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Abstract: This article is investigating from one of best control technique known as periodically intermittent discrete
observation control (PIDOC), the problem of global synchronization based on a relay configuration of three novel hyperchaotic
oscillators of three-components (NHO) operating at high frequency. Contrary to traditional periodically intermittent control
based on continuous-time state observations, PIDOC used here, chooses discrete-time state observations in work time during a
control period. Our analysis has been limited to a range of parameters for which the NHO-type oscillator exhibits bursting
oscillations. The global conditions of stability for non-adaptive and adaptive cases have been proven analytically. To the best of
our knowledge and in the literature of the relay coupling system, no work has been carried out concerning the study of the
stability of adaptive synchronization case. The Synchronization of the system is analysed in terms of its control gain by using
time series. The numerical results show that there is global synchronization between the three relay coupled NHO-type
oscillators for both non-adaptive and adaptive synchronizations. Moreover, PSpice based simulations of the analog electronic
circuit for the non-adaptive case are in good accordance with both theoretical and numerical results.

Keywords: Bursting Oscillations, High Frequency, Periodically Intermittent Discrete Observation Control,
Relay Coupling System, Global Synchronization

1. Introduction
The idea of investigating the collective behavior of coupled

dynamical systems has provoked a great deal of research
efforts in the past two decades [1, 2]. A primary interest
focussed on some phenomena as synchronization, phase-
locking, phase-shift, and phase-flip transition, and amplitude
death are specially presented in coupled dynamical systems
[2, 3, 4]. Of all the above, the synchronization emerges to
be the most common phenomenon exhibited in a diversity
of coupled dynamical systems. The history of this very
interesting phenomenon started in the seventeenth century

when the famous researcher Christian Huygens observed
perfect similarity between the oscillating motions of two
clocks hanging from a same support [5]. Later, Eccles
and Vincent [6] analysed synchronization phenomena in the
context of electrical and radio engineering development. After
the famous works of Pecora and Carroll [7, 8] in which
they were able to synchronize two identical chaotic systems
with different initial conditions; chaos synchronization owing
to its potential application in various fields of physics
and engineering sciences, such as information processing,
biological systems, artificial neurons networks, chemical
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reactors, data encryption, communications secure, etc [9,
10] has been the subject of remarkable progress. Thus,
in the literature different main types of synchronization
are usually distinguished, namely complete or identical
synchronization (CS), in-phase synchronization (PS), out-of-
phase synchronization, lag synchronization (LS), generalized
synchronization (GS), intermittent lag synchronization (ILS),
and mixed synchronization and so on [8, 11, 12, 13, 14]. In
coupled systems, the synchronization can be achieved either
by coupling or external action while considering the nature of
coupling, namely: diffusion, time delay, nonlinear, conjugate,
as well as strength or intensity of interaction.

However, different techniques have been presented to
highlight the synchronization phenomenon in relay coupled
systems. Relay synchronization is a process whereby, indirect
coupling permits to obtain a complete synchronization of two
dynamical systems through a relay unit whose dynamics may
be different from that of the synchronous state [2]. For
example, during choir practice, the brain serves as a relay
of the different vocal cords of the choir members thereby
synchronizing their pitches. Many types of works [2, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25] have sufficiently
demonstrated the interest (telecommunications, biological and
mechanical systems, ...) devoted to the use of the relay
between the systems to be synchronized. In [2], the authors
have approached a natural question concerning phenomena
such as synchronization and amplitude death across the
coupling between similar or different variables. The authors
of [19] have brought proof of generalized synchronization in
systems that act as mediators between two dynamical units
that, in turn, show complete synchronization with each other:
these are the relay systems. In [21], the modification consists
on the fact that the relay unit is modeled to lead the entire
network to a desired dynamics, the authors have studied
the dynamics of a modified relay-coupled chaotic systems.
Moreover, this study shows that the type of synchronization
is linked to the sign of the bound of the time derivative of
the Lyapunov function. The idea of stabilizing at finite-time
a relay coupled scheme of three fractional-order oscillators
in the presence of time delay was addressed in [22]. In
[23], the phenomenon of partial death in time delay coupled
relay system which was done with conjugate coupling by
considering Limit-cycle oscillator and R?ssler oscillator was
investigated. Later on, the partial death patterns separated by
the oscillatory regime in plan parameter was observed, where
the outer oscillators are in the oscillatory state and the middle
oscillator in the steady state followed by complete death state.

On the other hand, we also noted in the literature that
the design of control scheme is often necessary to drive
the synchronization of relay coupled systems. Thus to
reach this synchronization, many control methods have been
developed namely: the impulsive control [26], the feedback
control [27], the periodically intermittent control [28], and
so on. Among all these control tactics, a particular interest
has been carried out on periodically intermittent control
which, although being discontinuous, the control also has
the particularity that its control inputs are activated during

working time and deactivated during rest time. This justifies
the fact that it is more economical than those whose control
inputs are permanently activated. It is in this sense that the
use of periodically intermittent control to synchronize couples
systems has yielded many interesting results. This is the
case for example of the authors of [24] who designed an
appropriate periodically intermittent controller to deal with
the synchronization problem of fractional-order memristive
neural networks. Contrary to periodically intermittent control
used in some Reference as [28, 29] whose work time in a
control period is based on continuous-time state observations,
Xu’s works and collaborators [25] have introduced a novel
control technique more reasonable, practical and low-cost,
named as periodically intermittent discrete observation control
(PIDOC).

Given that the results of the research works mentioned in
all the references cited previously are very interesting, there
are still open questions of a fundamental nature. To begin
with, Most of the circuits/systems used in the relay couplings
proposed so far are chaotic and operate in low frequency
ranges. Its disadvantage is that its information processing
speed in a communication channel will be low because it
has been proven in the literature that the more the signal’s
oscillation frequency used to secure an information is large, the
higher the processing speed of this information [30, 31, 32].
Furthermore, All the studies that have been carried out in
literature used non-adaptive controllers and the control laws
are known. The non-adaptive controller has an inconvenience
that when the external milieu varies, it is not robust enough
to secure the synchronization of the systems put in play
because its gain is manual and consequently unable to adapt
to environmental modifications. To continue, the majority of
the relay systems don’t take into consideration the effect of the
transmission channel. Given that, there is no existence of a
perfect channel, not taking into consideration is only utopia.
To ride on, still in the literature of relay systems, we also
noticed that it is poor as of what concerns the study of stability.
It is important to note that to avoid losing information, the
synchronization phenomenon should be anticipated through
calculation. Indeed, final-time synchronization permits to
accurately anticipate the time of synchronization in a system.
This time synchronization is important for an engineer because
it permits a better determination of parameters which can
entail the synchronization of coupled systems [33]. In this
context, there is a keen work in the study of finite-time
chaos synchronization [34, 35] and gradually of fractional-
order systems [33, 36, 37]. To the best of our knowledge,
except some works like those defined in [21], [22] and more
recently in [25] to mention only those who studied stability in
the non-adaptive case, no further work has been done in respect
to adaptive synchronization case. since the adaptive method
has the advantage of making the synchronization process
more robust to disturbances and uncertainties related to the
parameters and the initial conditions of the system. Recall that
the problems faced in the literature of relay coupled systems
and underlined in this paragraph have been summarised in
Table 1.
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Motivated by the above discussions and via PIDOC, we
study the problem of synchronization in a relay configuration
based on the coupling of three new three-component
hyperchaotic oscillators (NHO) whose synchronization criteria
are obtained with the help of Lyapunov method. We
have also succeeded in constructing a Lyapunov function
that could reflect the topological structure of our relay
configuration. Moreover, sufficient conditions to ensure
global synchronization of the outer oscillators are presented
for both the non-adaptive synchronization and the adaptive
synchronization. This paper is organized as follows: A brief

reminder of the NHO-type oscillator followed by the model
description of relay systems as well as some preliminary
are given in Section 2. Section 3 is devoted to the main
results of the stability study corresponding to the non-adaptive
synchronization and adaptive synchronization respectively in
a relay coupling of three NHO-type oscillators. Numerical
simulations are carried out in Section 4. PSpice simulations
are performed in Section 5 to illustrate the effectiveness of the
relay coupling of three NHO-type oscillators. We complete the
paper in Section 6 with an appropriate conclusion and some
further works.

Table 1. Classification of some systems in terms of problems faced in this study.

2. Novel Hyperchaotic Three-component Oscillator (NHO) Description and
Preliminaries

2.1. NHO Description

Figure 1. Schematic representation of NHO governed by the six-dimensional flow in Eq. (1).

As mentioned, Figure 1 presented in this work contains only
three elements, namely a junction field effect transistor (JFET),
a transformer and a capacitor and was analysed experimentally
by Tchitnga et al. [32]. In order to facilitate the modeling of
the NHO, these authors have taken into consideration certain

modifications, namely, they neglected the internal resistance
of the tapped coil and used a high-frequency small-signal
equivalent circuit model of a JFET, as described in their paper.
Then, the equations governing the circuit are given in Eq. (1)



dVGS
dt = 1

cgs
(i2 − Id − i1 − iD)

dVGD
dt = 1

cgd
(−i2 + Id)

dVC
dt = − 1

c i3
VGS = L1

di1
dt +M12

di2
dt + (M13 −M14)di3dt

E + VGD − VGS = M21
di1
dt + L2

di2
dt + (M23 −M24)di3dt

VC = (M31 −M41)di1dt + (M32 −M42)di2dt + (L3 + L4 −M34 −M43)di3dt

(1)
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where the mutual inductances between L1 and L2, L1 and L3, L1 and L4, L2 and L3, L2 and L4, L3 and L4 are defined as
M12 = M21 = k1

√
L1L2, M13 = M31 = k2

√
L1L3, M14 = M41 = k3

√
L1L4, M23 = M32 = k4

√
L2L3, M24 = M42 =

k5
√
L2L4 and M34 = M43 = k6

√
L3L4 respectively, where ki (i = 1, ..., 6) are the magnetic coupling factors.

Also recall that the currents are:

Id = {


0, if VGS ≤ VGSoff ,

gm0(VGS − VGSoff )
2
, if VGD ≤ VGSoff ,

gm0 (VGS − VGD) (VGS + VGD − 2VGSoff ) , if VGD,≥ VGSoff

.

iD = IS [exp(
VGS
VT

)− 1]

As a reminder, Eq. (1) describing the circuit system of Figure 1 whose its normalized form is presented in [32] and defined as
follow: 

ẋ1 = a1 (x5 − x4)− a2 [exp (x1)− 1]− a3g (x1, x2)
ẋ2 = −α (a1x5 − a3g (x1, x2))
ẋ3 = −a4x6
ẋ4 = b1x1 + b2 (e+ x2) + b3x3
ẋ5 = b4x1 + b5 (e+ x2) + b6x3
ẋ6 = b7x1 + b8 (e+ x2) + b9x3

(2)

where x1, x2, x3, x4, x5 and x6 are the dimensionless states variables and τ = ω0t (ω0 is the resonant radian frequency of the
system). The constant parameters ai (i = 1, ..., 4), bj (j = 1, ..., 9), α and e are given by the following relations:

a1 =
I0

VTCGSω0
, a2 =

IS
VTCGSω0

, a3 =
gm0VT
CGSω0

, a4 =
I0

VTCω0
, b1 =

VT (a11 − a12
)

I0θω0
,

b2 =
VTa12
I0θω0

, b3 =
VTa13
I0θω0

, b4 =
VT (a21 − a22)

I0θω0
, b5 =

VTa22
I0θω0

,

b6 =
VTa23
I0θω0

, b7 =
VT (a31 − a32)

I0θω0
, b8 =

VTa32
I0θω0

, b9 =
VTa33
I0θω0

, α =
CGS
CGD

, and e =
E

VT
.

with

θ = L1L2

[
2 (k1k2k5 + k1k3k4 − k1k1k6 − k2k3 − k4k5 + k6)√
L3L4 + (−2k1k2k4 + k1k1 + k2k2 + k4k4 − 1)L3 + (−2k1k3k5 + k1k1 + k3k3 + k5k5 − 1)L4

]
a11 =

[
(k4k4 − 1)L3 + (k5k5 − 1)L4 + 2 (k6 − k4k5)

√
L3L4

]
L2

a22 =
[
(k2k2 − 1)L3 + (k3k3 − 1)L4 + 2 (k6 − k2k3)

√
L3L4

]
L1

a33 = (k1k1 − 1)L1L2

a12 = a21 =
[
(−k2k4 + k1)L3 + (−k3k5 + k1)L4 + (−2k1k6 + k2k5 + k3k4)

√
L3L4

]√
L1L2

a13 = a31 =
[
(−k1k4 + k2)

√
L1L3 + (k1k5 − k3)

√
L1L4

]
L2

a23 = a32 =
[
(k3k1 − k5)

√
L2L4 + (k4 − k1k2)

√
L2L3

]
L1

Let’s also note that all the coefficients aij (i = 1, ..., 3,
j = 1, ..., 3) as for them, derive from the parameters of
the midpoint transformer namely, the mutual inductances Lp
(p = 1, ..., 4) as well as the magnetic coupling factors kq
(q = 1, ..., 6) [32]. Of most interesting is the observation
that the system (2) not only can display hyperchaotic attractors
when k1 = 0.90, k2 = 0.93, k3 = 0.82, k4 = 0.93,
k5 = 0.84, k6 = 0.93 and e = 41.5, but also can exhibits

a rich dynamic behaviors intrinsic to neurons, characterized
of alternating sequence of active states and passive states, and
known as bursting oscillations when e = 25 (see Figure 2).

2.2. Relay Circuit and Equation

With the aim of determining whether a relay configuration
based on the coupling of three NHO-type oscillators is
possible, let consider diagram is given in Figure 3. The arrows
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between the oscillators indicate that the coupling is assumed to
be bidirectional and instantaneous. Each of the oscillators of
Figure 3 is a NHO. Here, the relay configuration is chosen so
that the three oscillators are all taken to be identical except
for the initial conditions. Here, the issue is to establish a
connection between the node X and the node Z through the
node Y considered in this work as the relay. On the basis
of the mathematical model of NHO as defined above, we can
write the equations of the nodes X , Y and Z respectively in
the following way: the outer 1 oscillator{

Ẋ = F (X, t) + u1 (δτ )

where X =(x1, x2, x3, x4, x5, x6)
T (3)

the relay oscillator{
Ẏ = F (Y, t) + u2 (δτ )

where Y =(y1, y2, y3, y4, y5, y6)
T (4)

and the outer 2 oscillator{
Ż = F (Z, t) + u3 (δτ )

where Z =(z1, z2, z3, z4, z5, z6)
T (5)

where u1 represents the controller between node X and node
Y , u3 represents the controller between node Z and node
Y and u2 the inverse signal of the sum of u1 et u2 which
comes from comtributions of the node X and Y . Furthermore,
X(t) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t))T ∈
Rn corresponds to the vector of the node X ,
Y (t) = (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t))T ∈ Rn
corresponds to the vector of the node Y and Z(t) =
(z1(t), z2(t), z3(t), z4(t), z5(t), z6(t))T ∈ Rn corresponds
to the vector of the node Z. Here, F (·) : Rn → Rn is a
continuous vector-valued function

To ensure global synchronization, we choose the dynamic
synchronization error described by:

e (t) = X (t) + Z (t)− 2Y (t) (6)

So the dynamics of this error can be expressed as follows:

ė (t) = F (X) + F (Z)− 2F (Y ) + ui (t) (7)

Figure 2. Periodic bursting: (a) time serie of the output of x1 and (b) x5 phase space projection in the plane (x1 − x5)
for k1 = 0.90, k2 = 0.93, k3 = 0.82, k4 = 0.93, k5 = 0.84, k6 = 0.93 and e = 25. Initial conditions X(0) =
(0.001, 0.008, 0.004, 0.004, 0.005, 0.001)T .

2.3. Preliminaries

Some definitions are presented in order to prepare for main
results.

Definition 1. If in the case of non-adaptive synchronization
lim
t→∞

|e (t)| = 0, a global synchronization is achieved between

outer 1, outer 2 oscillators and the relay oscillator.
In order to make system (7) reach global synchronization, a

PIDOC [25] ui(t) who in the non-adaptive case is designed as:

ui (t) = −di(t)e (δτ ) (8)

in which

di(t) =

{
di, t ∈ [mT, (m+ θ)T ]
0, t ∈ [(m+ θ)T, (m+ 1)T ] , m ∈ N

With T > 0 represents the control period, di is a positive
constant called the control gain, θT is called the control width.
Furthermore, δτ = [t/τ ]τ−τ = lτ−τ , where positive constant
τ is the duration between two consecutive observations and

l = [t/τ ] is the integer part of t/τ . Meanwhile, θT/τ is a
positive integer.

Definition 2. If in the case of adaptive synchronization
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Figure 3. Relay configuration scheme in the present model.

lim
t→tr
|e (t)| = 0, between the outer 1, outer 2 oscillators and

relay unit, a global synchronization at finite time tr is achieved.
For the system (7) to reach global synchronization in the

adaptive case whose PIDOC is given to the relation (8), choose
the PIDOC gain update law as shown below:

ḋi(t) =

{
(e (t))

2
, t ∈ [mT, (m+ θ)T ]

0, t ∈ [(m+ θ)T, (m+ 1)T ] , m ∈ N (9)

in which T > 0 represents the control period, di is the
control gain, θT is called the control width. Furthermore, δτ =
[t/τ ]τ − τ , where τ is the duration between two consecutive
observations and [t/τ ] is the integer part of t/τ . Meanwhile,
θT/τ is a positive integer.

To deduce main results, some lemmas are given which will
be used in main results.

Lemma 1[38, 39]. Let n ∈ and let q1, q2, ..., qn be non-
negative real numbers. Then for z > 1,(

n∑
i=1

qi

)z
≤ nz−1

n∑
i=1

qi
z (10)

Lemma 2[38, 22]. (Gronwall inequality) . If

y (t) ≤ v (t) +

∫ t

t0

h (s)y (s) ds t ∈ [t0, T ] (11)

[t0, T ], T ≤ ∞ and h (s) ≥ 0, then y (t) satisfies

y (t) ≤ v (t) +

∫ t

t0

h (s)y (s) exp

[∫ t

s

h (u) du

]
ds t ∈ [t0, T ] (12)

If, in addition, v (t) is nondecreasing, then

y (t) ≤ v (t) exp

∫ t

t0

h (s)ds t ∈ [t0, T ] (13)

Lemma 3 [22]. If F is Leibchitzian function (F (0) = 0),
then it exist a constant η such as:

|F (X) + F (Z)− 2F (Y )| ≤ η |e| (14)

3. Main Result
3.1. Non-adaptive Synchronization Based on the Relay Coupling of Three NHO-type Oscillators

Now let’s interest us at the stability of the error system (7). Therefore, (7) combined with (8) leads to:

ė = F (X) + F (Z)− 2F (Y )− di(t)e (δτ ) (15)

Let di = d the control gain. This system (15) is stable if and only if the control gain d satisfies Theorem 1
Theorem 1. If

(
d− 2η

)
(1− p (τ))− dp (τ) ≥ 0, i.e,

8τ2d
3

exp
(
4τ2η2

)
− 8ητ2d

2
exp

(
4τ2η2

)
+ 16τ2η2d exp

(
4τ2η2

)
− 16τ2η3 exp

(
4τ2η2

)
− d ≤ 2η (16)
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In this hypothesis, we say that there is global synchronization between the three oscillators namely: X , Y and Z
Proof. To prove this theorem, consider the following Lyapunov function:

V (t) = eT (t)e(t) (17)

its time derivative leads us to the relation below:

V̇i = 2eT ė
= 2eT (F (X) + F (Z)− 2F (Y )) + 2eTui (t)

(18)

By applying the Lemma 3 to Eq.(18), we have

V̇ ≤ 2η|e (t)|2 − 2di (t) e (t) e (δτ ) (19)

Given that di = d, we obtain:

V̇ ≤ 2η|e (t)|2 + d(e (t)− e (δτ ))
2 − de2 (t) (20)

V̇ ≤
(
2η − d

)
|e (t)|2 + d[e (t)− e (δτ )]

2 (21)

Let us evaluate, |e (t)− e (δτ )|2

e (t)− e (δτ ) ≤
∫ t

δτ

de ≤
∫ t

δτ

ė (s) ds (22)

Seen that τ = t− δτ , it yields that

|e (t)− e (δτ )|2 ≤ τ
∫ t

δτ

|f (xi) + f (zi)− 2f (yi)− d (s) e (δτ )|2ds (23)

Using Lemma 1 , the inequality (23) can take the following form:

|e (t)− e (δτ )|2 ≤ 2τ

∫ t

δτ

|f (xi) + f (zi)− 2f (yi)|2ds+ 2τ

∫ t

δτ

|d (s)|2|e (δτ )|2ds (24)

According to Lemma 3 the inequality (24), we get

|e (t)− e (δτ )|2 ≤ 2τη2
∫ t

δτ

|e (s)|2ds+ 2τ2d2|e (δτ )|2 (25)

|e (t)− e (δτ )|2 ≤ 2τη2
∫ t
δτ
|e (s)− e (δτ ) + e (δτ )|2ds+ 2τ2d2|e (δτ )|2 (26)

|e (t)− e (δτ )|2 ≤
∫ t

δτ

(
4τη2

)
|e (s)− e (δτ )|2ds+

(
4τ2η2 + 2τ2d2

)
|e (δτ )|2 (27)

With the help of Lemma 2 on the inequality (27), it follows that:

|e (t)− e (δτ )|2 ≤
(
4τ2η2 + 2τ2d2

)
|e (δτ )|2 exp

(
4τ2η2

)
(28)

|e (t)− e (δτ )|2 ≤
(
4τ2η2 + 2τ2d2

) (
|e (δτ )− e (t) + e (t)|2

)
exp

(
4τ2η2

)
(29)

|e (t)− e (δτ )|2 ≤
(
4τ2η2 + 2τ2d2

) (
2|e (t)− e (δτ )|2 + 2|e (t)|2

)
exp

(
4τ2η2

)
(30)

|e (t)− e (δτ )|2 ≤
{

2
(
4τ2η2 + 2τ2d2

)
|e (t)− e (δτ )|2 + 2

(
4τ2η2 + 2τ2d2

)
|e (t)|2

}
exp

(
4τ2η2

)
(31)



8 B. A. Mezatio et al.: Adaptive Relay Configuration Based on the Novel Hyperchaotic Three-Components Oscillator
Operating at High Frequency: Global Synchronization

|e (t)− e (δτ )|2 ≤ p (τ) |e (t)− e (δτ )|2 + p (τ) |e (t)|2 (32)

with
p (τ) = 2

(
4τ2η2 + 2τ2d2

)
exp

(
4τ2η2

)
we can derive that

(1− p (τ)) |e (t)− e (δτ )|2 ≤ p (τ) |e (t)|2 (33)

|e (t)− e (δτ )|2 ≤ p (τ)

(1− p (τ))
|e (t)|2 (34)

In view of (1− p (τ)) > 0 and substituting (34) into (21), we obtain:

V̇ ≤
(
2η − d

)
|e (t)|2 +

dp (τ)

[1− p (τ)]
|e (t)|2 (35)

V̇ ≤
(

2η − d+
dp (τ)

[1− p (τ)]

)
|e (t)|2 (36)

V̇ ≤ −
(
d− 2η − dp (τ)

[1− p (τ)]

)
|e (t)|2 (37)

Set: µ =
(
d− 2η − dp(τ)

[1−p(τ)]

)
V̇ ≤ −µV (38)

The error system (15) is stable if and only if, µ ≥ 0, i.e, d− 2η − dp(τ)
[1−p(τ)] ≥ 0

This implies that (
d− 2η

)
(1− p (τ))− dp (τ) ≥ 0 (39)

d− 4d
(

4τ2η2 + 2τ2d
2
)

exp
(
4τ2η2

)
+ 4

(
4τ2η2 + 2τ2d

2
)

exp
(
4τ2η2

)
≥ 2η (40)

Therefore:

8τ2d
3

exp
(
4τ2η2

)
− 8ητ2d

2
exp

(
4τ2η2

)
+ 16τ2η2d exp

(
4τ2η2

)
− 16τ2η3 exp

(
4τ2η2

)
− d ≤ 2η (41)

By assumption: The condition of Theorem 1 hold, so system
(15) can reach global synchronization i.e, it can have global
synchronization between oscillators X , Y and Z coupled in
relay.

Remark: If δτ → t, one has: p (τ) → 0 and d − 2η > 0,
then

d > 2η (42)

3.2. Adaptive Synchronization Based on the Relay
Coupling of Three NHO-type Oscillators

Here, let remind that the PODIC gain update Law as well
as the dynamics of the error were respectively given by the

relations (9) and (15).
Theorem 2. There is global synchronization between the

three oscillators if and only if, the following condition is
satisfied:

tr = t0 +
ln
∣∣∣V (t0)− α

β

∣∣∣− ln ∣∣∣V (tr)− α
β

∣∣∣
β

(43)

Proof. Choose the following Lyapunov function:

V = eT e+
1

2

(
di − d

)2
(44)

Differentiating the Lyapunov function V with respect to time yields

V̇ = 2eT ė+ ḋi
(
di − d

)
(45)
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By analogy with the non-adaptive case, the relation (45) becomes:

V̇ ≤ 2ηe2 (t) + di (t) (e (t)− e (δτ ))
2 − di (t) e (t)− di (t) e (δτ ) + e2 (t)

(
di − d

)
(46)

The inequality (46) lead us to the following inequality:

V̇ ≤ 2ηe2 (t) + di (t) (e (t)− e (δτ ))
2 − de2 (t) (47)

di (t) converges to reach d. So, if di (t) is an increasing and positive function then d = max (di (t)) inequality (47) becomes

V̇ ≤
(
2η − d

)
e2 (t) + d[e (t)− e (δτ )]

2 (48)

substituting (35) into (48) leads to:

V̇ ≤
[
2η − d+

p (τ)

(1− p (τ))

]
|e (t)|2 (49)

Then

V̇ ≤
[
2η − d+

dp (τ)

(1− p (τ))

](
|e (t)|2 +

1

2

(
di − d

)2 − 1

2

(
di − d

)2)
(50)

This implies that

V̇ ≤
[
2η − d+

dp (τ)

(1− p (τ))

]
V −

[
2η − d+

dp (τ)

(1− p (τ))

](
1

2

)(
di − d

)2
(51)

V̇ ≤ −
[
d− 2η − dp (τ)

(1− p (τ))

]
V +

[
2η − d+

dp (τ)

(1− p (τ))

] ∣∣∣∣di − d√
2

∣∣∣∣2 (52)

In order for it to synchronize, it would be necessary:[
2η − d+

dp (τ)

(1− p (τ))

]
< 0 (53)

Let

α =

[
2η − d+

dp (τ)

(1− p (τ))

] ∣∣∣∣di − d√
2

∣∣∣∣2
and

β = d− 2η − dp (τ)

(1− p (τ))
> 0

So
dV

dt
≤ −βV + α (54)

This leads us to:

− 1

β

∫ tr

t0

dV

V − α
β

≤
∫ tr

t0

dt (55)

− 1

β

[
ln

∣∣∣∣V (tr)−
α

β

∣∣∣∣− ln ∣∣∣∣V (t0)− α

β

∣∣∣∣] ≤ (tr − t0) (56)

Therefore

tr = t0 +
ln
∣∣∣V (t0)− α

β

∣∣∣− ln ∣∣∣V (tr)− α
β

∣∣∣
β

(57)

By assumption: Since, the condition in Theorem 2 is
satisfied. thus in terms of theorem 2, There is a global
synchronization at a finite time between the three oscillators
X , Y and Z.

4. Numerical Simulations

The aim here is to investigate the synchronization behavior
that can be observed in the relay coupling of three NHO-
type oscillators. To achieve this, we numerically integrated
systems (3), (4) and (5) by using the standard fourth-order
RungeCKutta method with time step equal to ∆t = 0.01.
It is worth to recall that we select the parameters of NHO
as k1 = 0.9, k2 = 0.93, k3 = 0.82, k4 = 0.93,
k5 = 0.84, k6 = 0.93, e = 25 and so that the system
(2) exhibits bursting oscillations. Let us note that initial
values of systems (3), (4) and (5) are respectively given as
follows: X(0) = (0.001, 0.008, 0.004, 0.004, 0.005, 0.01)T ,
Y (0) = (0.51, 0.38, 0.24, 0.14, 0.25, 0.61)T and Z(0) =
(1.001, 1.08, 1.04, 1.004, 1.05, 1.01)T .

4.1. Non-adaptive Case

The numerical results simulations for the case of non-
adaptive synchronization are presented in this part. Figure 4
depicts the dynamics of synchronization error (e = X − Z)
between the outer oscillators X and Z (Figure 4(a)) with the
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control gain d = 5. In Figure 4(a), we find that between the
two outer oscillators X and Z, the synchronization error is
almost zero from t = 200. Which shows that through the relay
unit Y , there is a complete synchronization (CS) between the
oscillators X and Z. This result is confirmed in Figure 4(b)
which is time series of trajectories X in blue, and Z in black.
Meanwhile, other numerical results are presented in Figure 5.
We see in Figure 5(a), the time series of the synchronization
errors (e = X + Z − 2Y ) and (e = X − Z) respectively
between the three oscillators X , Y and Z given in blue and
on the other hand between the two outer oscillators X and Z
given in black. Almost from t = 200, we notice on this curve
that the errors are zero, which shows that there is indeed global
synchronization (GS) in the system. This result is confirmed
in Figure 5(b), which is the time representation of states of
oscillators X , Y and Z with X in blue, Y in red, Z in black.
Furthermore, the bursting oscillations are always observed in
the relay configuration of the three oscillators (see Figure 6).
Figure 6(a) presents Time series of the variable y1(t) whereas
Figure 6(b) shows the phase portrait in the plane (y1 - y2).

4.2. Adaptive Case

Here, Figure 7 shows time series synchronization error
between the outer oscillators X and Z (see Figure 7(a)).
With regard to the latter (i.e, Figure 7(a)), we see that this
synchronization error is canceled from t = 50: we speak
in this case of complete synchronization (CS). Figure 7(b)
(which is time series of state variables X in blue and Z in
black) confirms these results, for the parameter value d =
0.001. Similarly, Figure 8 displays the dynamics of the
synchronization errors (see Figure 8(a)) and (the time series
of state variables X , Y and Z (see Figure 8(b)) always for
d = 0.001. we notice in Figure 8(a) that the synchronization
errors between the outer oscillators X and Z in black and
between all three coupled oscillators X , Y and Z in blue
converge very quickly to zero: hence the robustness of the
adaptive controller. This result is validated by the Figure 8(b)
which is the time representation of states of oscillators X in
blue, Y in red and Z in black. Figure 9 shows changing the
adaptive control parameter di. The initial value of di is zero
and d = 0.001.

Figure 4. Complete synchronization (CS) in a relay coupling of three NHO-type oscillators. (a) Time series of the trajectory of
non-adaptive synchronization error between the outer oscillators 1 and 2 (e = x1 − z1). (b) Time series of trajectories x1 in
blue, z1 in black for the parameter value d = 5.

Figure 5. Global synchronization (GS) in a relay coupling of three NHO-type oscillators. (a) Time series of trajectories of
non-adaptive synchronization errors e = x1 + z1 − 2y1 in blue and e = x1 − z1 in black. (b) Time series of trajectories x1 in
blue, y1 in red, z1 in black for the parameter value d = 5.



Science Journal of Circuits, Systems and Signal Processing 2020; 9(1): 1-15 11

Figure 6. Numerical simulation of bursting oscillations in a relay coupling of three NHO-type oscillators, for the parameter
value k = 5: (a) Time series of the variable y1(t). (b) Phase portrait in the plane ( y1 - y2 ).

5. Circuit Realization in a Relay
Coupling of Three
NHO-type Oscillators

To confirm the implementation of our strategy, we
performed simulations in the PSpice software. Above all,
it is important for us to remember that, PSpice (Personal
simulation program with integrated circuit emphasis) analysis
is one of the most common approaches used in nonlinear
electronics to validate theoretical results [32]. Indeed, PSpice
offers a suitable environment where electronic circuit is built
up and further simulated as in real time experiment [40].
One of the main advantage of such approach is that one
can easily choose the suitable electronics components which
will further being used either in numerical analysis or in
real experimental investigations [32, 41]. In the rest of the

work, we consider the following values for the key parameters
which have been used for numerical and PSpice results in
[32]: CGS = 3.736 pF , CGD = 3.35pF , IS = 34.57pA,
VGSoff = -1.409V , VT = 25mV , and gm0 = 1.754 mAV −2,
I0 = 1 mA, ω0 = 107 rad/s, C = 20nF , L1 = 24.5uH ,
L2 = 4uH , L3 = 0.7uH , L4 = 0.2uH , E = 0.6255V
and considering the mutual coupling between inductances as
k1 = 0.9, k2 = 0.93, k3 = 0.82, k4 = 0.93, k5 =
0.84 and k6 = 0.93. For this synchronization approach,
we will only be interested in its non adaptive method. The
circuit of Figure 10 realizes the non-adaptive synchronization
of the relay coupling of three Identical NHOs in PSpice, with
for initial conditions: (0, 0, 0.002, 0.1, 0.001, 0.0001) for the
outer 1 oscillator, (0, 0, 0.002, 0.01, 0.001, 0.01) for the outer
2 oscillator and (0, 0, 0.2, 0.01, 0.1, 0.1) for the relay unit.

From the description above, the dynamical behavior of the
system Figure 10 is mathematically described by:

Outer 1 oscillator:

dx1

dt = I0
VTCGSω0

(x5 − x4)− Is
VTCGSω0

[exp (x1)− 1]− gm0VT
CGSω0

g (x1, x2) + 1
CGSω0Ra

(y1 − x1)
dx2

dt = − I0
VTCGDω0

x5 + αgm0VT
CGDω0

g (x1, x2)
dx3

dt = I0
VTCω0

x6
dx4

dt = b1x1 + b2

(
E
VT

+ x2

)
+ b3x3

dx5

dt = b4x1 + b5

(
E
VT

+ x2

)
+ b6x3

dx6

dt = b7x1 + b8

(
E
VT

+ x2

)
+ b9x3

(58)

Relay oscillator:

dy1
dt

= I0
VTCGSω0

(y5 − y4)− Is
VTCGSω0

[exp (y1)− 1]− gm0VT
CGSω0

g (y1, y2) +
1

CGSω0RaRb
[Rbx1 +Raz1 − (Ra +Rb) y1]

dy2
dt

= − I0
VTCGDω0

y5 +
αgm0VT
CGDω0

g (y1, y2)
dy3
dt

= I0
VTCω0

y6
dy4
dt

= b1y1 + b2
(
E
VT

+ y2
)
+ b3y3

dy5
dt

= b4y1 + b5
(
E
VT

+ y2
)
+ b6y3

dy6
dt

= b7y1 + b8
(
E
VT

+ y2
)
+ b9y3

(59)
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Outer 2 oscillator:

dz1
dt = I0

VTCGSω0
(z5 − z4)− Is

VTCGSω0
[exp (z1)− 1]− gm0VT

CGSω0
g (z1, z2) + 1

CGSω0Rb
(y1 − z1)

dz2
dt = − I0

VTCGDω0
z5 + αgm0VT

CGDω0
g (z1, z2)

dz3
dt = I0

VTCω0
z6

dz4
dt = b1z1 + b2

(
E
VT

+ z2

)
+ b3z3

dz5
dt = b4z1 + b5

(
E
VT

+ z2

)
+ b6z3

dz6
dt = b7z1 + b8

(
E
VT

+ z2

)
+ b9z3

(60)

Figure 7. Complete synchronization (CS) in a relay coupling of three NHO-type oscillators. (a) Time series of the trajectory of
adaptive synchronization error between the outer oscillators 1 and 2 (e = x1 − z1). (b) Time series of trajectories x2 in blue, z2
in black for the parameter value d = 0.001.

Figure 8. Global synchronization (GS) in a relay coupling of three NHO-type oscillators. (a) Time series of trajectories of
adaptive synchronization errors e = x2 + z2 − 2y2 in blue and e = x2 − z2 in black. (b) Time series of trajectories x2 in blue,
y2 in red, z2 in black for the parameter value d = 0.001.

Figure 9. Changing of adaptive control parameter di with time t.
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In this circuit, the resistors Ra and Rb are the coupling
resistances. By identification between systems (3), (4) and (5)
and systems (58), (59) and (60), The relationship between d
(coupling parameter) and resistors Ra and Rb are:

Ra = Rb =
1

dCGSω0

(61)

Using the numerical simulation values, the circuit
parameters Ra and Rb are obtained: Ra = Rb = 5.353kΩ

Thus, for parameters used to find global synchronization
results found in Figure 4, the circuit is simulated with PSpice
software and the obtained results are depicted in Figure 11. We
note that, these latters are in full agreement with the numerical
simulation obtained in MATLAB software.

Figure 10. Circuit performing the non-adaptive synchronization in a relay coupling of three NHO-type oscillators.

Figure 11. Global synchronization (GS) in PSpice. (a) Time series of trajectories: e = x1 − z1 in blue and e = x1 + z1 − 2y1
in red . (b) Time series of trajectories x1 in blue, y1 in red, z1 in black for the values Ra = Rb = 100Ω.

6. Conclusion

The NHO-type oscillator operating at high frequency
introduced in [32] has been recalled in this study. Among
the complex behaviours exhibited by this oscillator, we
have limited our investigation to the set of parameters for
which our oscillator presented a rich dynamic phenomenon
intrinsic to neurons, characterized by alternating sequence
of active states and passive states, and known as bursting

oscillations. Furthermore, we have demonstrated that it is
possible to determine a relay coupling scheme of three NHO-
type oscillators. From this configuration, the synchronization
issue has been studied. The control technique proposed in
this paper known as PIDOC [25] results from the combination
between the periodically intermittent control and discrete-time
state observations. Applying the Lyapunov method to the two
synchronization cases (non-adaptive and adaptive) discussed
above, sufficient conditions of stability have been obtained
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for a better guarantee of the synchronization of three relay-
coupled NHO-type oscillators.

More importantly, the synchronization time for the adaptive
case has been foretell by calculation because this time has to
be known and minimized, so as to achieve the synchronization
as fast as possible. From the numerical results, we
obtained a global synchronisation between all three NHO-
type relay coupled oscillators from both the non-adaptive
synchronization and the adaptive synchronization methods,
thus validating conditions of analytical stability for global
synchronization. For non-adaptive case, this phenomenon of
global synchronisation was further confirmed using electronic
implementation in the PSpice environment. PSpice analysis
reveals good correspondence with numerical investigations.
Thus, in further works on this topic, we will employ PIDOC
to investigate synchronization of fractional-order of three
relay coupled NHO-type oscillators. Furthermore, the relay
configuration which was examined in this paper can also be
used in big data technologies to encrypt and compress data
[42, 43, 44].
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