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Abstract: Let R= Fq+uFq+vFq+uvFq be a commutative ring with u
2
=u, v

2
=v, uv=vu, where q is a power of an odd prime. 

Ashraf and Mohammad constructed some new quantum codes from cyclic codes. Under this background, another Gray map 

from R to Fq
4
 is given. This map can be naturally extended to R

n
. The problem on the ring turns to the field by this isomorphic 

map now. Therefore, This mapping is obviously a weight-preserving and distance-preserving map. The results show that the 

codes after mapping are self-orthogonal codes over Fq if they are self-orthogonal codes over R. Some computational examples 

show that some better non-binary quantum codes can be obtained under this Gray map. We discuss the structure of linear 

codes. On this basis, the structure of the generating matrix of linear codes is obtained. The structure of their dual codes is also 

obtained. The CSS construction guarantees the existence of quantum codes. Finally, with the help of the CSS construction, we 

get some good quantum codes. By comparison, our quantum codes have better parameters. 
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1. Introduction 

Quantum error-correcting codes have experienced 

tremendous growth since the discovery that there exists quantum 

error-correcting codes which protect quantum information as 

classical error-correcting codes protect classical information. In 

1994, the quantum computer theory of quantum parallel 

computing proposed by Shor et al. on the basis of quantum 

superposition and coherence, the most essential quantum 

characteristics, attracted the attention of experts and scholars 

from home and abroad [1]. One of the important research 

problems of quantum error-correcting codes is to construct 

quantum codes with high code rate and large minimum distance. 

In recent years, the theory of quantum codes constructions 

develops rapidly. Many good quantum codes are constructed by 

classical error-correcting codes with self-orthogonal or dual 

containing properties over finite fields [2]. 

Recently, there are many papers on quantum codes 

construction from cyclic codes by classical error-correcting 

codes over finite rings. Qian et al. constructed some quantum 

codes over the ring 22 uFF +  with 02 =u [3]. Kai and Zhu 

studied quantum codes construction over 44 uFF +  with 

02 =u [4]. Ashraf and Mohammad made many outstanding 

contributions in quantum code [5-6]. One of their 

contributions is that they constructed some new non-binary 

quantum codes over qqqq uvFvFuFF +++  with 022 == vu

[7]. On the basis of previous studies, many other scholars 

have made great contributions of quantum codes from cyclic 

codes over different rings [3, 8-10]. These results show that 

some good quantum codes can be obtained by classical codes 

over finite rings. 

One should note that one of the important problems of 

codes over rings is to design the Gray map from rings to 

finite fields. The Gray map connects the codes over rings and 

the codes over finite fields. Therefore, designing the effective 

Gray map preserving self-orthogonal properties from rings to 

finite fields is crucial for constructing quantum codes by 

codes over rings. In this correspondence, we design another 

Gray map from qqqq uvFvFuFF +++ to qF ( q is a power of 

an odd prime). The computational examples show that our 

Gray map can produce better quantum codes (see [7, 11-12]). 

The rest of this paper is organized as follows. In Section 2, 

we give a new Gray map. Some properties of this Gray map 

are given. Then in Section 3, some examples under this Gray 

map are recomputed and get some better quantum codes. In 

this sense, this Gray map is more effective to produce new or 

good non-binary quantum codes. In Section 4, we summary 

the full paper. 
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2. Gray Map 

Let qF be a finite field with q elements, where q is a power 

of an odd prime. Denote a commutative ring 

qqqq uvFvFuFFR +++= , where vvuu == 22 ,  and =uv  

vu . From the Chinese Remainder Theorem, for any Rr ∈ , 

r can be expressed uniquely as 

,4321 dcbar εεεε +++=                       (1) 

Where qFdcba ∈,,,  and uv=1ε , ,2 uvu −=ε
,3 uvv −=ε  .14 uvvu +−−=ε  It is easy to check that 

,
2

ii εε = =jiεε  ,0=ijεε  where 4,3,2,1, =ji  and .ji ≠  In 

fact, from the Chinese Remainder Theorem, we have 

⊕= RR 1ε  .432 RRR εεε ⊕⊕  Therefore, 

))(1(4 qqqq uvFvFuFFuvvuR ++++−−=ε  

qqqq uvFvFuFF +−−=  

qFuvvu )1( +−−=  

.4 qFε=                                                               (2) 

Similarly, we have ,11 qFR εε = ,22 qFR εε = ,33 qFR εε =  

which implies that 

RRRRR 4321 εεεε ⊕⊕⊕=  

.4321 qqqq FFFF εεεε ⊕⊕⊕=                (3) 

Obviously, this ring is a principal ideal ring but not a chain 

ring because of its four maximal ideals [7]. 

Let C  be nonempty and .nRC ⊆  If C  is an R -

submodule of nR , then C is called a linear code of length n

over R [13]. An element of C is called a codeword. A linear 

code C over R  is called cyclic if every =c
�

 

Cccc n ∈− ),,,( 110 … implies that Cccc nn ∈−− ),,,( 201 … . For 

any ),,,( 110 −= naaaa …
�

 and ),,,( 110 −= nbbbb …

�
nR∈ , the 

inner product of a
�

 and b
�

is given by 

111100 −−+++=⋅ nn babababa ⋯

��
.                (4) 

If 0=⋅ba
��

, then a
�

 and b
�

are said to be orthogonal. The 

dual code of C  is defined as 

},0|{ CbbaRaC n ∈∀=⋅∈=⊥
����

.                (5) 

A code C  is called self-orthogonal if ⊥⊆ CC and self 

dual if .⊥= CC  

Now define a new Gray map as follows 

4: qFR →ϕ  

).,,,(4321 dcbadcbadcbadcbadcba +−−−−+−+−++++++ ֏εεεε                          (6) 

This map can be naturally extended to nR . Define the Lee 

weight of any element x  of R  to be ))(()( xwxw HL ϕ=  

and the Lee weight of any element ),,,( 110 −= ncccc …
�

 of 

nR  to be .)(
1

0 i

n

i LL cwcw ∑
−

=
=�  For any elements ,c

�

,Rc ∈′�  the Lee distance between c
�

 and c
�′  is given by 

)(),( ccwccd LL

���� ′−=′ . Further, the minimum Lee distance 

of the code C is defined as )()( CwCd LL =  the minimum 

Lee weight of C . 

Based on the above definitions, it’s tempting to conclude 

that ϕ  is qF -linear and it is also a distance-reserving 

isometry from ),( L

n dR  to ),(
4

H

n

q dF , where Ld and Hd  

denote the Lee and Hamming distance in nR  and 
n

qF
4

, 

respectively. Let C  be a linear code of length n  over R  

with parameters ],,[ dkn , where 
kqC =||  and .)( dCdL =  

Becauseϕ  is a bijective map, then we have )(Cϕ  is a linear 

code with parameters ],,4[ dkn  over ,qF  which implies that 

|)(||| CC ϕ=  and )).(()( CdCd HL ϕ=  

Next, quantum codes can be constructed by self-

orthogonal codes over qF . It means that self-orthogonal 

codes over finite fields are crucial for quantum codes 

construction. We will give a connection between self-

orthogonal codes over R  and self-orthogonal codes over qF  

by the Gray map ϕ  in the following. 

Theorem 1 [7] Let C  be a linear code of length n  over 

R . Then )(Cϕ  is a self-orthogonal code over qF  if C  is a 

self-orthogonal code over R . 

Proof Let C be a self-orthogonal code over R and 

,4321 dcba
���� εεεεα +++=

,14131211 Cdcba ∈+++=
���� εεεεβ where 

.,,,,,,, 1111

nFdcbadcba ∈
��������

 Then 

.014131211 =⋅+⋅+⋅+⋅=⋅ ddccbbaa
�������� εεεεβα  So we get 

=⋅=⋅=⋅ 111 ccbbaa
������

 .01 =⋅ dd
��

 Therefore,  

−+++⋅+−−−−+−+−+++=⋅ 11111 ,(),,,()()( adcbadcbadcbadcbadcba
���������������������βϕαϕ
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.04444),, 111111111111111 =⋅+⋅+⋅+⋅=+−−−−+−+ ddccbbaadcbadcbadcb
�������������������

 

Hence, )(Cϕ is a self-orthogonal code over qF . � 

3. Quantum Codes from Cyclic Codes 

First, we introduce some basic results on linear codes and cyclic codes over R . Then some computational examples show 

that some better non-binary quantum codes can be obtained under the Gray map. 

For a linear code C  of length n  over R , we define [7] 

},..,,,|{ 43211 CdcbatsFdcbFaC n

q

n

q ∈+++∈∃∈=
�������� εεεε  

},..,,,|{ 43212 CdcbatsFdcaFbC n

q

n

q ∈+++∈∃∈=
��������

εεεε  

},..,,,|{ 43213 CdcbatsFdbaFcC n

q

n

q ∈+++∈∃∈=
�������� εεεε  

}...,,,|{ 43214 CdcbatsFcbaFdC n

q

n

q ∈+++∈∃∈=
��������

εεεε                                                 (7) 

Clearly, iC  is a linear code of length n  over 
n

qF  for each 

.4,3,2,1=i  NowC  can be expressed as 

,44332211 CCCCC εεεε ⊕⊕⊕=                (8) 

which implies that ∏
=

=
4

1

||||
i

iCC . The generator matrix of C  

can be expressed as 

,

44

33

22

11





















=

G

G

G

G

G

ε
ε
ε
ε

                                (9) 

where iG  is the generator matrix of ,iC  4,3,2,1=i [7]. 

Let 44332211 CCCCC εεεε ⊕⊕⊕=  be a linear code of 

length n  over R , where iC  is a linear code of length n  

over ,qF  .4,3,2,1=i  It’s easy to prove that C  is a cyclic 

code if and only if iC  is a cyclic code, .4,3,2,1=i  In fact, 

suppose that ,),,,( 1,1,0, iniii Cccc ∈−…  .4,3,2,1=i  Then 

let ,,44,33,22,11 jjjjj ccccc εεεε +++= .1,,1,0 −= nj …  Obviously, 

C  is a cyclic code so ),,,( 110 −nccc …  and 

.),,,( 201 Cccc nn ∈−− …  Therefore, 

,,(),,,( 0,1,

4

1201 inii inn ccccc −=−− ∑= ε…  )., 2, −nic…

According to the uniqueness presentation of decomposition 

of linear codes over R , there must have 

iniini Cccc ∈−− ),,,( 2,0,1, … , which implies that iC  is a 

cyclic code. The converse is similar. 

The cyclic code C  above can be expressed as follows 

,)(
4

1

>=<∑
=

xgC i

i

iε                           (10) 

where )(xgi  is the generator polynomial of .4,3,2,1, =iCi  

We can easily get that ∑= =
−

4

1
)(deg4

|| i i xgn
qC [7]. Denote 

)()(
4

1
xgxg ii i∑ =

= ε  then 1|)( −nxxg . Moreover, 

>=< ∗

=

⊥ ∑ )(
4

1

xhC i

i

iε ,                       (11) 

where )(xhi

∗
is the reciprocal polynomial of 

)(

1
)(

xg

x
xh

i

n

i

−=  for 

,4,3,2,1=i  i.e., )()( 1)(deg −∗ = xhxxh i

xh

i
i  (see the reference 

[7] and [13]). According to the definition of dual code, 

).(deg||
4

1
xgC

i i∑ =
⊥ =  

Lemma 1 [14] LetC and C be two linear codes over qF  

with parameters ],,[ dkn  and ],,[ dkn , respectively. If ⊥C  

C⊆ , then an qdnkkn ]],,[[ ′−+  quantum code can be 

obtained, where ≥∪∈=′ ⊥⊥ )}\()\(|)(min{ CCCCvvwd H  

}.,min{ dd  In particular, if CC ⊆⊥ , then an quantum code 

with parameters qdnkn ]]
~

,2,[[ − can be obtained, where 

}.\|)(min{
~ ⊥∈= CCvvwd H

 

Lemma 2 [7] Let >=<⊕= ∑ == )(
4

1

4

1 xgCC ii iiii εε  be a 

cyclic code of length n  over R , where ))(( xgC ii =  for 

.4,3,2,1=i  Then CC ⊆⊥  if and only if (mod01≡−nx  

))()( xgxg ii

∗
 for .4,3,2,1=i  

By Lemmas 1 and 2, the non-binary quantum codes can be 

constructed as follows. 
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Theorem 2 [3] Let 
iii CC ε4

1=⊕=  be a cyclic code of 

length n  over R . If , 1,2,3,4,iC C i⊥ ⊆ =  then CC ⊆⊥ . 

Then a quantum code with parameters qdnkn ]],42,4[[ −  

can be obtained, where }\|)(min{ ⊥∈= CCvvwd L
. 

According to Theorem 2, some non-binary quantum codes 

from cyclic codes over R are constructed. It seems that an 

available source for non-binary quantum codes in the literature 

doesn’t exist. So we take some quantum codes as known non-

binary quantum codes [7, 11-12]. Moreover, quantum codes, 

constructed by our Gray map, listed in the Table 1 have the 

better parameters. We only write the coefficients of the 

generating polynomials according to the ascending power just 

for simplicity. For example, 21  represents 2+x  and the 

polynomial 8+x  is represented as 81. 

Table 1. New quantum codes qdkn ]],,[[ . 

n <g1(x), g2(x), g3(x), g4(x)> ϕ(C) [[n, k, d]]q [[n', k', d']]q 

9 >< 41,1,1,1  13]2,35,36[  13]]2,34,36[[  13]]2,30,36[[ ref.[11] 

15 >< 6151,541,81,21  11]4,53,60[  11]]4,46,60[[  11]]4,39,63[[ ref.[12] 

22 >< 134411,134411,411421,411421  5]4,68,88[  5]]4,48,88[[  5]]2,48,88[[ ref.[7] 

24 >< 21,1,1,1  5]2,95,96[  5]]2,94,96[[  5]]2,90,96[[ ref.[11] 

28 >< 4312431,4312431,4213421,4213421  5]4,88,112[  5]]4,64,112[[  5]]2,64,112[[ ref.[7] 

28 >< 21,1,1,1  5]2,111,112[  5]]2,110,112[[  5]]2,104,112[[ ref.[11] 

31 >< 4111,4111,4101,4101  5]3,112,124[  5]]4,100,124[[  5]]3,100,124[[ ref.[7] 

 

In Example 1, the construction process of a good quantum 

code compared with the one given is described in detail. The 

two codewords have the same length and dimensions but this 

code has the larger minimum distance than that one. 

Example 1 Let 5555 uvFvFuFFR +++=  and .11=n
2345234511 42()4344)(4(1 xxxxxxxxxxx +++⋅++++++=−

 4)x+ +  over 5.F  Let 

),()()()()( 44332211 xgxgxgxgxg εεεε +++=  where 

,442)()( 2345

21 +++++== xxxxxxgxg  

4344)()( 2345

43 +++++== xxxxxxgxg . Let

>=< )(xgC  be a cyclic code over R . Clearly, )()( xgxg ii

∗

divides 111 −x  for each .4,3,2,1=i Hence, by Lemma 2, 

CC ⊆⊥ . Further, )(Cϕ  is a linear code over 5F  with 

parameters ].7,24,44[  For Theorem 2, there is a quantum 

code with parameters 5]]7,4,44[[ . This quantum code is 

better than the known quantum code 5]]5,4,44[[ [7] because 

of its larger minimum distance. 

4. Conclusion 

In this paper, a Gray map from nR to 
n

qF 4
 was 

constructed. The problems on rings are relatively less 

studied. Therefore, the problem on the ring turned to the field 

by this isomorphic map. Then we briefly discussed the 

properties of cyclic codes under this Gray map, laying the 

foundation for the following operations. Finally, we got some 

good quantum codes. By comparison, our quantum codes had 

better parameters. We hope that we can get better quantum 

codes by effective methods in the future. 
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