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Abstract: Injection molding is a typical nonlinear system, in which there is a need for high-precision control of injection 

velocity to produce sophisticated products. In view of the shortcomings in control precision of existing control systems, this 

paper proposes an improved generalized predictive control (GPC) model for high-precision injection velocity control. The 

velocity response curves are studied and corresponding control action coefficients under step disturbance with different 

velocity constants are determined based on the characteristics of curves. To overcome large overshoot and insufficient 

accuracy when controlling large delay processes, the softening factor is changed to a dynamic softening factor and the initial 

value of reference trajectory is determined with a new manner. To verify the performance of the propsed model, extensive 

simulation and experimental analysis are conducted considering parameters including horizon length, prediction horizon length, 

control horizon length, control weighting factor and softening coefficient. The resultsreveal that the improved GPC model 

achieves fairly high accuracy for the control of injection velocity, the errors is controlled within 0.05 cm/s, which can meet the 

injection precision requirement of actual injection molding machines. Moreover, the model can guarantee the starting and 

finishing ends of prediction horizon to overcome the over-regulation occurring in high precision control with other algorithms, 

meanwhile, the model also improves the control response velocity. 
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1. Introduction 

With the rapid development of industries such as 

electronics, telecommunications, medicine and automobile, 

the international market's requirements for high-precision, 

high-performance plastic molding process have been 

increasing [1-5]. R&D of more advanced injection molder 

control system and realization of ultra-high precision 

injection molding are of very high engineering significance 

and economic value. 

Injection molding is a major production process in the 

plastics industry [6, 7], which can generally be divided into 

four stages: melting, injection, holding and cooling [8]. To 

obtain sophisticated, consistent products, it is important to 

control the process parameters at each stage, of which the 

control of injection velocity is the most important for the 

product quality [9-11]. In particular, for precision injection 

molding products with extremely high requirements on 

dimensional accuracy and internal quality, the requirement 

on velocity control accuracy is higher [12, 13]. 

Velocity control of injection molding machine is rather 

complicated, and extensive analytical research has been done 

on this model. K. K. Tan and Huang [14] used the 

polynomial approximation approach to avoid the high-order 

components in the system model, which yielded fairly ideal 

simulation results. The approach must first implement 

off-line identification, so that the initial values of system 

parameters cover the operating point. Gao F et al. [15] 

proposed robust learning control on the basis of optimal 

learning control and conducted relevant experiment. S. N. 
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Huang et al. [16] combined neural network with learning 

control and presented the simulation results of system by 

assuming the presence of repetitive interference. Tsai 

Ching-Chih [17] proposed a method combining gain 

mechanism PI controller with fuzzy PI controller for 

optimization of velocity control curves. However, due to 

numerous nonlinear factors such as back pressure, hydraulic 

pressure, material property, melt temperature, nozzle 

pressure and mold cavity geometry in the injection process, 

the mathematical model was always flawed. 

Generalized predictive control (GPC) [18, 19] is an 

optimal control algorithm that is based on predictive model. 

The GPC algorithm controls the target by using strategies 

such as multistep prediction, rolling optimization and 

feedback compensation, which can effectively overcome the 

influences of imprecision, nonlinearity and time-dependence 

of model in the industrial process control and is thus applied 

to multiple fields [20-22]. However, actual application has 

found that the algorithm often has large overshoot when 

controlling large delay process; besides, its control accuracy 

is still somewhat insufficient. 

To solve the above problems, this paper focuses on 

studying the application of optimization-based generalized 

predictive algorithm in the injection velocity control for 

injection molding machines. The velocity response curves 

and corresponding control action coefficients under step 

disturbance with different velocity constants are analyzed by 

establishing Improved predictive control algorithm based on 

its characteristics. Finally, simulation and experiment verify 

that the method can highly precisely control the injection 

velocity of injection molding machine under different 

processes. 

2. Typical Injection Velocity Curves and 

Injection Velocity Model 

2.1. Typical Injection Velocity Curves 

Injection velocity refers to the displacement of injection 

screw per unit time, whose magnitude directly influences the 

quality and production efficiency of plastic products. Figure 

1 presents the injection molding system of the injection 

molding machine, where the controller controls the servo 

motor and servo valve based on feedbacks through analog 

quantity and then controls the injection unit for injection 

molding. Empirically, there are two typical injection velocity 

curves. 

 
Figure 1. Injection molding system. 

One is the velocity curve for rapid molding products as 

shown in Figure 2a. After the molten resin enters the mold 

through the nozzle, it begins to cool down. To timely fill the 

mold cavity with melt and to obtain high precision products 

with uniform density, rapid mold filling is necessary in a 

short period of time. If the injection is slow, the time to fill 

the mold will be extended correspondingly, so that the 

manufactured product easily has defects such as cold joints, 

uneven density and large stress. The use of high-velocity 

injection can reduce the melt temperature difference within 

the mold cavity and improve the pressure transfer effect, so 

that precision products with uniform density and small stress 

can be obtained. However, if the injection velocity is 

excessively high, it will be unfavorable to the control, so that 

irregular flow of melt is highly likely at places like gate, and 

material scorching as well as poor suction and exhaustion of 

gas will be caused, which will affect the surface smoothness 

of products as well. 

The other is the injection curve for general products as 

shown in Figure 2b. Such products are not demanding on the 
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injection velocity, but are highly demanding on the velocity 

following feature. In the actual production of such products, 

injection velocities at the gate and various points on the mold 

cross-section are non-uniform. In part one where the 

injection just begins, the melt passes through the runner, and 

the velocity accelerates very quickly, then the injection 

proceeds at a relatively stable velocity. In part two, injection 

velocity declines rapidly, and the main purpose of doing so is 

to eliminate the radial lines at the gate. Afterwards, in part 

three, injection velocity again rises to a relatively high value 

and holds for a certain period of time since the molten 

material should be filled onto the surface of mold. Finally, 

velocity must be rapidly reduced to a very low value in order 

to eliminate the flash and overfill. 

 
(a)                                             (b) 

Figure 2. Typical injection velocity curves; (a) is the velocity curve for rapid molding products; (b) is the injection curve for general products. 

2.2. Injection Velocity Model 

K. K. Tan established a linear system equivalent to a typical 

inertial loop for injection model and performed simulation on 

this basis. However, his model is not universal as it is linear 

and too simple. C. P. Chiu, J. H. Wei, M. Rafizadeh 

established nonlinear models of injection molding process, 

respectively. This paper also uses the M. Rafizadeh model as 

the main simulation target to perform verification. 
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Where *  is the injection position; �	  is the injection 

velocity; 
�  is the hydraulic pressure; 
�  is the nozzle 

pressure; ��	is the polymer flow rate; u is the hydraulic oil 

flowing into injection cylinder; ��(  is the oil capacity of 

injection edge; ��	 is the sectional area of oil cylinder; 2� is 

the volume modulus of liquid; ��( is the volume of polymer 

in drum; ��	 is the sectional area of drum; m is the weight of 

screw; r is the radius of nozzle; n is the power exponent of 

polymer melt; # is the viscosity coefficient of polymer; k is 

the ratio of screw radius to nozzle radius; s is 1/n; and l0 the 

length of screw. 

3. GPC-Based Injection Velocity Control 

Model 

3.1. Standard GPC Algorithm 

The prediction model in GPC predicts the output of object 

at future P moment based on the historical information 

(system's output and control action) and the future input 

information of the system. Where P is the prediction step size. 

The model gets rid of the previous requirements that are 

based on rigorous mathematical model, which has the 

function of predicting the system's future dynamic behavior. 

Thus, we can use the prediction model to gain priori 

knowledge of the optimization of predictive control, thereby 

deciding the control input that we will use, therefore the 

output variation of the future controlled object is in line with 

the expected goal. That is, control quantity u�k�	at present 

and future L moment are calculated according to the 

deviation e�k� = y�k� − yM�k�  between the actual output y�k�  and the predicted output yM�k�  of the system to 

minimize the deviation e�k�. Where L is the control step size. 

Assuming that the controlled object can be described using 

the following discrete difference equation: 

8�9%��:�;� = <�9%��=�; − 1� + ?�;�/A     (2) 

Where :�;�, =�; − 1� and ?�;� are the output, input and 

interference information of the system, respectively, and A	is 

the differential operator. 

In addition to predicting the model, the GPC algorithm also 

needs to perform rolling optimization of the model. However, 

there are many differences between the optimization of the 

predictive control and the usual optimal control algorithm, 

which is reflected in the way that it uses a rolling, usually 

finite horizon optimization strategy rather than a constant 

global optimization goal. At each sampling time, the optimal 

performance index generally involves only a finite time in the 

future, and at the next sampling time, such an optimal horizon 

moves forward at the same time. The prediction model should 

be corrected by the deviation between the actual output at this 

time and the output predicted by the model, then new control 

action should be produced through a new optimization. A 

currently common objective function for rolling optimization 

is shown in (3) below: 

B = ∑ [:�; + E� − :F�; + E�]� + HIJKLI� ∑ [A=�; + E − 1�]IMKL� �
 (3) 
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Where N( is the minimum prediction horizon; NO  is the 

maximum prediction horizon; Nu is the control horizon; and H 

the control weighting factor. To ensure the system output y 

(k)'s tracking stability of set value w, the following flexible 

processing is generally performed on the set value, where yr is 

called the reference trajectory. 

:F�;� = :�;�               (4) 

:F�; + E� = �:F�; + E − 1� + �1 − ��P     (5) 

Where j = 1, 2...; and � is the softening factor, 0 ≤ � ≤ 1; 

Hence, GPC is actually to solve the control increment A=�;�. . . A=�; + NO − 1�  and to minimize the objective 

function J. 

Since predictive control is a closed-loop control algorithm, 

the optimization base point should be consistent with the 

system reality during rolling optimization. However, as a 

basic prediction model, it only roughly describes the dynamic 

characteristics of object. Due to the nonlinear, time-varying, 

model mismatch and interference factors present in the actual 

system, the invariant model-based prediction cannot agree 

completely with the actual situation. Therefore, addition of 

feedback compensation process is needed into the GPC 

algorithm aside from the above prediction model and rolling 

optimization. 

Feedback compensation is the prerequisite for rolling 

optimization. So after determining a series of future control 

actions through optimization, the control tend to deviate from 

ideal state under the predictive control algorithm, with the aim 

of preventing model mismatch or environmental interference. 

At the next moment, the algorithm monitors the actual output 

of object first, then corrects or compensates for the prediction 

model through various feedback strategies, followed by a new 

optimization. There are diverse ways to achieve feedback 

compensation. For example, we can predict and compensate 

for future errors while keeping the model unchanged; we can 

also modify the prediction model with on-line identification. 

Therefore, the optimization in predictive control is based on 

model and feedback information so as to form closed-loop 

optimization. 

3.2. An Improved GPC Algorithm 

Despite many advantages, the GPC algorithm has been 

found to have large overshoot and somewhat insufficient 

accuracy when controlling large delay processes in the actual 

application. The control increment u of the algorithm is 

directly proportional to the value of polynomial :F −TA=�; − 1� − U:�;�. :F  is the reference trajectory, while TA=�; − 1� − U:�;�  is the optimal predicted value at a 

control increment of 0. With the increase of j, the deviation 

between the reference trajectory and TA=�; − 1� − U:�;� 

also increases. When the controlled object has no pure delay, 

reference trajectory and TA=�; − 1� − U:�;� have the same 

value y(k) at the starting and finishing ends of prediction 

horizon, and :F − TA=�; − 1� − U:�;�  is not excessively 

large, so the control will be relatively smooth. When the 

controlled object has large delay, reference trajectory and 

TA=�; − 1� − U:�;�  have large error at the starting and 

finishing ends k+N0 of prediction horizon, so that the control 

increment is excessively large, which affects the stability of 

the control system. 

Therefore, this paper proposes an improved GPC algorithm 

based on TA=�; − 1� − U:�;� , so that the reference 

trajectory value at each time on the prediction horizon is 

always the weighted sum of TA=�; − 1� − U:�;� and set 

value at this time, as shown in (6) below: 

:F�; + E� = �[TKA=�; − 1� + UK:�;�] + �1 − ��P   (6) 

Where E = N(. . . NV. 
Therefore, the initial value of reference trajectory is 

modified in the above manner to overcome the defect of 

excessively large :F − TA=�; − 1� − U:�;� at the starting 

end of prediction horizon in controlling the large delay 

process. That is, excessively large overshoot resulting from 

excessively large control increment can be avoided. 

Meanwhile, to meet the rapidity requirement, softening factor 

is also optimized to some extent here, which is changed to a 

dynamic softening factor. Accordingly, the complete 

reference trajectory selected is as shown in the following 

formula (7): 

W���E� = � − ��E − N(�/�NV − N(�:F�; + E� = ��E�[TKA=�; − 1� + UK:�;�] + �1 − ��E��P  (7) 

Where E = N(. . . NV. 
Through the above optimization, the proportion of TA=�; − 1� − U:�;�  in the reference trajectory is in a 

progressively declining trend. This not only can ensure the 

initial end of prediction horizon, but also avoids overshooting 

while ensuring the rapidity of control system, so that the 

control quantity follows the set value timely. 

4. Simulation and Experimentation 

4.1. Selection of Control Parameters 

The control performance of GPC is greatly related to the 

selection of model control parameters [23, 24]. The selection 

of different model parameters will affect the quality of control. 

The function and selection of GPC parameters generally 

comply with the following principles: 

(1) Horizon length (X ): In GPC, selection of sampling 

period is very important. Excessively large T is 

conducive to the system stability, but will ignore some 

interference to result in inaccurate model and reduced 

control performance. Excessively small X will increase 

the computational burden of system. Generally, 

selection of X  should follow the Shannon theorem 

while taking into account the interference requirements. 

(2) Prediction horizon length (N): The prediction length N 

is related to the stability of system. The greater the N, 

the better the system stability, the complex the 

computation, and the slower the response. The less the N , the more unstable the system, and the faster the 

response. Generally, N is selected between 5-15. 
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(3) Control horizon length (N=): The control length N= 

also has a significant impact on the stability of system. 

The less the N=, the stronger the constraint on control, 

and the more conducive to the system stability. The 

greater the N= , the larger the change in control 

increment, and the higher the rapidity and flexibility of 

system. Generally, N= is taken between 1-3. Of course, 

the greater the N=, the longer the computation time. 

(4) Control weighting factor (H): In the objective function 

of rolling optimization, it is necessary to prevent the 

system overshooting or oscillation in order to suppress 

the excessive change of control quantity. Excessively 

large H  decreases the output of control quantity and 

slows down the system response, but is conducive to the 

system stability. If H = 0, there will be no constraint on 

the control quantity. 

(5) Softening coefficient (Y ): Softening coefficient Y  is 

related to the robustness of system. If Y is very small, 

the reference trajectory will reach the set value very 

quickly, which is not conducive to enhancing the system 

robustness. If Y  is too large, the system will change 

slowly, and robustness will be enhanced. Thus, selection 

of Y  should trade off between system dynamics and 

robustness, which is generally between 0-1. 

(6) It is also found through practical application that the 

maximum prediction horizon N and the control horizon N= are not only two important parameters influencing 

the control effect, but are also mutually influential. 

When increasing the maximum prediction horizon, the 

control horizon must be increased accordingly, 

otherwise it will easily cause instability of the control 

system. 

4.2. Model Simulation Results 

According to the above selection of relevant control 

parameters for the generalized predictive algorithm, the 

model parameters used in the simulation herein are listed in 

Table 1. 

By corresponding the injection velocity Z[	of M. Rafizadeh 

model to :�;�  of the GPC algorithm, the process of 

simulation is basically set within 2 sec because the injection 

molding machine can complete a full injection molding 

motion in about 2 sec. 

Table 1. GPC algorithm related control parameters. 

Model system parameter value 

Horizon length (T ) 10 

Prediction horizon length ( N ) 3 

Control horizon length ( Nu ) 3 

Control weighting factor ( λ ) 0.1 

Softening factor ( α ) 0.01 

Simulation 1: To better reflect the effectiveness of the 

present model algorithm, the first simulation aims to 

observe the model's controllability over a single object by 

giving a basic object. The results are shown in Figure 3 

below: 

 
Figure 3. Results of object control process for GPC algorithm. 

It can be seen from the simulation results in Figure 3 that the 

improved GPC algorithm proposed herein basically controls the 

output value within an allowable target value range at 60 ms and 

can quickly achieve the tracking and control of target value. 

Meanwhile, the variation of control effect coefficient u shows that 

the control action also gradually decreases over time and reaches a 

stable value at 40 ms. This value remains stable over time. 

Simulation 2: The injection velocity Z[  of M. Rafizadeh 

model is taken as the control object of model. The velocity 

tracking curves obtained are shown in Figure 4 below: 

 

(a) 

 

(b) 

Figure 4. Results of injection velocity control response; Figure a Injection 

velocity control curves at different time periods; Figure b Errors between 

control and expected values. 

It can be seen from the simulation results in Figure 4 that 

the improved GPC algorithm proposed herein achieves fairly 

high accuracy for the control of injection velocity, with some 

errors present only during the step disturbance of each stage. 

Nevertheless, the magnitude of these errors is controlled 
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within 0.05 cm/s, which can meet the injection precision 

requirement of actual injection molding machines. From a 

complete injection process perspective, the control model can 

control the velocity within the allowable error range, which 

has higher control precision than other model algorithms. 

Simulation 3: To more fully reflect the advantages of the 

present model, it is used in the process of velocity control with 

multi-stage step disturbances. The simulated desired target 

value and the results of velocity control tracking simulation 

are shown in Figure 5 below: 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Velocity control response results during step disturbance; Figure a 

Target step disturbance values at different time periods; Figure b Control 

curve in which multiple step disturbances occur at different time periods; 

Figure c Errors between control and target values. 

It can be seen from the simulation results in Figure 5 that 

the improved GPC algorithm proposed in this paper still has 

high precision when used in the velocity control process with 

step disturbances. The model only has a certain error in each 

step disturbance, which is only 10% of the change in step 

disturbance velocity. From the perspective of a complete 

control process with multi-stage step disturbances, the model 

can well control the velocity within a stable range. Besides, it 

can be seen from the variation of control coefficient that the 

control coefficient of the model can respond quickly. 

4.3. Experimental Results 

Figure 6 presents the experimental setup and control flow. 

The main experimental equipment is an injection molding 

machine with 380 t hydraulic toggle mechanism, whose 

injection unit parameters are listed in Table 2. DELL Vostro 

14 3000 Series PC with 1.9 GHZ dual-core frequency and 4G 

DDR3 memory is used for simulation and data processing. 

KEBA CP032 controller is used, which controls the servo 

drive and servo valve through 0-10 V analog quantity and 

controls the opening and closing of magnetic exchange valve 

through the IO point output. Servo drive uses the Inovance 1 

IS580T080-R1-1; motor uses the Inovance 1 

ISMG2-48D17CD-R131F with a maximum speed of 2000 

r/min; and servo valve uses the ATOS DPZO-T-373 S5/D. 

During experiment, the actual position is fed back via 

electronic scale, which is the MTS magnetostrictive sensor 

with an accuracy of ±0.002 mm. 

 
Figure 6. Experimental setup and control flow. 

Table 2. Machine parameters. 

Parameter value 

Screw diameter (\\) 55.0 

Screw length to diameter ratio (]/^) 25.0 

Theoretical capacity (_\`) 601 

Injection pressure (a
�) 187.4 

Maximum empty injection velocity (_\`/b) 857 

Injection stroke (\\) 253 

Screw speed ($
\) 300 

Maximum pump pressure (a
�) 17.5 

Pump motor power (;P) 97 
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Figure 7 presents the control status of two typical injection 

curves at different velocities and injection amounts under 

GPC. (a) and (b) show the velocity control status at maximum 

injection velocities of 200 mm/s and 400 mm/s under a 60 mm 

injection amount. (c) and (d) show the velocity control status 

at maximum velocities of 300 mm/s and 200 mm/s under a 90 

mm injection amount. 

 
                                      (a)                                                     (b) 

 
                                     (c)                                                       (d) 

Figure 7. Control status of two typical injection curves at different velocities and injection amounts under GPC. (a) and (b) present the velocity control status 

at maximum injection velocities of 200 mm/s and 400 mm/s under a 60 mm injection amount. (c) and (d) present the velocity control status at maximum 

velocities of 300 mm/s and 200 mm/s under a 90 mm injection amount. 

5. Conclusion 

In this paper, an injection velocity control model based on 

the Improved generalized predictive algorithm is proposed on 

the basis of studying the typical injection velocity curves and 

injection velocity model of injection molding machine, in 

order to overcome the accuracy defects of existing control 

systems. According to the characteristics of the algorithm, 

relevant parameters used in the model control process are 

determined. Meanwhile, to better reflect the effectiveness of 

the present model algorithm, the injection control effect of 

typical injection curves is simulated separately. Finally, 

effectiveness of the method is verified through 

experimentation. The results show that: (1) The model can 

guarantee the starting and finishing ends of prediction 

horizon to overcome the over-regulation occurring in high 

precision control with other algorithms. Besides, it also 

improves the control response velocity. (2) The improved 

GPC algorithm proposed herein can be applied to a variety of 

injection molding processes. 
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