (56) 

) äW- ∑ exp	q−-�ℏ�	
/	Ù	Þ� X � -� ∑ éêë	q äiℏ+	
�	ì	í� 	ℏ+	/		
∑ éêë	q äiℏ+	
�	 	ì	í� . 

This expression can be cast in a simplified form if we insert the definitions of the two Lagrange parameters 

o�á��M�	, 0

 	= ln �1 − ∑ )� *ℏ+	
�		 � 	� ! ∑ éêë	q *ℏ+	
�	ì	í� 	ℏ+	/		
∑ éêë	q *ℏ+	
�	 	ì	í�                                 (57)

This result can be more simpler reproduced (except the factor 	$�) if we calculate the entropy S which is defined in 
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thermodynamics by the formula 

î = $� �ln	æ − ! Ô
Ô* ln	æ�.                     (58) 

This conformity is not accidental but reveals the close 

connections between quantum statistics and classical physical 

statistics. Therefore, o�á�M�	, 0

	 is also called information 

entropy. 

The expression (57) is equivalent to the corresponding 

expression for a quantum oscillator if we assume that the 

frequencies are not k-dependent but all are equal to a mean 

frequency 	�	 = �ï, then we get the result 

ð�á��M�	, 0

ñññññññññññññññññ 	= −ln	�1 − ) *ℏ+ï � � *ℏ+ï

�ℏ(ï �.        (59) 

The conservation law (43) in integral form is given by 

Ô
ÔR M	�S
 = Ô

ÔR 	∑ �S¥3f`,	
T �S
	�S¥3f`,	�S
		 =         (60) 

2DÑ	∑ 			�	�S¥3f`,	
T �S
	�S¥3f`,	�S
	 Ó, 

hereby each particular term possesses the solution 

	�S¥3f`,	
T �S
	�S¥3f`,	�S
 = 2È « 		�	�S¥3f`,	

T �¹
	�S¥3f`,	�¹
R
� ­¹ � �S¥3f`,	

T �0
	�S¥3f`,	�0
.                                 (61) 

We continue the description of the diffusion process by passing over to the n-particles states 

¡	T�\/, \/ �, … , \�; S
 = �
√/!¡	T�\/	, S�¡	T�\/ �	, S�…	¡	T�\�	, S� =                                       (62) 

1
V/ �⁄

1
√�! ò� �S¥3f`,	�

T �S
	) Q	�∙\Ø	�
ó…	ò� �S¥3f`,	i

T �S
	i
) Q	i∙\ió 

describes the creation of n equal particles at different positions \/, \/ �,…, \� at the time t. 

The corresponding n-particle spatial density is expressed by 

M/��\h�, S� =                                                                                  (63) 

1
�! ¡	T�\/	, S�¡	�\/	, S�¡	T�\/ �	, S�¡	�\/ �	, S�…	…	¡	T�\�	, S�¡	�\�	, S� = 

�
/!M�\/, S
…	M�\�, S
, 

where the reordering of the last line is permitted by our assumption that all field operators obey the Bose-Einstein statistics and 

therefore they commute under position exchange at the same time. 

If we replace in expression (60) the field operators by their decomposition in plane waves then the n-particle density 

operator can be reformulated as follows 

M/��\h�, S� =                                                                                  (64) 

�
¤� �⁄ 	 �/! �∑ �S¥3f`,	�

T �S
	�S¥3f`,	�́
	 �S
	� ,	�́	 ) Q�	� 	�	´ 
∙\�	�… 

�∑ �S¥3f`,	i
T �S
	�S¥3f`,	í

	 �S
	i,	i	´ ) Q�	i �í
∙\i	�. 
By integration of this density over �\h� we obtain the n-particle density in k-representation in direct analogy to equation (44) 

M/��	h�, S� = « 	MRlR��\h�, S�­7�\h� =	
Æ

�
/! M	��S
….M	i�S
,                                         (65) 

where M	� denotes the density of the nth transmitter which is in state 	/, M	��i represent the density of particle which are in 

state 	/ �, etc. Moreover, we anticipate that all transmitters are of identical type (sub-index 4Rd is fixed) because they are 

released from one vesicle, thus	� = 107	to	10L. 

After the calculations of M/ in the x-space and the k-space we continue our execution by focusing to the evaluation of 

continuity equation for both just mentioned notations. The current density for n particles in the configuration space is given by 

Ç/��\h�, S� = −D	∇\	M/��\h�, S� =                                                              (66) 

−D 1
V/ �⁄

1
�! ô�	∇\	¡	T�\/	, S��	¡	�\/	, S�	¡	T�\/ �	, S� …	¡	T�\�	, S�¡	�\�	, S� 

…	� ¡	T�\/	, S�¡	�\/	, S�¡	T�\/ �	, S� …¡	T�\�	, S� �∇\¡	�\�	, S��×. 
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The divergence of this current is denoted by 

	∇\ ∙ Ç/��\h�, S� = −È∆\	Ç/��\h�, S�	=                                                             (67) 

È 1
V/ �⁄

1
�! õ	� �	/� � 	´/�
	�S¥3f`,	�

T �S¥3f`,	´��S
	) Q�	� 	´�
∙\�	�,	´�
ö 

Ñ	∑ �S¥3f`,	��i
T �S
	�S¥3f`,	´��i�S
	) Q�	��i 	´��i
∙\��i	��i,	´��i Ó… 

Ñ	∑ �S¥3f`,	i
T �S
	�S¥3f`,	´i�S
) Q�	i 	´i
∙\i	i,	´i Ó + 

Ö	∑ �	�� � 	´��
	�S¥3f`,	i
T �S¥3f`,	´i�S
	) Q�	i 	´i
∙\i	i,	´i × … 

Ñ	∑ �S¥3f`,	�
T �S
	�S¥3f`,	´��S
	) Q�	� 	´�
∙\�	�,	´� Ó … 

Ñ	∑ 	�S¥3f`,	�
T �S¥3f`,	´��S
	) Q�	� 	´�
∙\�	�,	´� Ó. 

In the next step we integrate equation (66) 

−È « 	∆\	ÇRlR��\h�, S�	­7\/ 	… ­7\� =	
Æ                                                                  (68) 

2È �
/! Ñ�∑ 	/��S¥3f`,	�

T �S¥3f`,	��S
	� �	M	��i�S
….	M	i�S
 � 

�∑ 	/ �� �S¥3f`,	��i
T �S¥3f`,	��i�S
	��i �	M	��S
	M	����S
….	M	i�S
 � 

�∑ 	���S¥3f`,	i
T �S¥3f`,	i�S
	i �M�q	/r, S
M	��i�, S
 …M	��Sr
Ó×. 

This rearrangement of the number operators �S¥3f`,	�	
T �S¥3f`,	� is permitted since they all commute (simultaneous eigenstates). 

The conservation equation can be expressed as follows 

Ö� ÔÔR M	��S
� M	��i�S
 …		M	i�S
 �                                                                    (69) 

¾ ÔÔR M	��i�S
¿ M	��S
	M	����S
 … . M	i�S
…�M	��S
 … ¾ ÔÔR M	i�S
¿× 
=	2ÈÑ�∑ 	/��S¥3f`,	�

T �S
	�S¥3f`,	´��S
	� �	M	��i�S
….	M	i�S
 � 

�∑ 	/ �� �S¥3f`,	��i
T �S¥3f`,	��i�S
	��i �	M	��S
	M	����S
….	M	i�S
 �… 

�∑ 	��	�S¥3f`,	i
T �S¥3f`,	i�S
	i �M	��i�S
M	��i�S
 …M	��S
Ó. 

A comparison of each corresponding term from the left 

and the right hand side of this continuity equation yields the 

solution as given above by equation (60). 

Here, we point out that the conservation law is modified if 

during the diffusion process several neurotransmitters are 

eliminated (e.g. annihilation by particular enzymes). In our 

notation, we have to introduce an additional sink. The 

integral form of the modified continuity equation reads 

U
UR�Æ = « 	∇\ ∙ Çal~~	­7\/	­7\/ �	

Æ − « 	∇\ ∙ Ç/ 	­7\/	
Æ . . . ­7\�, (70) 

where Çal~~  declares the loss current and Ç/  comprises all 

molecules. For example, we assume for a better ease of 

understanding of equation (69 that only two 

neurotransmitters with vectors 	/  and 	/ �  are eliminated. 

Then the written–out expression of the violated conservation 

law is given by 

Ô
ÔR ÑM	����S
 …	M	i�S
Ó =	                     (71) 

2ÈÑ�∑ 	/ �� 	�S¥3f`,	���
T �S¥3f`,	����S
	��� �	M	��Ã�S
	M	��÷�S
….	M	i�S
 � 

�∑ 	/ 7� 	�S¥3f`,	��Ã
T �S¥3f`,	��Ã�S
	��Ã �	M	����S
	M	��÷�S
….	M	i�S
 �… 

�∑ 	��	�S¥3f`,	i
T �S¥3f`,	i�S
	i �M	����, S
M	��Ã , S
… M	Ò�S
Ó. 

Approach 3: Probability Amplitude of an 

n-Particle System 

The initial point to calculate the amplitude of an n-particle 

system Ψ�\�, \�, . . . , \/; S
 is the Schrödinger equation of n 

equivalent and not interacting particles which are subjected 

to a general potential ¬�\
: 
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oℏ Ô
ÔRΨ�\�, \�, . . . , \/; S
 = Pϕ,                (72) 

where P = ∑ Pa/hÞ� 	=	∑ Ö− ℏ�
�3 ∆\_ � ¬�\a
×/aÞ�  is the sum of 

one particle solutions. The potential is set as a drift potential 

which is characterized by a force ú = ûUdQüR Í⁄ , where Í is 

the mobility and the force operates in a fixed x-direction, ¬�\
 = −ú ∙ \. 

The special solution Ψ of equation (72) is a product of the 

particular solutions 

ýa�\, S
 = ýa�\
	)�	�_	fℏ , Ψ�\�, \�, . . . , \/; S
 = ∏ 	ýa�\a , S
/aÞ� .  (73) 

These eigenfunctions form an orthonormal and complete 

set of the n-particle Schrödinger equation. The general 

solution of is a linear combination of such special solutions, 

[7]. However, in our context we are more interested how 

many particles are in the particular steady states of definite 

energy 	ýa�\a
 . The corresponding occupation number �a 

denotes this. In other words, we are looking for a probability 

amplitude which is both a solution of the n-particle 

Schrödinger equation (72) and establish the relation of the 

occupation number �a  of the energy level �a = �ℏ	_
�
�3  with a 

particular position ¨Q , o = 1, 2, … , �. Notice, that there exist 

no conflict with respect to the Heisenberg uncertainty 

relation between 	a  and \Q  because �	a  and −	a  contribute 

both to the same energy. The wanted relation is assigned by 

the following scalar product 

〈\�, \�, … , \/	|��, ��, … , �Ý; S〉,                (74) 

where N denotes the number of one-particle energy levels. We 

select the particular scalar product 〈\�, \�, \7; S	|��, ��, �7, �L〉 
to explain in more details the expression (74). Moreover, we 

assume that the four individual energy levels (� = 4) have the 

following multiplicity: �� = 2, �� = 1, �7 = 1, �L = 2. Then 

this commitment yields the following formula for the scalar 

product 

〈\�, \�, \7|��, ��, �7, �L; S〉 = ý��\�, S
ý��\�, S
ý��\7, S
 �	ý��\�, S
ý��\7, S
ý��\�, S
 � ý��\7, S
ý��\�, S
ý��\�, S
 �ý7�\�, S
ýL�\�, S
ýL�\7, S
 � ý7�\�, S
ýL�\7, S
ýL�\�, S
 � ý7�\7, S
ýL�\�, S
ýL�\�, S
.                   (75) 

The six terms represent the permutation of the three 

arguments applied on two different series of the ýa functions. 

The plus sign of the second series ý7ýLýL  is typical for 

Bosons, where Ψ�\�, \�, . . . , \/; S

 is symmetric, while for 

Fermions is Ψ�\�, \�, . . . , \/; S
 is antisymmetric. In the last 

mentioned case, we have to set in each of these three last 

terms a minus sign in front. This sign change can be achieved 

by the use of the corresponding Slater determinant. 

The general, normalized n-particle solution for Bosons is 

given by 

Ψ�\�, \�, . . . , \/; S
 = 	 �√/!∑ ����,Ý/i,…,/�Þ�	 …, �/) 〈\�, \�, … , \/|��, ��, … , �Ý; S〉,                      (76) 

where the sequence of the indices ��, … , �/	 of each 

coefficient c���, … , �/
  has to be interpreted in directly 

coincidence to the order of the spatial variables. The density 

must be normalized «|Ψ�\�, \�, . . . , \/; S
|�­7\�…­7\/ =1  and it must also be invariant under the exchange of 

arguments. That is, the two following conditions have got to 

be fulfilled: 

�
/!∑ 	|c���, … , �/
|� = 1Ý/i,…,/�Þ�	 ,               (77) 

c�… , �Q , … , �h 	… 
 = �	c�… , �h , … , �Q 	… 
.         (78) 

For reasons of clarity we go back to our previous example, 

given by (74) in order to describe the corresponding function 

Ψ�\�, \�, \	7; S
 = 	 �√7!∑ ���Q ,L/i,…,/÷Þ�	 �h,	��) 〈\�, \�, \7; S	|��, ��, �7, �L〉                                   (79) 

=	 1√3! Wc��� = 1, �� = 1, �7 = 1
ý��\�, S
ý��\�, S
ý��\7, S
 � c��� = 2, �� = 1, �7 = 1
 
ý��\�, S
ý��\7, S
ý��\�, S
 � c��� = 1, �� = 2, �7 = 1
	ý��\7, S
ý��\�, S
ý��\�, S
 � 

c��� = 3, �� = 4, �7 = 4
	ý7�\�, S
ýL�\�, S
ýL�\7, S
 � c��� = 4, �� = 3, �7 = 4
 × 

ý7�\�, S
ýL�\7, S
ýL�\�, S
 � c��� = 4, �� = 3, �7 = 4
	ý7�\7, S
ýL�\�, S
ýL�\�, S
X. 
This example amplitude Ψ reveals more energy quants (N 

= 4) than positions (� = 3
 , thus, only three occupation 

numbers can be indicated in each coefficient. This inequality 

is expressed by the notation ��Q , �h,	��)	�	q��, ��, �7, �Lr. 
The calculation of the coefficients c(��,…, �/ ) can be 

done if we use (77), which demands the pairwise 

symmetrical exchange of the occupation numbers. That is, if 

we know one of these coefficients then we can calculate the 

remaining �! − 1  coefficients. If we again consider the 

example amplitude (75), then we can evaluate the following 

probabilities for the given distribution of occupation 

numbers: 

|�i|�
� = 0.2, |��|�� = 0.2, |�Ã|�� = 0.2, |�÷|�� = 0.13, 

|��|�
� = 0.13, |�±|�� = 0.13.                                       (80) 

Here we used the abbreviation �Q (o = 1, … ,6
	 for the six coefficients in (75). 
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4.5. Fifth Phase: Reception 

Hamiltonian of the reception step 
Receivers are frequently transmitter-gated ion channels, 

which can differ from one another in two principal ways. 

First, channels are very selective to the type of released 

neurotransmitters. Second, channels are highly selective 

which ions they let pass across the postsynaptic membrane. 

Here, we bring into focus that we consider only a selected 

spectrum of receptors e.g. acetylcholine-gated cation channel 

and voltage−gated 	NaH , respectively Ca�H  channels. Thus, 

we presume that several (ionotropic) creation operators of 

receivers ^�3f`,~,\`�	 	T
 exist, where 4Rd  specifies the type of 

the neurotransmitter which can bind to a receiver. For ease of 

understanding we consider the three states e.g. of an 

acetylcholine receptor. The three states of this receiver are 

denoted by s and are characterized as follows: unoccupied 
and closed (s = 1), occupied and open (s = 2), occupied and 
closed (s = 3). From the state s = 3 it goes back to state s = 1. 

The location of a receiver is marked by 	\d�	. In addition, we 

assume that only the reception of two neurotransmitters can 

cause the transitions between the different receiver states. 

Since a receptor opens a corresponding channel, we define 

also a creator operator of an ion-channel �ℎRd,\��	T
 and 

respectively 	�ℎRd,\��	 . Both operators determine the impact of 

channels and are strongly connected to the receiver type and 

also model the inflow of cations like NaH and even describe 

the case of no flow through the postsynaptic plasma 

membrane. The position of the ion-channel is indicated by \�D	. 
To simplify the calculations of the equations of motion we 

introduce the following state flip and inversion operators: 

�d�,�T = ^�3f`,�,\`�	 	T ^�3f`,�,\`�	 ,                    (81) 

�d�,� = ^�3f`,�,\`�	 	T ^�3f`,�,\`�	 − ^�3f`,�,\`�	 	T ^�3f`,�,\`�	 . 
�d�,�T = ^�3f`,7,\`�	 	T ^�3f`,�,\`�	 ,                   (82) 

�d�,� = ^�3f`,7,\`�	 	T ^�3f`,7,\`�	 − ^�3f`,�,\`�	 	T ^�3f`,�,\`�	 . 
�d�,7T = ^�3f`,�,\`�	 	T ^�3f`,7,\`�	 ,                   (83) 

�d�,7 = ^�3f`,�,\`�	 	T ^�3f`,�,\`�	 − ^�3f`,7,\`�	T ^�3f`,7,\`� . 
For example, the flip operator �d�,�T

 destroys the ground 

state 1 of the receiver and transfers it in the upper state 2. The 

inversion operator, e.g. �d�,� , describes the difference 

between the occupation numbers of the upper state 2 and the 

lower ground state. Thus, the interaction Hamiltonian that 

describes the receiving phase is denoted by 

PQ/Rd
�. ℏ =⁄  opd�                            (84) 

õ� �d�,�T
Rd,\�,	�,\g,	g,\`�	 ,\��	

�S3f`,\�,	� 	�S3f`,\g,	g�ℎ\��	T
 

−� �d�,�Rd,\�,	�,\g,	g,\`�	 ,\��	
�S3f`,\g,	gT

	�S3f`,\�,	�T �ℎ\��	  

�� �d�,�T
Rd,\�,	�,\g,	g,\`�	 ,\��	

�S3f`,\�,	� 	�S3f`,\g,	g�ℎ\��	T
 

−� �d�,�Rd,\�,	�,\g,	g,\`�	 ,\��	
�S3f`,\g,	gT

	�S3f`,\�,	�T �ℎ\��	  

�� �d�,7T
Rd,\�,	�,\g,	g,\`�	 ,\��	

�S3f`,\�,	� 	�S3f`,\f`g ,	f`g�ℎ\��	T
 

−∑ �d�,7Rd,\�,	�,\g,	g,\`�	 ,\��	 �S3f`,\g,	gT
	�S3f`,\�,	�T �ℎ\��	�. 

The corresponding coupling constant is called 	pd� . We 

again emphasizes that the indices which represent the 

different molecules are not equal	and we again require that 

the distances between a receiving molecule and two 

incoming neurotransmitters, as well as the k-space distance 

of wave number vectors, is governed by the following 

restrictions: 

�\d�	 − \Q� ≤ �\ resp.	�\d�	 − \h� ≤ �\;	�	Q − 	h� ≤ �	; ∀	o, � = 1, . . . , �.                                       (85) 

As well, the channel position (opening of the receiver) should be very close to the receiver position 	�\�D	 − \d�	� ≤ �\. 
Equations of motion of the reception phase 
The three equations of the flip operators are given by the following expressions: 

�sd�,�T = −pd� ∑ 	�d�,��S3f`,\�,	�T
	�S3f`,\g,	gT �ℎ\��	Rd,\�,	�,\g,	g,\`�	 ,\��	 ,Rd − Yd�,��d�,�T

.                                (86) 

�sd�,�T = −pd� ∑ 	�d�,��S3f`,\�,	�T
	�S3f`,\g,	gT �ℎ\��	Rd,\�,	�,\g,	g,\`�	 ,\��	 ,Rd − Yd�,��d�,�T

.                                 (87) 

�sd�,7T = −pd� ∑ �d�,7�S3f`,\�,	�T
	�S3f`,\g,	gT �ℎ\��	 − Yd�,��d�,7TRd,\�,	�,\g,	g,\`�	 ,\��	 ,Rd .                                  (88) 

Here, we again indicate that in addition to the 

aforementioned restrictions (equation (84)) we demand the 

compliance of the two restrictions 	\Q = \� ± �\, �	Q − 	�� ≤�	, (equivalent for \h and 	h). 
The significance of the equations (86) −  (88) can be 

already elucidated by the first expression (86). The transition 

from state 1 to state 2 is initiated by the increase of the 

occupation number of state 2 and the decrease of the 

occupation number of state 1 (�d�,�). This is equivalent to the 

creation of two neurotransmitters in the very close vicinity of 

the receptor, and the annihilation of the channel because it is 



 European Journal of Biophysics 2016; 4(4): 22-41 38 

 

closed. 

The dynamics of the three inversion operators are 

described by the following expressions: 

�sd�,� � 2pd� ∑ Ö�d�,�T �S3f`,\�,	� 	�S3f`,\g,	g��\��	T
Rd,\�,	�,\g,	g,\`�	 ,\��	 	 �   (89) 

�d�,��S3f`,\g,	g
T

	
�S3f`,\�,	�

T ��\��	� − Yd�,��d�,�T
. 

�sd�,� � 2pd� ∑ Ö�d�,�T �S3f`,\�,	� 	�S3f`,\g,	g��\��	TRd,\�,	�,\g,	g,\`�	 ,\��	 �  

(90) 

�d�,��S3f`,\g,	g
T

	
�S3f`,\�,	�

T ��\��	� − Yd�,��d�,�T
. 

�sd�,7 � 2pd� ∑ Ö�d�,7T �S3f`,\�,	� 	�S3f`,\g,	g��\��	T
	
	

Rd,\�,	�,\g,	g,\`�	 ,\��	 �   (91) 

�d�,7�S3f`,\g,	g
T

	
�S3f`,\�,	�

T ��\��	�−Yd�,7�d�,7T
. 

In the following, we again consider the first equation (86) 

to outline the behavior of an inversion operator. The change 

of this inversion operator (initial state s = 1) is governed by 

the flipping of state 1 to state 2, the annihilation of two 

neurotransmitters in the direct environment of the receptor 

and the creation of an ion channel. Alternatively (initial state 

s = 2), the inverse process occurs. 

The creation of the inversion operators, the annihilation of 

a neurotransmitter and the creation of a channel operator 

regulate the dynamics of a created neurotransmitter operator. 

�s S3f`,\t,	t
T

=	−pd� ∑ 	��d�,�T � �d�,�T � �d�,7T �Rd,\g,	g,\`�	 ,\��	 �S3f`,\g,	g��\��	T
                                               (92) 

−Y/R�S3f`,\t ,	t
T

. 

��s \t	T
=	−pd� ∑ 	��d�,� � �d�,� � �d�,7�Rd,\�,	�,\g,	g,\`�	 �S3f`,\�,	�

T 	�S3f`,\g,	g
T

                                             (93) 

−Y�D��\t	T
. 

The selection of one particular flip operator out of the 

three flip operators is determined by the given initial state. If 

we chose Ì � 2  as the initial state then we have only to 

consider 	�d�,�  in equation (92). The state of the receiver 

makes a transition from Ì � 2  to Ì � 1  (regular transition 

cycle) and two neurotransmitters are also created. 

The temporal spatial and momentum density of arriving 

neurotransmitters reads 

U
UR ��S3f`,\t,	t

T 	�S3f`,\t ,	t� � −pd� ∑ 	Rd,\g,	g,\`�	 ,\��	    (94) 

Ö�d�,�T �S3f`,\g,	g 	�S3f`,\t,	t��Rd,\��	
T � �d�,��S3f`,\g,	g

T �S3f`,\t,	t
T

	
��\��	  + 

�d�,�T �S3f`,\g,	g 	�S3f`,\t,	t��Rd,\��	
T
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Figure 7 represents by a phase diagram the temporal dependence of the real part (red) and imaginary part (blue) of the 

operator �d�,�T 	 (equation (86)), 	�S3f`,\t,	t
T

 (equation (92)) and ��\t	T
 (equation (93)). 

 

Figure 7. Graphical representation of the temporal behavior of the real part (red) and imaginary part (blue) of the three operators �d�,�T 	(equation (86), 

	�S3f`,\t,	t
T  (equation (92)), and ��\t	T  (equation (93). The common damping constant is set to Y � 0.05. 
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Figure 8 describes the temporal trajectories of the density of neurotransmitters during the reception phase (equation (94)), 

where the real (red) and the imaginary (blue) part are separated. 

 

Figure 8. Density of the impinging neurotransmitters in the timespan of the reception phase (equation (94)). The real part is shown in red; the imaginary part 
is marked by blue. The damping constant is Y/R �0.05, the coupling constant is pd
� � 0.1. The scale of time axis is characteristic for the release process, here 
the numerical value 100 corresponds approximately 1ms. 

The dynamics of the three receivers is characterized by their strong coupling: 

ŝ�3f`,�,\`�	
T � pd� 	� �^�3f`,7,\`�T − ^�3f`,�,\`�

T 

Rd,\�,	�,\g,	g,\`�	 ,\��	

�S3f`,\�,	� 	�S3f`,\g,	g��\��	T
 

−Yd�^�3f`,�,\`�
T

. (95) 

ŝ�3f`,�,\`�	
T � pd� 	� �^�3f`,�,\`�T − ^�3f`,7,\`�

T 

Rd,\�,	�,\g,	g,\`�	 ,\��	

�S3f`,\�,	� 	�S3f`,\g,	g��\��	T
 

−Yd�^�3f`,�,\`�
T

.  (96) 

ŝ�3f`,7,\`�	
T � pd� 	� �^�3f`,�,\`�T − ^�3f`,�,\`�

T 

Rd,\�,	�,\g,	g,\`�	 ,\��	

�S3f`,\�,	� 	�S3f`,\g,	g��\��	T
 

−Yd�^�3f`,7,\`�
T

. (97) 

The solutions of these three coupled differential equations are required to describe the time-dependent density of a receiver 

which is in the state “unoccupied and closed” (state 1). The corresponding result is given by 

­
­S �^�3f`,�,\`�	

T 	^�3f`,�,\`�� � −pd�� Ö�d�,�T �S3f`,\�,	� 	�S3f`,\g,	g��\��	T
Rd,\g,	g,\`�	 ,\��	 ,Rd	

 

−�d�,��S3f`,\g,	g
T

	
�S3f`,\�,	�

T ��\��	�−Yd�^�3f`,�,\`�	
T ^�3f`,�,\`� . (98) 

If we compare this result with that one we obtained for the three inversion operators (equations (89)	− (91)) then it will be 

obvious that the right hand side of equation (98) is formed by the sum of the expressions of the previously mentioned 

equations. Figure 9 illustrates the time dependent density of a receptor in state s = 1 (equation (98)) whilst the reception phase, 

where again the real part (red) and the imaginary part (blue) are together outlined. 
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Figure 9. Depiction of the temporal variations of the density of receptors (equation (98)). The real part is marked by red; the imaginary part is labeled by 
blue. The damping constant is set to Yd� � 0.05; the coupling constant takes the value pd� �	0.1. The scale of time axis is characteristic for the reception 
phase, where the numerical value100 corresponds approximately 1ms. 

5. Conclusions 

In our approach, several dominant quantum effects 

characterize the whole transmission cycle in chemical 

synapses. First, the interactions of all involved molecules of 

the five modelled, principal phases are specified by the 

Hamiltonians, which model the simultaneous reciprocal 

actions of the creation operators and corresponding 

annihilation operators. This interplay defines the resulting 

molecular dynamics. 

Second, the molecular dynamics of the loading process is 

characterized by a competitive balancing between loading and 

unloading. The transport of neurotransmitters along axonal 

microtubules is regarded as an efficient replacement of the 

diffusion process. The synchronization of the vesicle transport 

is done by the stepwise motion control of the load carrying 

molecular robots. Third, the release of the neurotransmitters 

can also be represented as the multiple outgoing of plane 

matter waves, which superposes to wave packets, where their 

group velocities correspond to particle velocities. 

Fourth, the transmissions through the cleft is represented 

by three different approaches: multiple scattering, quantum 

diffusion and n-particle system. In the first attempt, we use 

Green´s functions to calculate the probability of finding the 

final location of manifold scattered transmitters. Similar 

calculations can be performed with respect to the final k-

value by the declaration of Green´s functions in the k-space. 

The quantum based diffusion mainly operates in the particle 

representation of the QFT, thus all densities, flows, transition 

elements, density matrix, etc. are calculated by the use of 

corresponding number operators and continuity equations. 

Hereby, we regard the quantum information, which is 

generated with the aid of the density matrix as one of the 

basic biological features that is relevant for the 

interconnections of neural populations (plasticity). The third 

approach uses the n-particle system, which obey the 

Schrödinger equation to establish the combination of the 

configuration space and the particle space. Hereby, we 

calculate the amplitude whose squared modulus give us the 

probability to find at n different positions at the same time t, 
�� particles with energy ��, etc. 

Fifth, the receptors can undergo quantum-based transitions 

into three different states, where these transitions are 

subjected to the rate of the incoming neurotransmitters. The 

interplay between sender and receiver is also governed by the 

loss rate of the neurotransmitters that directly influence the 

resulting gain. 

In summary, this contribution shows the entry point of a 

path, which may ends up with the proved statement that 

quantum processes occur in the brain. One important, still 

open question is, do coherent states (matter waves) exist in 

the brain and can we therefore observe interference effects by 

experiments (whether in vitro or in vivo). 
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