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Abstract: In this paper, the condition under which composite multiplication operators on Hilbert spaces become skew n-

normal operators, (Alpha, Beta)-normal, parahyponormal and quasi-parahyponormal have been obtained in terms of radon-

nikodym derivative. 
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1. Introduction 

Let ( , , )X µ∑ be a σ -finite measure space. Then a 

mapping T from X into X is said to be a measurable 

transformation if
1
( )T E

− ∈∑ for every E ∈∑ . A 

measurable transformation T is said to be non-singular if
1

( ( )) 0T Eµ − =  whenever ( ) 0Eµ = . If T is non-singular then 

the measure 1
Tµ −  defined as 1 1

( ) ( ( ))T E T Eµ µ− −=  for 

every E in ∑ , is an absolutely continuous measure on 

∑ with respect to µ . Since µ is a σ -finite measure, then 

by the Radon-Nikodym theorem, there exists a non-negative 

function 0f  in 1
( )L µ  such that 

1
0( )

E

T E f dµ µ− = ∫  for 

every E ∈∑ . The function 0f  is called the Radon-

Nikodym derivative of 1
Tµ −  with respect to µ . 

Every non- singular measurable transformation T from X 

into itself induces a linear transformation TC  on ( )
p

L µ
defined as TC f f T= �  for every f in ( )

p
L µ . In case TC  is 

continuous from ( )
p

L µ  into itself, then it is called a 

composition operator on ( )
p

L µ  induced by T. We restrict our 

study of the composition operators on 2
( )L µ  which has 

Hilbert space structure. If u is an essentially bounded complex-

valued measurable function on X, then the mapping uM on 

2
( )L µ  defined by uM f u f= ⋅ , is a continuous operator with 

range in 2
( )L µ . The operator uM  is known as the 

multiplication operator induced by u. A composite 

multiplication operator is linear transformation acting on a set 

of complex valued ∑  measurable functions f  of the form 

, ( ) ( ) ( ) ( )u T T uM f C M f u T f T= = � �  

where u  is a complex valued, ∑  measurable function. In 

case 1u = almost everywhere, ,u TM  becomes a composition 

operator, denoted by TC . 

In the study considered is the using conditional expectation 

of composite multiplication operator on 2L -spaces. For eac

( , , )
p

f L X µ∈ ∑ , 1 p≤ ≤ ∞ , there exists an unique 

1( )T − ∑ -measurable function ( )E f  such that 
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( )

A A

g f d g E f dµ µ=∫ ∫  

for every 
1
( )T

− ∑ -measurable function g , for which the 

left integral exists. The function ( )E f  is called the 

conditional expectation of f  with respect to the subalgebra

1
( )T

− ∑ . As an operator of ( )pL µ , E  is the projection 

onto the closure of range of T  and E  is the identity on 

( )pL µ , 1p ≥  if and only if 
1
( )T

− =∑ ∑ . Detailed 

discussion of E  is found in [1-4]. 

1.1. (Alpha, Beta)--Normal Operator [13] 

An operator T is called ( ),α β -normal operator if

2 * * 2 *T T T T T Tα β≤ ≤ , ( )0 1α β≤ ≤ ≤  

1.2. Skew n-Normal Operator [12] 

An operator T is called skew n-normal operator if

( ) ( )* *n nT T T T T T= , for all natural number n. 

1.3. p-Hyponormal Operator [15] 

An operator T is called p-hyponormal operator if

( ) ( )* *
p

pT T T T≥ , for ( )0 p ∞≺ ≺  

2. Related Work in the Field 

The study of weighted composition operators on 2L spaces 

was initiated by R. K. Singh and D. C. Kumar [5]. During the 

last thirty years, several authors have studied the properties 

of various classes of weighted composition operator. 

Boundedness of the composition operators in ( )
p

L ∑ ,

( 1 )p≤ <∞ spaces, where the measure spaces are σ -finite, 

appeared already in [6]. Also boundedness of weighted 

operators on ( , )C X E  has been studied in [7]. Recently S. 

Senthil, P. Thangaraju and D. C. Kumar have proved several 

theorems on n-normal, n-quasi-normal, k-paranormal, and 

(n,k) paranormal of composite multiplication operators on 
2L spaces [8-11]. In this paper we investigate composite 

multiplication operators of ( ),α β -normal operator and skew 

n-normal operator 2 ( )L µ -spaces. 

3. Hyponormality for Composite 

Multiplication Operator 

The results in the following proposition were proved in 

[12], as part of his doctoral dissertation. 

3.1. Proposition [3] 

Let ( \ )E E A= ⋅ and let ϕ be a non-negative F measurable 

function. 

Define the positive operator Pϕ by ( )P f E fϕ ϕ ϕ= . 

Let 1

2 4( ( ))E

ϕϕ
ϕ

∧
=

. Then

1

2

P Pϕ
ϕ
∧= . 

Define the operator Rϕ by ( )R f E fϕ ϕ= . Then

2( )R Eϕ ϕ
∞

= . 

In [3], has proved the following lemma, as noted for any 

non-negative function f, 

sup sup ( )rport f port E f⊂ for any 0r >  

3.2. Lemma [14] 

Let α  and β  be non-negative functions, with

supS portα= . Then the following are equivalent: 

For every 2 ( )f L µ∈
2 2

( \ )

X X

f d E f A dα µ β µ≥∫ ∫  

sup port Sβ ⊂ and

2

\ 1SE A
β χ
α

 
≤  

 
almost everywhere. 

3.3. Proposition 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then for 0u ≥  

2
, , 0( ) u T u Ti M M f u f f

∗ =  

2
, , 0( ) ( ) ( ) ( )u T u Tii M M f u T f T E f∗ = � �  

,( ) ( ) ( ) ( ) ( )
n n n

u T T u niii M f C M f u f T= = � , 2 3( ) ( ) ( )..........( )n
nu u T u T u T u T= � � � �  

1
, 0( ) ( )( ( ) )u Tiv M f u f E f T∗ −= �  

( 1)
, 0 0( ) ( ( ) ) ( ( ) )n n n

u Tv M f u f E u f T E f T∗ − − −= � �  

where ( 1) 1 2 ( 1)
0 0 0 0( ) ( ( ) ) ( ( ) ).......( ( ) )n nE u f T E u f T E u f T E u f T− − − − − −=� � � �  

, 0( ) u Tvi M u f f=  

2 2
, 0 0( ) ( ) ( ( ))u Tvii M u f T E u f T f∗ = � �  

with the notation from Herron’s proposition, 
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2
0

,u T vu f T
M P P∗ = =

�
, where

( )( )
2

0

1

2 4
0

( )

( )

u f T
v

E u f T

=
�

�

 

Theorem 3.1 

Let the composite multiplication operator 
2

, ( ( ) )u TM B L µ∈  with weight 0u ≥  and S be the support of 0f : 

,u TM C≥ if and only if 2 1u ≥  

,u TC M ∗≥ if and only if 0sup support v port f=  

where 

( )( )
2

0

1

2 4
0

( )

( )

u f T
v

E u f T

=
�

�

,
( )

2
0

1

2 2
0

0

( )

( )
1S

u f T

E u f T
E

f
χ

 
 
 
  ≤
 
 
  
 

�

�

 almost everywhere. 

Proof: 

Since ,u TM and C are multiplication operators, we need only compare their symbols. After squaring, we get 

,u TM C≥ if and only if 0 0u f f≥  

,u TM C≥ if and only if 2
0 0u f f≥ Because 0 0f > almost everywhere, 

we obtain (i). 

As for this f, ,u TC M ∗≥  

f∀ , 
2

0 , ,u Tf f d M f fµ ∗≥∫  

,u T vM P∗ = , where 

( )( )
2

0

1

2 4
0

( )

( )

u f T
v

E u f T

=
�

�

( )v E v f f d µ= ∫  

However, 

2
( ) ( ), ( )v E v f f d E v f v f E v fµ = =∫

2
( )E v f d µ= ∫  

Since 0sup support v port f= , the desired conclusion follows from lemma 3.2. 

Theorem 3.5 

Let the composite multiplication operator 
2

, ( ( ) )u TM B L µ∈ . Then ,u TM  is p-hyponormal if and only if 0 00, 0uf uf T> >�        

and 2 2
0 0

1 1
p pE

u f u f T

 
≤ 

  �

. 

Proof: 

Here ( ) 2
* 2

, , 0,
p

p p
u T u T

X

M M f f u f f dµ= ∫  

and ( )
2

* 2
, , 0, ( )

p
p

p
u T u T

X

M M f f E u f T f dµ
 
 =
 
 

∫ �  

This implies 

2

2
2 2

0 0( )

p

p p p

X X

u f f d E u f T f dµ µ
 
 ≥
 
 

∫ ∫ �  

Since by lemma 2.2, for every 2 ( )f L µ∈  
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⇒
2

0 0(( ) ) ( )

p

p p pu f T u fσ σ⊂�
and

2
0

2
0

( )
1

p p

p p

u f T
E

u f

 
≤ 

  

�

 

⇒
2 2

0 0

1 1

( )p p p p
E

u f u f T

 
≤ 

   �

if 2
0( ) 0p pu f T >� and 2

0 0p pu f > . 

4. Parahyponormal for Composite Multiplication Operator 

Mahmound M. Kutkut [16] , has proved that an operator A is parahyponormal if and only if 2 2( ) 2 0AA C A A C∗ ∗− + ≥ for 

all real C. In an analogous manner, we derive some characterization of parahyponormal and quasi-parahyponormal composite  

multiplication operator on 2L -spaces. 

Theorem 4.1 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM is parahyponormal if and only if  

4 2 2 2
0 0( ) 2 0u T f T E f C u f f C⋅ − + ≥� �  almost everywhere, for all 0C ≥  

Proof: 

Suppose ,u TM is parahyponormal. Then 
2 2

, , , ,( ) 2 0u T u T u T u TM M C M M C∗ ∗− + ≥ for all 0C ≥ . 

This implies that 
2 2

, , , ,(( ) 2 ) , 0u T u T u T u TM M C M M C f f∗ ∗− + ≥ for all 2( )f L µ∈  

By the proposition 3.3 we get, 

{ }2 2 2 2
0 0( ( )) 2 0

E

u T f T E f C u f f C dµ⋅ ⋅ − + ≥∫ � � for every E ∈∑ . 

⇔ 4 2 2 2
0 0( ) 2 0u T f T E f C u f f C⋅ − + ≥� � almost everywhere, for all 0C ≥  

Theorem 4.2 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM is M-parahyponormal  if and only if  

2 4 2 2 2
0 0( ) 2 0m u T f T E f C u f f C⋅ − + ≥� � almost everywhere, for all 0C ≥ . 

Proof: 

Suppose ,u TM is M-parahyponormal. 

Then 
2 2 2

, , , ,( ) 2 0u T u T u T u Tm M M C M M C∗ ∗− + ≥ for all 0C ≥ . 

This implies that 
2 2 2

, , , ,( ( ) 2 ) , 0u T u T u T u Tm M M C M M C f f∗ ∗− + ≥ for all 2( )f L µ∈  

By the proposition 3.3 we get, 

{ }2 2 2 2 2
0 0( ( )) 2 0

E

m u T f T E f C u f f C dµ⋅ ⋅ − + ≥∫ � � for every E ∈∑ . 

⇔ 2 4 2 2 2
0 0( ) 2 0m u T f T E f C u f f C⋅ − + ≥� � almost everywhere, for all 0C ≥  

Theorem 4.3 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM is M ∗ -parahyponormal if and only if  

2 2 2 1 2 2
0 0 0( ) 2 ( ) 0m u f E u f T f C u T f T E f C− − ⋅ + ≥� � � almost everywhere, for all 0C ≥ . 

Proof: 

Suppose ,u TM is M ∗ -parahyponormal. 

Then 
22 2 2

, , , ,2 0u T u T u T u Tm M M C M M C∗ ∗− + ≥ for all 0C ≥ . 

This implies that 
2

2 2 2
, , , ,( 2 ) , 0u T u T u T u Tm M M C M M C f f∗ ∗− + ≥ for all 2( )f L µ∈  

By the proposition 3.3 and 
2 2 2 2 1

, , 0 0( )u T u TM M f u f E u f T f∗ −= � 0u ≥  we get, 

{ }2 2 2 1 2 2
0 0 0( ) 2 ( ) 0

E

m u f E u f T f C u T f T E f C dµ− − ⋅ + ≥∫ � � � for every E ∈∑ . 
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⇔ 2 2 2 1 2 2
0 0 0( ) 2 ( ) 0m u f E u f T f C u T f T E f C− − ⋅ + ≥� � � almost everywhere, for all 0C ≥  

5. Quasi-Parahyponormal for Composite Multiplication Operator 

By result of [16] an operators A on H is quasi-parahyponormal if and only if 
22 2 2 2

( ) 2 ( ) 0A A C AA C
∗ ∗− + ≥ for all C. In an 

analogous manner, we derive the characterization of quasi-parahyponormal composite multiplication operator on 2L -spaces. 

Theorem 5.1 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM  is quasi-parahyponormal if and only if 

2 4 2 2 2 2 4 2 2
0 0 0( ( )) ( ) 2 ( ) 0u T u T f T E uf T E f C u T f T E f C⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ≥� � � � � � almost everywhere, for all 0C ≥  

Proof: 

Suppose ,u TM is quasi-parahyponormal. 

Then 
22 2 2 2

, , , ,( ) 2 ( ) 0u T u T u T u TM M C M M C∗ ∗− + ≥ for all 0C ≥ . 

This implies that 
22 2 2 2

, , , ,(( ) 2 ( ) ) , 0u T u T u T u TM M C M M C f f∗ ∗− + ≥ for all 2( )f L µ∈  

By the proposition 3.3 and 
22 2 2 2

, , 0 0( ) ( )u T u TM M f u T u T f T E uf T E f∗ = ⋅ ⋅ ⋅ ⋅� � � �  

{ }2 2 2 2 2 2 2
0 0 0( ( ) ( )) 2 ( ( )) 0

E

u T u T f T E uf T E f C u T f T E f C dµ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ≥∫ � � � � � � for every E ∈∑  

⇔ 2 4 2 2 2 2 4 2 2
0 0 0( ( )) ( ) 2 ( ) 0u T u T f T E uf T E f C u T f T E f C⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ≥� � � � � �  

almost everywhere, for all 0C ≥  

Theorem 5.2 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM  is M-quasi-parahyponormal if and only if 

2 2 4 2 2 2 2 4 2 2
0 0 0( ( )) ( ) 2 ( ) 0m u T u T f T E uf T E f C u T f T E f C⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ≥� � � � � � almost everywhere, for all 0C ≥  

Proof: 

Suppose ,u TM  is M-quasi-parahyponormal. 

Then 
22 2 2 2 2

, , , ,( ) 2 ( ) 0u T u T u T u Tm M M C M M C∗ ∗− + ≥ for all 0C ≥ . 

This implies that 
22 2 2 2 2

, , , ,( ( ) 2 ( ) ) , 0u T u T u T u Tm M M C M M C f f∗ ∗− + ≥ for all 2( )f L µ∈  

By the proposition 3.3 and 
22 2 2 2

, , 0 0( ) ( )u T u TM M f u T u T f T E uf T E f∗ = ⋅ ⋅ ⋅ ⋅� � � �  

{ }2 2 2 2 2 2 2 2
0 0 0( ( ) ( )) 2 ( ( )) 0

E

m u T u T f T E uf T E f C u T f T E f C dµ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ≥∫ � � � � � � for every E ∈∑ . 

⇔ 2 2 4 2 2 2 2 4 2 2
0 0 0( ( )) ( ) 2 ( ) 0m u T u T f T E uf T E f C u T f T E f C⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ≥� � � � � � almost everywhere, for all 0C ≥  

6. Skew n-normal and (Alpha, Beta)-normal Composite Multiplication Operator 

Theorem 6.1 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM is skew n-normal if and only if  

2 2
0 0( ) ( ) ( ) ( ) ( ( ) )n n

n nu u T f T u T f T E u T=� � � � �  almost everywhere. 

Proof: 

,u TM is skew n-normal. Then 

, , , , ,( ) ( ) ( )n n
u T u T u T u T u TM M M f M M uf T∗ ∗= �  

1
, 0( (( ) ) )n

u TM u f E uf T T −= � �  
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2
, 0

n
u TM u f f=  

2
0( ) n

nu u f f T= �  

2
0( ) ( ) ( )n n n

nu u T f T f T= � � �  

Also, 

, , , , ,( ) ( ( ))n n
u T u T u T u T u T nM M M f M M u f T∗ ∗= �  

1
, 0 ( ( ))

n
u T nM u f E u f T T

−= � �  

1
, 0 ( ) ( )

n
u T nM u f E u f T

−= �  

1
0( ( ) ( ))

n
nu u f E u f T T

−= � �  

2
0( ) ( ) ( ) ( )

n
nu T f T E u T f T= � � � �  

⇔ 2 2
0 0( ) ( ) ( ) ( ) ( ( ) )n n

n nu u T f T u T f T E u T=� � � � � almost everywhere. 

Theorem 6.2 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then 
*

,u TM is skew n-normal if and only if  

2 2 2 ( 1) ( 1)
0 0( ) ( )n nu f u T f T− − − −= � �  almost everywhere. 

Proof: 
*

,u TM is skew n-normal. Then 

( ) ( )( )( 1)
, , , , , 0 0( ) ( ) ( )n n n

u T u T u T u T u TM M M f M M u f E u f T E f T∗ ∗ ∗ − − −= � �  

( ) ( )( )( )( 1)
, 0 0( ) ( )n n

u TM u u f E u f T E f T T∗ − − −= � � �  

( )2 ( 2) ( 1)
, 0 0( )( ) ( ( ) ) ( ( ) )n n

u TM u T f T E u f T E f T∗ − + − −= � � � �  

( )2 ( 2) ( 1) 1
0 0 0( )( ) ( ( ) ) ( ( ) )n nu f E u T f T E u f T E f T T− + − − − =

 
� � � � �  

3 2 ( 1)
0 0( ( ) ) ( ( ) )n nu f E u f T E f T− − −= � �  

Also, 

( )1
, , , , , 0( ) ( )n n

u T u T u T u T u TM M M f M M u f E f T∗ ∗ ∗ −= �  

( )2

, 0( ) ( ) ( )n
u TM u T f T E f∗= � �  

( 1) 2 ( 1) ( 1)
0 0 0( ) ( ) ( ) ( )n n n nu f E u f T u T f T E f T− − − − − − −= � � � �  

⇔ 2 2 2 ( 1) ( 1)
0 0( ) ( )n nu f u T f T− − − −= � �  almost everywhere. 

Theorem 6.2 

Let the composite multiplication operator
2

, ( ( ) )u TM B L µ∈ . Then ,u TM is ( ),α β -normal if and only if 

2 2 2 2 2
0 0 0( ) ( )u f f u f T E f u f fα β≤ ≤�  almost everywhere. 

Proof: 

,u TM is ( ),α β -normal. Thenit easy to check,  
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2
, , 0u T u TM M f u f f

∗ = , 
2

, , 0( ) ( ) ( )u T u TM M f u T f T E f∗ = � �  

By definition, 
2 2 2 2 2

0 0 0( ) ( )u f f u f T E f u f fα β≤ ≤� almost everywhere. 

 

8. Conclusion 

In the study of p-hyponormal operator, the Aluthge 

transform is a very useful tool. We investigate some basic 

properties of such operators and study the relation among 

skew n-normal operators, ( ),α β -normal operator, 

parahyponormal and quasi-parahyponormal composite 

multiplication operators on 2 ( )L µ -space. In future try to 

generalize the composite multiplication operator on Poisson 

weighted sequence spaces. 
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