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Abstract: Type I diabetic patients is a chronic condition marked by an abnormally large level of glucose in human blood. 

Persons with diabetes characterized by no insulin secretion in the pancreas (ß-cell) also known as insulin-dependent diabetic 

Mellitus (IDDM). The treatment of type I diabetes is depending on the delivery of the exogenous insulin to reach the blood 

glucose level near to the normal range (70-110mg/dL). In this paper, a modified robust linear compensator (MRLC) is suggested 

to regulate the glucose level of the blood in the presence of the parameter variations and meal disturbance. The Bergman minimal 

mathematical model is used to describe the dynamic behavior of blood glucose concentration due to insulin regulator injection. 

Firstly, the robust linear compensator (RLC) is designed based on the linear algebraic method, the simple PD-ADALINE neural 

network is used to modified the RLC based on the Particle Swarm Optimization technique (PSO) which is used to adjusted the 

proposed neural network parameters. The simulation part, based on MATLAB/Simulink, was performed to verify the 

performance of the proposed controller. It has been shown from the results of the effectiveness of the proposed MRLC in 

controlling the behavior of glucose deviation to a sudden rise in blood glucose. 
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1. Introduction 

Diabetes mellitus is one of the most important chronic 

diseases which results from a high blood sugar for a long time 

due to insufficient insulin generation in the blood [1]. The 

concentration of glucose in the bloodstream is naturally 

regulated by two hormones: insulin and glucagon. Both of 

these hormones are secreted by β-cells and α cells in the 

Langerhans islands of the pancreas, respectively. The 

concentration of glucose ranges from 70 to 110 (��/��). 
Accordingly, there are two states, hyperglycemia (glucose 

concentration is above the normal ranges) and hypoglycemia 

(low glucose concentration than the normal ranges) [2]. 

Diabetes is classified into two common types. Type 1 

diabetes mellitus (T1DM) is caused by the autoimmune 

destruction of (β-cells) in the pancreas that produce insulin 

deficiency. Therefore, patients with insulin-dependent T1DM, 

they need insulin injections to regulate the external glucose 

concentration they have to a normal level. Type 2 diabetes 

begins with insulin resistance, a condition in which cells do 

not respond to insulin properly. This model is 

noninsulin-dependent diabetes-dependent diabetes. The most 

common cause is excessive body weight and not enough 

exercise [3]. 

The closed-loop glucose regulation system in general 

consists of three main components, glucose sensor, insulin 

pump and control techniques to generate the necessary insulin 

dose based on glucose measurements [4]. The block diagram 

of the closed - loop system for glucose level control shown in 

Figure 1. To prevent the effects of high blood glucose levels 

the simplest way is to inject insulin at a time when an increase 

in blood glucose is expected. There are several approaches 

have been earlier considered to design feedback controllers for 

insulin-glucose control. As regards the control methods used, 

it is very wide linear and nonlinear controllers, linear 
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controllers starting from classical control methods like PID 

controller [5], pole placement [6] for controlling blood 

glucose, robust and optimal control techniques like output 

feedback based robust controller [7],  ��/�	 control [8] and 

robust glucose control by µ-synthesis has given in [9]. 

 

Figure 1. Closed loop insulin regulation system block diagram. 

One of the efficient linear controller is linear compensators 

controller (LCC), this controller which is used to stabilize the 

unstable system is designed by forming set of linear algebraic 

equations. In this paper we design a modified linear 

compensators controller (MLCC) to regulate the blood 

glucose level of type 1 diabetes. The modification is made 

based on simple PD-ADALINE neural network and PSO 

algorithm. 

The paper organized as follows. In section 2 modeling for 

glucose and insulin regulation system are presented. Section 3 

includes the design steps of the LCC control. Simulations and 

concluding observations were included respectively in 

sections 4 and 5. 

2. Insulin-Glucose Regulation Model 

Different mathematical models have been proposed to 

understand the dynamics of diabetes and to correlate the 

relationship between glucose and insulin distribution models 

that help design a diabetes control model. Among these 

models, the minimal Bergman model, a common reference 

model in the literature, approaches the dynamic response of 

blood glucose concentration in a diabetic to insulin injections. 

Bergman model consists of three differential equations as 

follows [3, 4]: 
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Where G(t) is the plasma glucose concentration in [mg/dL], 

X(t) proportional to the insulin concentration in the remote 

compartment [1/min], I(t) is the plasma insulin concentration 

in [mU/dL], and u(t) is injected insulin rate in [mU/min], ���, ��, ��, �, �, ��  are parameters of the model. the 

term, ��
�
� � ���, in the third equation of this model, serves 

as an internal regulatory function that formulates insulin 

secretion in the body, which does not exist in diabetics [8], the 

��
� represent the rate of exogenous insulin. The value of �� will be significantly reduced; therefore it can be 

approximated as zero [3, 4]. The ��
� is disturbance signal 

can be modeled by a decaying exponential function of the 

following form [16]: 
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The nonlinear mathematical model (Eq. (1)) become linear 

around steady state values of the model and the transfer 

function of overall system is given below [4]: 

.�/�0�/� � ('1.2�/�'3���/�'-���/�4�           (3) 

.�/�0�/� � ('1.2/1�/-�4�'3�'-��/�4'3�4'-�'3'-��'3'-4    (4) 

In order to apply the control design of LCC the parameters 

value given in (Table 1) is used and the transfer function (Eq. 

4) reduced to second order transfer function by using Matlab 

command (reduce instruction), then the modification is made 

for this reduction model. 

3. Linear Compensator Controller Design 

The block diagram for designed linear compensator 

controller is shown in figure 1, this controller consist of two 

linear compensator (U��6� and U��6�). This method consists 

of two steps: the choice of the total transportable function of 

the executable, and then the compensator can be obtained by 

solving the sets of linear algebraic equations [11]. Linear 

compensator (U��6� and U��6�) designed by forming a set of 

linear equations, where 

7��6� � #�/�8�/�                 (5) 

7��6� � 9�/�8�/�                 (6) 

where 7��6�, 7��6�  is a linear first order compensator, :�6�, ;�6� and <�6� are linear equations. 
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Figure 2. Linear compensator control design. 

In order to simplified and reduce the order of the 7��6�, 7��6�  to first order equations, the linear transfer 

function (Eq. 4) of the nominal operating is reduced to second 

order equation by using Matlab command (reduce instruction), 

the obtained equation will be: 


�6� � =�/�>�/� � �?/��3/-�@3/�@-            (7) 

A simple modification then made for the reduction model 

(Eq. 7) to convert the numerator (AB6 � A�� in above equation 

to only constant gain C as; 


�6� � D/-�E3/�E-               (8) 

After that, equation (8) can be represented as a ratio of two 

coprime polynomials 
�6� � =�/�>�/� . The transfer function 
B�6� � =?�/�>?�/� (there are three constraints that must be met to 

make the overall system is implementable (for more details 

see [12, 13]). The implementable closed loop transfer function 

(C. L. T. F) is 


B�6� � =?�/�>?�/� � FG-/-��.IFG/�FG-           (9) 

Where J4 is the suitable selected natural frequency. 

The designed steps can be illustrated as shown below: 

Step 1: compute 

.?�/�=�/�  =
=?�/�>?�/�.=�/� =

=*�/�>*�/�             (10) 

Where KE�6�, �E�6� are two coprime polynomials. 

Step 2: Check if the degree of �E�6� � � L 2� � 1 , 

suggest an arbitrary of �EOOOO (s) � 2� � 1 � � , which is 

Hurwitz polynomial (i.e. all its pole lies in the left half-s 

plane). Because this polynomial can be canceled in the design, 

its root should be chosen inside an acceptable pole-zero 

cancellation region. If degree of �E�6� � � � 2� � 1, then �EOOOO(s)�1 and the case degree of �E�6� � � P 2� � 1 will 

not be discussed [11]. Because the degree of �'�6� � 2 then 

we suggested a Hurwitz polynomial of degree 1, arbitrary 

choose it as �'OOOO(s)=(s+5), 

The A(s), C(s) and B(s) that are mentioned previously can 

obtained as shown below: 

A(s)=KE�6�. �EOOOO(s)             (11) 

The solution of Diaphantine equation can obtained as; 

Q�B �� �� 0 
 KBK�K�0  0 �B �� ��  

0KBK�K�
S Q<B;B<�;�

S � Q TB T� T�  T�  S         (12) 

where 

F(s)= D. �!OOOO �  T� 6� �  T� 6� �  T�6 �  TB      (13) 

C(s)= <�6 � <B                (14) 

B(s)= ;�6 � ;B                (15) 

According to the polynomial C(s), A(s) and B(s) the 

compensator 7��6�U�� 7��6� can be obtained as illustrated 

in Eq. (5) and Eq. (6). 

The steps design shown below with numerical values: :�6� � �0.82646 � 4.132         (16) T�6� � 6� � 5.0426� � 0.21096 � 0.0045    (17) 

The solution of Diaphantine equation can obtained as; 

Q0.0003291 0.0379910 
�0.001089000  0 0.0003291 0.037991  0�0.00108900 S Q<B;B<�;�

S � Q0.0045 0.21095.0421 S                  (18) 
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C(s)= <�6 � <B                (19) 

B(s)= ;�6 � ;B                (20) <�6� � 6 � 5, ;�6� � �18.86 � 2.6 (21) 

According to the polynomial C(s), A(s) and B(s) 

the compensator 7��6�U�� 7��6� can be obtained as: 

7��6� � (B.]�^/(I.��/�_ , 7��6� � (�].]/(�.^/�_         (22) 

4. Modified Linear Compensator 

Controller Based on PD-ADALINE 

Neural Network 

In order to enhance the operation of designed LCC that 

explained in previous section, a simple PD- ADALINE neural 

network is add (U3(s)) as shown in figure 3. The ADALINE 

neural network is a very simple artificial neural network that 

contains one layer of input and output with only one neuron. 

 

Figure 3. Modified linear compensator controller block diagram. 

The general structure of ADALINE neural network is 

shown in figure 4. 

 

Figure 4. ADALINE Network Architecture. 

In this work, MLCC is designed based on PD-ADALINE 

neural network. The control part U3(s) that based on 

PD-ADALINE can be described as shown below: J�
 � 1� � J�
� � `a�
�b�
�           (23) 

where J�
 � 1� is the previous weight vector for the network, a�
� � c�6� � d�6� is the error, b�
� is the input vector 

and ` the learning rate. 

�@& � A � T�J�
��,              (24) A is the constant basis, F is the applied identity (Purlin) 

activation function. �e> � a�
� � fga��
�,             (25) � � �@& � �e>,               (26) 7��6� � 6U
���               (27) 

Then the parameters (fg , `) are tuning based on Particle 

Swarm Optimization algorithms (PSO). The PSO algorithm is 

initialized with a population of candidate solutions which is 

called a particle. N particles are moving around in a 

D-dimensional search space of the problem [15]. 

The position of the h$i  particle at the h$i  iteration is 

represented by bj�
� � �bj�, bj �, . . . , bj>�. The velocity for the h$i particle can be written as kj�
� � �kj� , kj �, . . . , kj>�. The 

best position that has so far been visited by the h$i particle is 

represented as �h=(�j�, �j �, . . . , �j>) which is also called pbest. 

The global best position attained by the whole swarm is called 

the global best (gbest) and represented as �l (
)=( �l�, �l�, . . . , �l> ). The velocity vector at the h$i 

iteration is represented as kj (
)=(kl�, kl�, . . . , kl> ). At the 

next iteration, the velocity and position of the particle are 

calculated according to Eqs. (28) and (29). 
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 kj�
 � 1� � Jkj�
� � m�c�npbestj�
� � bj�
�t � m�c�ngbestj�
� � bj�
�t                 (28) bj�
 � 1� � bj�
� � kj�
�                                     (29) 

Where m�, m� are called acceleration coefficients. w is called inertia weight, and c�, c� are random value in the range [0, 1]. 

Table 1. Bergman Minimal Model Parameters [10]. 

Parameter normal Patient 1 Patient 2 Patient 3 �� 0.0317 0 0 0 �� 0.0123 0.02 0.0072 0.0142 �� 4.92 5.3v 10(^ 2.16v 10(^ 9.94v 10(_ 

n 0.2659 0.3 0.2465 0.2814 � 0.0039 - - - 

h 79.0353 - - - 
� 70 70 70 70 �� 7 7 7 7 

 

Table 2. The parameters of the modified linear compensator controller 

obtained by PSO. 

Parameter Value fg 0.0034 ` 0.5 

5. Simulation Results 

The closed-loop system simulates using MATLAB to prove 

the proposed design confirmation. Most commonly available 

glucose sensing devices operate by measuring the blood 

glucose content of a small finger-prick blood sample, the 

method is disturbing upon frequent use. 

As a result, some diabetic patients gage blood sugar as a little as 

once per day or less. Although the last advanced work has led to 

semi-aggressive systems, for example, the Cygnus Gluco Watch 

Biographer blood glucose meter [7]. This device shows the 

sampling rate reading every (20 minute) and can gage and save 

data permanently for up to (12 hour) before new sensor pads are 

needed. Because of limitations in the measurement rate of blood 

glucose level and cannot have a continuous insulin infusion rate. 

In this paper, the simulations are carried out dynamically 

for three patients with the initial conditions 290, 270 and 

250mg/dl for patients 1, 2 and 3, respectively. In the 

simulation, the meal glucose disturbance is given in Eq. (2) 

and the value of its parameters is wl � 60� is Amount of 

carbohydrates in the meal, :l � 0.8 is constant in the model, 
E@& � 280�h� is the moment of time when the absorption is 

at its peak value. 

You can note that the glucose value of the normal person is 

stabilized at the basal level in the presence of the disturbance 

(meal), while the patient's glucose level remains dangerous 

outside the range. 

The simulation second part is the proposed controller is 

applied to the system and the response of a patients in the 

presence of the disturbance is tested. To examine the robustness 

of the control algorithm to the parameter change, three sets of 

parameters for three different patients have been used. The 

selected wn in this work equal to (J4 � 0.03cU�/6am). Figures 

5 to 8 shows the results obtained from the simulation. The 

parameters values for the controller tuned using PSO. 

 

Figure 5. Glucose output of a normal person and patient (open-loop glucose regulatory system). 
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Figure 6. Glucose regulatory system using LCC with meal. 

 

Figure 7. Insulin infusion rate for three patients using LCC. 

 

Figure 8. Glucose regulatory system using MLCC with meal. 
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Figure 9. Insulin infusion rate for three patients using MLCC. 

It is revealed from the figures 6-8 that the glucose output 

with MLCC tracks the basal value with small settling time (
/), 

study state error (a/./.) and mean absolute percentage error 

(MAPE). The comparison between controllers is shown in 

Tables 3, 4 and 5. These tables illustrate the performance of 

the controllers. The MLCC has the best average performance 

for the three patients. 

Table 3. The simulation result’s evaluation parameters for patient 1. 

The controller used xy%  {|�}~�. �  �|.|.  MAPE 

LCC 0 531.22 0.0063 0.207 

MLCC 0 490.45 0.0013 0.1393 

Table 4. The simulation result’s evaluation parameters for patient 2. 

The controller used xy%  {|�}~�. �  �|.|.  MAPE 

LCC 0 531.21 0.0024 0.1685 
MLCC 0 479.82 0.0004 0.1076 

Table 5. The simulation result’s evaluation parameters for patient 3. 

The controller used xy%  {|�}~�. �  �|.|.  MAPE 

LCC 0 531.22 0.0006 0.1241 

MLCC 0 463.45 0.00014 0.0772 

 

6. Conclusion 

Diabetes is an important problem in human regulatory 

systems, which has been discussed in recent years. In this 

paper we propose a modified linear compensator controller 

which give robust stability for diabetes system as well as the 

robust performance of normoglycemic average for type I 

diabetic patients, the modification is made by single 

PD-ADALINE neural network. The effectiveness and 

performance analysis of the proposed control strategy 

concerning plasma glucose-insulin stabilization is verified by 

simulation results in MATLAB environment. To validate the 

robustness of the proposed controller, the diabetic patient is 

exposed to external disturbance, that is, a meal at a time 

(250min.). The closed- loop control system has been 

simulated for different patients with different parameters, in 

the presence of the food intake disturbance and it has been 

shown that the glucose level is stabilized at its base value in a 

reasonable amount of time. 
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