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Abstract: Solubility of algebraic structures is what gleaned the introduction of group theory, which later stems the other 

realms of abstract algebra viz: rings, fields and semigroup theories. The nth roots of unity is found in the most sensitive texts 

ever in the history of abstract algebra: Cauchy’s, Galois’ and Cayley’s. These three giant group theorists had the common 

ground of the roots of unity in even the title of their works. The idea is that if the nth roots of unity are solvable by radicals and 

so do the composition series approach, then all other products of the nth roots of unity – which the unity itself is part of – will 

automatically be solvable. Hence, all equations that dissolve to the least of the nth roots of unity are solvable by the 

composition series. This article penciled down how the congruence modulo of arithmetics due to Gauss and Leibnitz were used 

to break down the nth roots of unity, so that the recursive process can generate the composition series of normal subgroups 

between the unity and the group itself. Since they are P-Groups, they have normal P-Sylow Subgroups. The normality comes 

from the Index Theorem. Because they all have index 2 in their P-Groups, they are the maximal proper normal P-Sylow 

Subgroups and their factor groups are abelian accounting to the solubility of nth roots of unity by composition series. We 

combine the classical Euler Formula and the De Moivre Theorem to present the solvability of nth roots of unity. The P-Groups 

over nth roots of unity are multiplicative. nth roots of unity are subsequences of nth roots of unity and it converges to the limit 

point of the nth roots of unity. 
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1. Introduction 

Galois [1] in 1831 first define group in an attempt to group 

some one-one functions and in an attempt to prove Abel [2] 

Proposition: There is no general formula that solves the 

linear quintic equations (see Buya [3]) and above. Galois 

proved Abel right using the group theory. The definition of 

group was followed by Cayley Theorem due to Cayley [4]. 

The Cayley Theorem was followed by the present definition 

of group by Henrish Weber [5] and Walter von Dyck [6] in 

1852. The aim of Henrish Weber and Walter von Dick is that 

any algebraic structure that endured the present-day 

definition of group is embeddable in the Galois Group, now 

mostly called symmetric group. 

Group is the father, father as in personification, of other 

algebraic structures viz: Ring (additive abelian group 

equipped with an associative multiplicative binary operation 

that is both left and right distributive over the addition), 

vector space(group acting on a set), module(ring acting on a 

set), field(both additive and multiplicative abelian groups), 

semigroup(a generalization of group, Christopher [13], that 

was born 87 years after group) and other consequences of 

group all under the universal algebra Stanley and 

Sankappanavar [14]. Group has analyzed very many regular 

shapes (symmetry groups) and numbers are partly regular 

shapes. Symmetry groups are embedded in the symmetric 

groups. We shall present the bottom line of construction of 

regular shapes using �� � � in the anal of this article. The p-

groups of the aforementioned multiplicative solvable groups 
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all lie on the unit circle |�| = 1 . There are uncountable 

infinitely many number of complex numbers on |�| = 1 as 

there are uncountable infinitely many number of real 

numbers in (0, 1) ⊆ ℝ. 

Whenever there is a subgroup of a finite group, then the 

order of the subgroup divides the order of the group. This is 

the statement of Lagrange Theorem [7], first stated by 

Lagrange himself in 1771 almost 58 years before the 

definition of group by Galois. 30 years after the statement, 

Petro Abati [8] proved the theorem. See Richard [9]. Today, 

like many other decoded theorems, there are numerous 

alternative proofs of Lagrange Theorem. This brings us to: 

Proving a theorem is easier than stating it. The converse of 

the theorem is: Whenever there is a group of a finite order �, 

is there a subgroup of an order a divisor of �? The answer is 

yes if the group is abelian of a prime power order. Cauchy 

stated and proved that the group needs not to be abelian so 

far it is finite of prime order. The group is forced to equal its 

centre, the abelian subgroup of every group. 

That is, Cauchy proved that every � -Group has a P-

Subgroup; but his proof contained egregious error. Today, 

there is a simple proof of Cauchy Theorem via the Class 

Equation, Heinstein [10]. Sylow (John and Robertson [11]) 

narrowly states that there are ���  -Group where �  is a 

positive integer that does not divide P. It has the largest P-

Subgroup, the P-Sylow Subgroup that forms a single 

conjugacy class of all the other P-non Sylow Subgroups. 

Sylow further gave ≡ 1	mod	p, the formula that could find 

the number �  of distinct P-Sylow Subgroups. That is, ���� = � ∈ ℤ. That is, 1 + �!\	!��. 
Every P-Group is nilpotent and every nilpotent group is 

solvable. Every group has a composition series which may be 

trivial or non trivial (interesting). The terms of the 

composition series of the group over �� � 1 are P-Groups 

having P-Sylow Subgroups of Index 2. Hence, the factor 

group is abelian due to blending the following theorems 

Vasistha and Vasistha [12] and Heinstein [10]. 

Theorem 1.1. If # is a subgroup of index 2 in $, then # is 

a normal subgroup of $ and $ #%  is a cyclic group of order 2. 

Proof. Since the index of # in G is 2, there are only two 

right cosets of # in $. One of them is # and the other must 

be #&, where & is an element of $ that is not appearing in H 

for if g ∈ H, g��hg ∈ H, ∀h ∈ H . So let g ∉ H  and let g��hg ∉ H. Then g��hg ∈ Hg, the only other coset of G. But h�& ∈ #&  for some ℎ� ∈ # . That is g��hg = h�& ∈#&	which implies &��ℎ = ℎ�  which implies & = ℎℎ��� ∈ #. 

This contradicts & ∉ H . Hence, g��hg ∈ H, ∀g ∈ G  and ℎ ∈ #. # is a nomal subgroup of $. $ #%  is a cyclic group of order 2 because of the Lagrange 

Theorem. 

Theorem 1.2. If $  is a group of prime order, then it is 

cyclic. 

Proof. Let |$| = !, a prime number. Then every element 

of $ has order 1 or ! by Lagrange Theorem. But, the only 

element of order 1 is the identity. Therefore, all the other 

elements have order !  and there is at least one because |$| ≥ 2 , the smallest prime. Thus, every non-identity 

element of $ generates $. Hence, $ is cyclic. 

Theorem 1.3. Every cyclic group is abelian. 

Proof. Let g0	and	g3  be any two elements of the cyclic 

group $ = 4&5 : 7 > 0 ∈ ℤ, &9�� = &�, : > 1; . Then &�. &� = &�=� = &�=� = &� . &�. This is from the fact that � + � = � + �, ∀�, � ∈ ℤ. Hence $ is abelian. Hence, $ #%  

is an abelian group. 

2. Preliminaries 

Galois sought to solve a problem that had stymied 

mathematicians for centuries. Methods for solving linear and 

quadratic equations were known thousands of years ago. In 

the 16
th

 century, Italian mathematician developed formulas 

involving only the operations of addition, subtraction, 

multiplication, division and extraction of roots (radicals). For 

example, the equation �> + 0�? + @� + A = 0 has the three 

solutions: B + C, �(D=E)? + (D�E)√�>? , �(D=E)? � (D�E)√�>? , 

where B = G�H? +IJK?L + HMN
K

 and C = G�H? � IJK?L + HMN
K

. 

The general formulas for the general cubics �> + ��? +@� + A = 0  and the quartics �N + ��> + @�? + A� + O = 0 

are a little more complicated. 

A polynomial over P[�], a field, is solvable by radicals if 

we can obtain all its zeros by adjoining nth roots (for various �) to P[�]. In other words, each zero of the polynomial can 

be written as an expression involving elements of P[�] 
combined by the operations of addition, subtraction, 

multiplication, division and extraction of roots. 

Definition 2.1 (Solvable by Composition Series). We say 

that a group G is solvable if G has a series of subgroups 4S; = #T ⊂ #� ⊂ #? ⊂ ⋯ ⊂ #9 = $,  where for each 0 ≤ 7 ≤ :, #5  is normal in #5=� and 
#5=� #5% 	is abelian. 

Solvable groups have been investigated for over seventy 

years. Feit and Thompson [15] proved a long standing 

conjecture of Burnside [16] that every group of odd order is 

solvable. Burnside had shown this result to be true for groups 

of order less than 40,000. The proof of Feit-Thompson Proof 

extends to over 250 pages of deep mathematics. 

Theorem 2.2 (Splitting Field of �� � �). Let F be a field of 

characteristic 0 and let � ∈ P . If E is the splitting field of �� � � over F, then the Galois Group GalYE F% \ is solvable. 

Proof. We first handle the case where P  contains a 

primitive nth root of unity ]. Let @ be a zero of �� � � in ^. 

Then the zeros of �� � �  are, 	]@,  w?b , …, w3��b . 

Therefore, ^ = P(@) . Let GalYE F% \  is abelian. Then it is 

solvable. To see this, observe that any automorphism in GalYE F% \ is completely determined by its action on @. Since @ is a zero of �� � �; any element of GalYE F% \ sends b to 

another zero of �� � �.  That is, any element of GalYE F% \ 
takes @ to ]5@ for some 7 . Let ∅ and b  be two elements of GalYE F% \. Then, since ] ∈ P , ∅ and b  fixes ]  and ∅(@) =]c@ and ∅(@) = ]9@ for some d and :. Thus, (b(∅))(@) =bY∅(@)\ = b(]c@) = b(]c)b(@) = ]c]9@ = ]c=9@  and (∅(b))(@) = (∅Yb(@)\ = ∅(]9@) = ∅(]9)∅(@) =
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]9]c@ = ]9=c@. So that b∅ and ∅b agree on @ and fix the 

elements of P . This shows that b∅ = ∅b . Therefore, GalYE F% \ is abelian. Now suppose that P does not contain a 

primitive nth root of unity. Let ] be a primitive nth root of 

unity and let @ ≠ 0. Since wb is also a zero of �� � �, both ] and ]@ belong to �̂. Therefore, ] = fJJ ∈ ^. Thus, P(]) 
is contained in E, and F(w) is the splitting field of �� � 1 

over P . Analogously, for any automorphism ∅  and b  in Gal(F(w) F% ), we have ∅(]) = ]c  for some d  and b(]) =]9  for some : . Then, (b(∅))(]) = (bY∅(])\ = b(]c) =(b(]))c = (]9)c = (]c)9 = ∅(])9 = ∅(]9) =∅Yb(])\ = (∅b)(]) . Some elements of Gal(F(w) F% )  are 

completely determined by their action on ], this shows that Gal(F(w) F% ) is abelian. Because ^  is the splitting field of �� � � over F(w) and F(w) contains a primitive nth root of 

unity, $�g(^ P(])% )  is abelian, and the series 4S; ⊆
$�g(^ P(])% ) ⊆ $�g(^ P% )  is a normal series. Since both 

$�g(^ P(])% ) and 
$�g(^ P% ) $�g(^ P(])% )h ≃ $�g(P(]) P% ) 

are abelian; $�g(^ P% )  is solvable. See Gallian [6] for the 

theorem and this accompanied proof. 

We now take the following theorems that we will use in 

section 3. 

Theorem 2.3 (Eisentein Criterion). Let j(�) = ���� +�������� +⋯+ ���� + �T ∈ ℤ[�] . If there exist some 

prime !  in ℤ  such that ! ∤ ��, !\�5  where 7 = 0,1, … , � � 1 

and !? ∤ �T, then j(�) is irreducible over ℚ. 

Proof. Refer to Heinstein [7] for the proof. 

Theorem 2.4 (Rouche). Let j(�)  and &(�)  are analytic 

inside and on a simple closed curve	n and let |&(�)| < |j(�)| 
on n. Then j(�) + &(�) and j(�) have the same number of 

zeros inside n. 

Proof. Refer to Seymour et al. [10] for the proof. 

Example: Consider &(�) = 3�q � 15� + 5 . By Einstein 

Criterion, &(�)  is irreducible over ℚ . Since &(� ) is 

continuous and &(�2) = �61  and &(�1) = 17 , we know 

that g(x) has a real zero between -2 and -1. A similar analysis 

shows that g(x) also has real zeros between 0 and 1 and 

between 1 and 2. Each of these real zeros has multiplicity 1. $(�) has no more than three zeros, because of the Rouche 

Theorem. So far, &(�) have no real zeros, &’(�) would have 

to have three real zeros, and it does not. Thus, the other two 

zeros are non real complex numbers, say, � + @7 and � � @7. 
Lemma 2.5. If v ⊴ $  and both v  and $ v%  are solvable 

groups, then $ is a solvable group. 

Proof. Refer to Gallian [6] for the proof. 

Theorem 2.6. Every p-Group $x is solvable. 

Proof. We will induct |$| , with the case |$| = 1  being 

trivial. Assume that the result is true for all p-Groups of order 

less than |$|. Since G is a nontrivial group, it contains a 

nontrivial centre y($). If Z(G) = p, then G is abelian and 

therefore, it is solvable. If y($) ≠ ! , then both y($)  and 

$x y($)% are p-groups of order less than |$|. By the induction 

hypothesis, both y($) and 
$x y($)%  are solvable. The result 

follows immediately from Lemma 2.5. 

3. Results and Discussion 

This section presents the: Composition Series of the 

Solvable Group over �� ± �, Construction of Regular Shapes 

Using �� � � , Discussion on � � Sylow Subgroups of ��| � �, ��|} ± �, ��M| ± �. 

3.1. Composition Series of the Solvable Group over ~� ± � 

Euler Formula is given by S5� = A��� + 7 sin �  and De 

Moivre Theorem states that �� = ��S5�� = ��(cos�� +7	�7�	��). When � = ��, we have: ��� = ��� �A�� �� + 7	�7� ���. 
For nth root of unity, ��� = 1,  i.e. |�| = 1 , the unit circle. 

Thus � = 2�: and (�1)�� = A�� ?�9� + 7	�7� ?�9� . For �� � �, 
we have √� �A�� ?�9� + 7	�7� ?�9� �  or √�] , where : =0, 1, 2, … , � � 1	or : = 1,2,… , � . When � = 1  and � = 1 ; 

we have: � = 1 . The group $  over this is the group 

containing only the identity, the trivial group 41;  since $ = ($,∗) when * is known. 

When � = 2 and � = 1; we have: �? � 1 = (� � 1)(� +1) 	⟹ � = 1	��	� = �1. The group over this is 41, �1;, a 

group isomorphic to the kernel group of absolute values and 

isomorphic to parity group 4even, odd;. It is also a P-group 

since 2 is the oddest (even) prime. 

When � = 3  and � = 1 ; we have: ST = 1, S�?T =cos 120 + 7 sin 120 = �0.5 + 0.97, S?NT = cos 240 +7 sin 240 = �0.5 � 0.97	. Thus, the multiplicative group is: 41, �0.5 + 0.97, �0.5 � 0.97	;. 
When � = 4 and � = 1, we have: (�? � 1)(�? + 1). The 

group is 41, �1, 7, �7;  which is a P-Group of the P-Sylow 

Subgroup 41, �1;  with index 2. Thus 4�1, 1;  is normal in 41, �1, 7, �7;. The factor group is �41, �1;, 47, �7;� and the 

canonical map is 41, �1, 7, �7; → �41, �1;, 47, �7;�. Hence, it 

is abelian because of Theorem 1.1, 1.2 and 1.3. 

When � = 5  and � = 1 ; we have: ST = 1, SL? =cos 72 + 7 sin 72 = 0.3 + 7, S�NN = cos 144 + 7 sin 144 =�0.8 + 0.67, S?�� = A��216 + 7 sin 216 = �0.8 �0.67, S?�� = cos 299 + 7 sin 288 = 0.3 � 7	 . Thus, the 

multiplicative group is: 41, 0.3 + 7, �0.8 + 0.67, �0.8 �0.67, 0.3 � 7;. 
When � = 6  and � = 1 ; we have: ST = cos 0 +7 sin 0 = 1, S�T = A��60 + 7 sin 60 = 0.5 + 0.97, S�?T =cos 120 + 7	�7�120 = �0.5 + 0.97, S��T = A��180 +7 sin 180 = �1, S?NT = A��240 + 7 sin 240 = �0.5 �0.97, S>TT = A��300 + 7�7�300 = 0.5 � 0.97.  The group 

with this underlying set has order 2! . Hence we take the 

following theorem. 

Theorem 3.2. If |$| = 2!, ! an odd prime; then $ has one 

and only one subgroup of order ! and either $ has exactly ! 

subgroups of order 2 or it has exactly one subgroup of order 2. 

The subgroup of order 3 is 41, �0.5 + 0.97, �0.5 � 0.97	;. 
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It is a normal subgroup because of the Index Theorem. It is a 

P-Sylow Subgroup. The subgroup of order two is 41, �1;. It 
is normal because of the theorem that says any subgroup of 

an abelian group is normal. It is a P-Subgroup.	41, �0.5 +0.97, �0.5 � 0.97	; is the conjugacy class of 41, �1;. 
When � = 7  and � = 1 ; we have the following group: 4ST = A��0 + 7	�7�0 = 1, Sq�.N = A��51.4 + 7�7�51.4 =0.6 + 0.87, S�T?.� = A��102.9 + 7�7�102.9 = �0.2 +7, S�qN.> = A��154.3 + 7	�7�154.3 = �0.9 + 0.47, S?Tq.L =A��205.7 + 7�7�205.7 = �0.9 � 0.47, S?qL.� = A��257.1 +7	�7�257.1 = �0.2 � 7, S>T�.� = A��308.6 + 7�7�308.6 =0.6 � 0.87; 
When � = 8  and � = 1 , we have the following group: 4ST = A��0 + 7�7�0 = 1, SNq = A��45 + 7�7�45 = 0.7 +0.77, S�T = A��90 + 7�7�90 = 7, S�>q = A��135 +7�7�135 = �0.7 + 0.77, S��T = A��180 + 7�7�180 =�1, S??q = A��225 + 7�7�225 = �0.7 � 0.77, S?LT =A��270 + 7�7�270 = �7, S>�q = A��315 + 7�7�315 =0.7 � 0.77;. This is a P-Group because it is of order 2> � 1, it 

is of the form !�� . It has at least a P-Sylow Subgroup 41, �1, 7, �7;. The index theorem applies. This 8-Group is the 

identity of the coset classes of the Factor 16-Group by 8-

Normal Subgroup. The canonical map is natural. 

Theorem 3.3. This works in general. 

Proof. We prove this by the Induction Hypothesis. Case I: 

When � = 1 . For � = 1 , we got ST = A��0 + 7	�7�0 . 

Assume that it is true for � = : . Then: S95� = A��:� +7��:� . Now S95�S5� = (A��:� + 7�7�:�)(A��� + 7�7��) =A��:�A��� + 7A��:��7�� + 7�7�:�A��� � �7�:��7�� =[A��:�A��� � �7�:��7��] + 7[A��:��7�� + �7�:�A���] =A��(: + 1)� + 7�7�(: + 1)� = S(9=�)5� . Whence, it is true 

for � = : + 1. 

Case II: When � ≠ 1 , for � = 1 , we have: �ST =�(A��0 + 7	�7�0) = � . Assume that it is true for � = : . 

Then: �9S95� = �9(A��:� + 7��:�) . Now �9S95��S5� =�9�(A��:� + 7�7�:�)(A��� + 7�7��) = �9�(A��:�A��� +7A��:��7�� + 7�7�:�A��� � �7�:��7��) =�9=�4A��:�A��� � �7�:��7�� + 7[A��:��7�� +�7�:�A���]; = �9=�[A��(: + 1)� + 7�7�(: + 1)�] =�9=�S(9=�)5�. Hence, it is true for � = : + 1 

Let � = �S5� = �(A��� + 7�7��). �ℎS�	�� = ��S5�� =��(A���� + 7�7���), for all n, by the induction hypothesis. 

Since 	�� = ��S5�� = ��(A���� + 7�7���), ∀� , 	� �� =
� ��S5 �� = � �� �A�� �� + 7�7� ���, where � = ��. 

Remark 3.4. Do not go to nth degree and conclude the 

proof mathematics theorem. Induction is embedding an 

assertion in an extended set of natural numbers that includes 

aleph naught in this regards. 

3.2. Construction of Regular Shapes Using ~� � � 

We are aware that group theory that gleaned 85 years 

before the introduction of ring and 87 years before the 

introduction of semigroup has seemingly and apparently no 

number analysis: Semigroup analyzes natural numbers, ring 

analyzes integers, field analyzes rational and real numbers, 

vector space analyzes complex numbers. Group, the mother 

of algebraic structures, analyzes any regular shapes which 

includes numbers. Any regular shape is constructible using �� � �: 

When n=1,  

When n=2,  

When n=3,  

When n=4,  

When n=5,  

When n=6,  

When n=k,  

3.3. The � �Sylow Subgroups of the Group over  ~ ¡ � �, ~ ¡¢ ± �, ~ £¡ ± � 

Any group over �� � �  having order p is a normal 

subgroup of the group over ��| � �. Any integer ! is either a 

prime or a composite. If it is a prime, it is a P-Group as well 

as a P-Sylow Subgroup. If it is a composite, it has a P-Sylow 
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Subgroup because of the following theorems (Heinstein and 

Fraleigh [17]): 

Theorem 3.5. If |$| = !¤, where p,q are distinct primes 

such that ¤ ≢ 1��O!; then G has a normal Sylow Subgroup. 

Proof. The number of n distinct sylow p-subgroups of G is 

a divisor of ¤ and � ≡ 1	��O	!. Since q is prime, � is either 

1 or ¤ . Since ¤ ≢ 1��O! , � = 1. That is, $  has a unique 

sylow p-sylow subgroup. It is normal in $. 

Corollary 3.6. If |$| = !¤  where p,q are distinct primes, 

then G has a proper normal subgroup. 

Proof. We may assume without loss of generality that ! > ¤ . Then ¤ � 1  cannot be divisible by p, and so by 

Theorem 3.7, G has a normal sylow p-subgroup. 

The group over �� � � may be of small or big order. It duo 

two composition series �?� � � and �?�=� � �. The groups 

over �?� � �  are forming p-Groups and normal p-sylow 

subgroups of index 2. Thus, they are nilpotent and every 

nilpotent group is solvable. Besides, we presented the 

theorem that states that every p-group is solvable. The groups 

over �?�=� � � are solvable because of the Burnside Lemma. 

Now since �� � 1 works out well, then �� � � works: The 

group over this is the group containing only the identity, the 

trivial group 41;  since $ = ($,∗)  when * is known. When = 2 , we have: �√�, �√��.	 When � = 3 , we have: √�K 41, �0.5 + 0.97, �0.5 � 0.97	; . When = 4 , we have: �√�¦ , �1√�¦ , 7 √�¦ , �7√�¦ � . When n = 5 ; we have: √�§ 41, 0.3 + 7, �0.8 + 0.67, �0.8 � 0.67, 0.3 � 7; . When � = 6 ; we have: √�¨ 4ST = cos 0 + 7 sin 0 = 1, S�T =A��60 + 7 sin 60 = 0.5 + 0.97, S�?T = cos 120 +7	�7�120 = �0.5 + 0.97, S��T = A��180 + 7 sin 180 =�1, S?NT = A��240 + 7 sin 240 = �0.5 � 0.97, S>TT =A��300 + 7�7�300 = 0.5 � 0.97;. When � = 7, we have the 

following group: √�© 4ST = A��0 + 7	�7�0 = 1, Sq�.N =A��51.4 + 7�7�51.4 = 0.6 + 0.87, S�T?.� = A��102.9 +7�7�102.9 = �0.2 + 7, S�qN.> = A��154.3 + 7	�7�154.3 =�0.9 + 0.47, S?Tq.L = A��205.7 + 7�7�205.7 = �0.9 �0.47, S?qL.� = A��257.1 + 7	�7�257.1 = �0.2 � 7, S>T�.� =A��308.6 + 7�7�308.6 = 0.6 � 0.87;. When � = 8, we have 

the following group: √�ª 4ST = A��0 + 7�7�0 = 1, SNq =A��45 + 7�7�45 = 0.7 + 0.77, S�T = A��90 + 7�7�90 =7, S�>q = A��135 + 7�7�135 = �0.7 + 0.77, S��T =A��180 + 7�7�180 = �1, S??q = A��225 + 7�7�225 =�0.7 � 0.77, S?LT = A��270 + 7�7�270 = �7, S>�q =A��315 + 7�7�315 = 0.7 � 0.77;. 
If �� � � works out well, nothing can deny �� � (��) =�� + �  to work out. This is the reason for the prior 

assumption. �?� ± � and �?�=� ± � are partitions of �� ± � 

under modulo 2. �?� ± �  are subsequences of �� ± �  that 

converges to the limit point of �� ± � due to the following 

theorem. 

Theorem 3.7. A subsequence converges to the limit point 

of its super sequence. 

Proof. Let �?�  be a subsequences of �� . Since every 

Cauchy Sequence Converges, |�� � �?�| < «? , ∀� ≥ v . 	�� 

converges g means: Given ¬ > 0, ∃v > 0(N is no matter how 

large) such that |�� � g| < «? , ∀� ≥ v . Hence, we have |�� � �?�| < «?  and |�� � g| < «? , ∀� ≥ v . From Triangular 

Inequality, «? + «? > |�� � �?�| +  |�� � g| > |�?� � �� + �� �g|, ∀� ≥ v . That is �?� � g| < ¬, ∀� ≥ v . Hence, �?�converges to g, the limit point of ��. 

Theorem 3.8. If |$| = !?¤ , where !  and ¤  are distinct 

primes, then $ has either a normal sylow ! �subgroup or a 

normal sylow ¤ �subgroup and $ is not simple. 

Proof. Let �� and �| be respectively the number of sylow ! �subgroups and the number of sylow ¤ �subgroups of $. 

Suppose on the contrary, �� > 1 and �| > 1. By sylow 3
rd

 

theorem, �� divides ¤ which is a prime. Hence, �� = ¤. Also �� ≡ 1	��O	! implies ¤ > !. Again, by sylow 3
rd

 theorem, �| divides !?, so �| is either ! or !?. Any element of order ¤ 

in $  generates a subgroup of order ¤  which is a sylow ¤ - 

subgroup of $. Any two distinct sylow ¤ �subgroup of $	of 

order ¤  intersect in 1 and so there are in $ , �|(¤ � 1) 
distinct elements of order ¤. Hence, if �| = !?, there are in $  just !? � ¤ � !?(¤ � 1) = !?  element which are not of 

order ¤. Since no element of a sylow !- subgroup of $ has 

order ¤  and since |�| = !? . P must be a unique sylow ! � subgroup of $  in contradiction to �| > 1 . Therefore, �| = !. Since, �| ≡ 1	��O	¤, ! > ¤. This is a contradiction. 

Theorem 3.9. If |$| = !¤� , where !, ¤, �  are distinct 

primes, then $ is not simple. 

Proof. Let ! > ¤ > � . Suppose on the contrary, $  is 

simple. Let ��, �|  and �}  be respectively the number of 

sylow !  subgroups, sylow ¤  subgroups and sylow � 
subgroups of $. Then �� > 1, �| > 1 and �} > 1. Any two 

distinct sylow ! �subgroup of $  intersect in 1 . Hence, �� 

sylow !	subgroup of $  contains ��(! � 1)  distinct element 

of order !. Similarly, �|  sylow ¤ �subgroups of $  contains ��(! � 1)  distinct elements of order ! . The �|  sylow ¤ �subgroups of $  contains �|	(¤ � 1) distinct elements of 

order ¤  and �}  sylow �	 subgroup of $  contains �}(� � 1) 
distinct elements of order �. Therefore, 

|$| = !¤� ≥ 1 + ��(! � 1) + �|(¤ � 1) + �}(� � 1) 
By the 3

rd
 sylow theorem, ��  divides ¤�  and �| ≡1	��O	! . Since �� > 1  and ! > ¤ > � , it follows that �� = ¤�. Also, �| divides !¤. So that �} ≥ ¤. Thus, 

!¤� ≥ 1 + ¤�(! � 1) + !(¤ � 1) + ¤(� � 1) 
!¤� ≥ 1 + !¤� � ¤� + !¤ � ! � ¤� � ¤	�� 

0 ≥ 1 + !¤ � ¤ � ! 

0 ≥ (! � 1)(¤ � 1), the contradiction. 

The proofs are gotten from Heinstein and Fraleigh. 

4. Conclusion 

There are infinitely many elements on the circle 4� +7@:	�? + @? = 1; , and 4� + 7@:	�? + @? = 1; ≡ |�| = 1  as 

there are infinitely many elements of (0, 1) ⊆ ℝ . Every 

group, including the symmetry group, is embedded in a 

symmetric group and every symmetric group is constructible 
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with at least �� � � . To this end, the existence of 

composition series of every solvable group are the 

consequences of the construction of any regular shape using �� � �. Solubility of algebraic structures is what gleaned the 

introduction of group theory. The �� + �  is solvable by 

radicals since �� � �  is. Hence �� ± �  is solvable by 

composition series despite ®� , � ≥ 5 – the symmetric groups 

of length 5 and above –  are not soluble, not even by the 

radical. When � = 1 , all the solvable groups are 

multiplicative and are P-Groups. They all lie on the unit 

circle 4� + 7@:	�? + @? = 1;. Since they are P-Groups, they 

have normal P-Sylow Subgroups. The normality comes from 

the Index Theorem. Because they all have index 2 in their P-

Groups, they are the maximal proper normal P-Sylow 

Subgroups and their factor groups are abelian accounting to 

the solubility of �� ± 1 by composition series. We combine 

the classical Euler Formula and the De Moivre Theorem to 

present the solvability of �� ± �. The P-Groups over �?� ± � 

and �?�=� ± � are multiplicative. �?� ± �  are subsequences 

of �� ± � and it converges to the limit point of the �� ± �. 

The inherent methodology is the intertwine of the works of 

Cauchy [18].  
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