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Abstract: It is well known that the phenomena of time delays are frequently encountered in many process and various control 
systems. The presence of delays can have an effect on system stability and performance, so ignoring them may lead to design 
flaws and incorrect analysis conclusions. Hence, the stability problem for time-delayed systems has received considerable 
attention in recent years. This brief focuses on the stability analysis for a class of delayed linear systems. Firstly, we construct a 
novel augmented Lyapunov-Krasovskii functional (LKF) which includes the lower, the upper bounds of the delay and the delay 
itself. Secondly, utilizing some integral inequalities and the reciprocally convex combination lemma, we obtain less conservative 
stability criteria formulated in form of linear matrix inequalities (LMIs). Finally, numerical examples are provided to show the 
effectiveness of the proposed method. 
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1. Introduction 

Time delay universally emerges in various engineering 
systems such as networked control systems, aircraft, process 
control systems and long transmission lines in pneumatic 
systems. It is well known that time delay often leads to the 
oscillation, poor performance behavior even instability. 
Accordingly, many researchers have paid attention to the 
stability problems of delayed control systems over the past 
few decades. 

To deduce stability sufficient conditions, a variety of 
methods were adopted, such as integral inequalities, the 
model transformation, the delay decomposition approach, the 
free-weighting matrices approach (FWMA) and the 
reciprocally convex lemmas (RCLs) and so on [1-32] and 
references therein. Recently, the FWMA, the Jensen’s or 
Wirtinger’s integral inequalities method and the RCLs are 
widely used. 

In Wu et al [10], the FWMA was firstly developed to 
investigate the stability of delayed systems. Later, He et al. 
[12, 13] improved and extended this approach. Park and Ko 
[14] further generalized the FWMA to a new Lyapunov 

functional. By contrast, the FWMA can keep a tradeoff 
between the conservatism and the computational complexity 
[12, 15-16]. However there is still some conservatism in such 
criteria and the criteria should be simplified. 

The integral inequality especially Jensen’s inequality [6] is 
regarded as another important approach. Not introducing 
excessive matrix variables in the stability criteria, it provides 
a simple stability sufficient conditions and easily to be tested. 
To deal with the cross terms, Sun et al. extended the Jensen’s 
integral inequality was from single integral to double integral 
and obtained the Jensen’s double integral inequality [2, 18]. 
In order to obtain less conservative stability conditions, the 
Wirtinger’s integral inequalities [21, 22, 25, 26] were utilized 
to evaluate the upper bounds on the derivative of the LKF 
and accomplished numerous results. Kim [25] developed an 
infinite-series-type Jensen integral inequality. It should be 
pointed out that the stability criteria derived by this 
infinite-series-type inequality are the least conservative 
compared with those by any others integral inequalities so far 
when choosing identical LKF. However, the drawback of the 
infinite-series-type inequality is that it cannot produce the 
tightest upper bound because the parameters are not 
adjustable. Thus, there exist some room to reduce the 
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conservatism of results based on integral inequalities and 
motivates our current work. 

Recently, the convex combination method [17-20] and the 
RCLs [8, 23, 24, 27-29] have been introduced to discuss the 
stability of delayed systems. Shao [17] estimated the cross 
terms by using the convex combination rather than enlarging 
directly them as the lower and the upper bounds of the delay, 
respectively, and Ref. [18-20] followed this idea to cope with 
the stability of delayed systems. Park et al [23] presented a 
reciprocally convex combination lemma (RCCL), which can 
cope with the terms containing the delays just introducing a 
few slack matrices. Thus, the RCCL has become powerful 
tool to assess the integral terms with time-varying delays. Ref. 
[27-29] extended the RCCL, and developed some useful 
extended reciprocally convex matrix inequality to analyze the 
delayed control systems. However, there leaves some room 
to investigate further. 

In this paper, a modified augmented LKF where more 
information about the delay includes is constructed. Some 
novel stability criteria are derived in terms of linear matrix 
inequalities (LMIs). At last, two examples are given to 
demonstrate the effectiveness of the proposed results. 

Notations: Throughout the paper, the superscript “T” 
denotes the transpose of a matrix; n

ℝ and n m×
ℝ  stand for 

the set of real vector with n-dimensional and real matrix of 
size n m× , respectively; 0( 0)P P> ≥ symbolizes a 

symmetric positive definite (positive semi-definite) matrix; I
and 0 refer to the identity matrix and zero matrix with 
appropriate dimensions, respectively. Block diagonal matrix 
is symbolized by { }diag ⋯ ; 

1 2 1 2{ , , , } [ , , , ]T T T T
n ncol x x x x x x=⋯ ⋯ . The symbol“*”denotes 

the elements induced by symmetry in a symmetric matrix. In 
what follows, if not explicitly stated, matrices are assumed to 
have compatible dimensions. 

2. Problem Formulation and 

Preliminaries 

Consider a linear delayed system: 

2

( ) ( ) ( ( )), 0

( ) ( ), [ ,0]
dx t Ax t A x t d t t

x hθ ϕ θ θ
= + − >
= ∈ −

ɺ

       (1) 

where ( ) nx t ∈ℝ is the state vector; nxnA∈ℝ and nxn
dA ∈ℝ are 

system matrices; The initial condition ( )tϕ is a continuously 

differentiable vector-valued function; ( )d t is a time-varying 

discrete delay and satisfies: 

1 20 ( )h d t h< ≤ ≤ < +∞              (2) 

( )d t µ≤ < +∞ɺ                  (3) 

where 1 2,h h and µ are constants. 

To begin with, we introduce the following lemmas which 
play an essential role in deriving our main results. 

Lemma 1 (Jensen’s integral inequality [6]) For any real 
symmetric positive definite matrix n nM ×∈ℝ , two scalars 

α β≤  and a vector-valued function ( ) : [ , ] ntω α β → ℝ such 

that the following integration are well defined, then 

( ) ( ) ( ) ( ) ( ) .T Tt M t dt t dt M t dt
β β β

α α α
β α ω ω ω ω   − ≥    

   ∫ ∫ ∫                        (4) 

Lemma 2 (Jensen’s double integral inequality [18], [30]) For any real symmetric positive definite matrix n nR ×∈ℝ , two 

scalars satisfying 2 1 0τ τ> ≥ , and a vector-valued function ( )tω such that the following integration are well defined, then 

1 1 1

2 2 2

2 2
2 1 ( ) ( ) ( ) ( ) .

2

T
t t t

T

t t t
d s R s ds d s ds R d s ds

τ τ τ

τ λ τ λ τ λ

τ τ λ ω ω λ ω λ ω
− − −

− + − + − +

−    ≥    
   ∫ ∫ ∫ ∫ ∫ ∫              (5) 

3. Main Results 

In this section, we are to discuss stability of system (1). For simplicity and convenience, we define 

1

1 2

1 2 1 2

( )

( )

( ) { ( ), ( ( )), ( ), ( ), ( ), ( ),

                       ( ) , ( ) , ( ) }
t t h t d t

t h t d t t h

t col x t x t d t x t h x t h x t h x t h

x s ds x s ds x s ds

η
− −

− − −

= − − − − −

∫ ∫ ∫

ɺ ɺ

 

and 

( 1) (9 )[0 , ,0 ], 1,2, ,9T
i n i n n n i ne I i× − × −= = ⋯ . 

For system (1), we have main result as follows. 
Theorem 1 For any given 1 2,h h and µ , the system (1) 

satisfying (2) and (3) is globally asymptotically stable if there 

exist symmetric positive definite matrices with appropriate 
dimensions 



 Control Science and Engineering 2019; 3(2): 20-28 22 
 

11 12 13 14 15

22 23 24 25

33 34 35

44 45

55

*

* * ,

* * *

* * * *

P P P P P

P P P P

P P P P

P P

P

 
 
 
 =
 
 
 
 

 

( 1, 2,3, 4,5), ( 1, 2,3, 4)i jQ i Z j= = and ( 1,2)kR k = such that 

for any matrices 1S and 2S the following LMIs hold 

simultaneously 

2 1

2

0
*

Z S

Z

 
≥ 

 
,

4 2

4

0
*

Z S

Z

 
≥ 

 
          (6) 

2 2
1 1 1 3 12 4 1 2 3 2 3 2 1 3 3

4 2 4 5 5 4 5 6 5 6 7 3 7 8 4 8 8 2 9 9 4 9

3 2 2 3 2 3 2 1 2 4 2 4 2 2 4

1 1 7 1 1 1 7

( ) ( 1) ( )

( ) 2

( ) ( ) 2( ) ( ) ( ) ( )

( ) ( ) (

T T T T

T T T T T T T

T T T

T

e Q h Z h Z e e Q e e Q Q Q e

e Q e e Q Q e e Q e e Z e e Z e e S e e Z e

e e Z e e e e S e e e e Z e e

h e e R h e e h

µΩ + Γ ΥΓ + + + + − + − +

− + − − − − − −

− − − − − − − − −

− − − − 12 1 8 9 2 12 1 8 9) ( ) 0.Te e e R h e e e− − − − <

                 (7) 

where 

11 11 13 14 12 13 17 18 19

12 13 14 15 15

33 34 22 23 37 38 39

44 23 33 45 55 55

24 25 25

34 35 35

* 0 0 0

* *

* * *

* * * * 0 0

* * * * * 0

* * * * * * 0 0 0

* * * * * * * 0 0

* * * * * * * * 0

d

T T T T T
d d d d d

T T

P A P P

A P A P A P A P A P

P P

P P P P P

P P P

P P P

Ω Ω Ω Ω Ω Ω 
 
 
 Ω Ω Ω Ω Ω
 
 Ω − − −
 Ω =  
 
 
 
 
 
 

 

11 11 11 14 14
T TP A A P P PΩ = + + + , 

13 15 14 12 24
T TP P A P PΩ = − + + , 

14 15 13 34
T TP A P PΩ = − + + , 

17 44 14
TP A PΩ = + , 

18 19 45 15
TP A PΩ = Ω = + , 

33 25 25 24 24
T TP P P PΩ = + − − , 

34 25 35 34
T TP P PΩ = − + − , 

37 45 44
TP PΩ = − , 

38 39 55 45P PΩ = Ω = − , 

44 35 35
TP PΩ = − − , 

0 0 0 0 0 0 0dA AΓ =    , 

2
2 2 4

4 1 1 12 2 1 1 2
1

4 4
Q h Z h Z h R R

γΥ = + + + + , 

2 2
12 2 1 2 1,h h h h hγ= − = − . 

Proof. We first construct a Lyapunov functional as follows: 
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4

1

( ) ( )t i t

i

V x V x

=

=∑ , 

where 

1( )tV x = ( ) ( )T t P tξ ξ , 

1 1

1 2
2 1 2 3

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

t t h t h
T T T

t
t h t h t d t

V x x Q x d x Q x d x Q x dα α α α α α α α α
− −

− − −
= + +∫ ∫ ∫  

1

1 2
4 5( ) ( ) ( ) ( )

t t h
T T

t h t h
x Q x d x Q x dα α α α α α

−

− −
+ +∫ ∫ɺ ɺ ɺ ɺ , 

1

1 2

0

3 1 1 12 2( ) ( ) ( ) ( ) ( )
t h t

T T
t

h t h t
V x d h x Z x d d h x Z x d

λ λ
λ α α α λ α α α

−

− + − +
= +∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ  

1

0

1 3( ) ( )
t

T

h t
d h x Z x d

θ
θ α α α

− +
+∫ ∫

1

2
12 4( ) ( )

h t
T

h t
d h x Z x d

θ
θ α α α

−

− +
+∫ ∫ , 

1

1 2

2 0 0 0
1

4 1 2( ) ( ) ( ) ( ) ( )
2 2

t h t
T T

t
h t h t

h
V x d d x s R x s ds d d x s R x s ds

θ α θ α

γθ α θ α
−

− + − +
= +∫ ∫ ∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ , 

with 

1

1 2
1 2( ) { ( ), ( ), ( ), ( ) , ( ) }

t t h

t h t h
t col x t x t h x t h x s ds x s dsξ

−

− −
= − − ∫ ∫ . 

Calculating the time derivative of 1( ),tV x 2( ),tV x and 3( )tV x respectively along the solution of the system (1) yields 

1( ) 2 ( ) ( )T
tV x t P tξ ξ= ɺɺ = ( ) ( )T t tη ηΩ                                  (8) 

where Ω is defined in Theorem 1. 

2 1 1 2 1 3 1 2 2 2

3 4 1 5 4 1

2 5 2

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( 1) ( ( )) ( ( )) ( ) ( ) ( )( ) ( )

( )( ) ( )

T T T
t

T T T

T

V x x t Q x t x t h Q Q Q x t h x t h Q x t h

x t d t Q x t d t x t Q x t x t h Q Q x t h

x t h Q x t h

µ

≤ + − − + − + − − −

+ − − − + + − − −

+ − − −

ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ

              (9) 

1

1 1

2 1 2

2 2 2 2
3 1 3 12 4 1 1 12 2 1 1

12 2 1 3 12 4

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

t
T T T

t
t h

t h t t h
T T T

t h t h t h

V x x t h Z h Z x t x t h Z h Z x t h x Z x d

h x Z x d h x Z x d h x Z x d

−

− −

− − −

= + + + −

− − −

∫

∫ ∫ ∫

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ

α α α

α α α α α α α α α
                    (10) 

Using Lemma 1 yields 

1
1 1 1 3 1 1 3( ) ( ) ( )( ) ( ) ( )

t
T T T

t h
h x Z x d t e e Z e e tα α α η η

−
− ≤ − − −∫ ɺ ɺ                        (11) 

and 

1
1 3 7 3 7( ) ( ) ( ) ( )

t
T T T

t h
h x Z x d t e Z e tα α α η η

−
− ≤ −∫                             (12) 

Observe that 

1 1

2 2

( )

12 2 12 2 12 2
( )

( ) ( ) ( ) ( ) ( ) ( )
t h t d t t h

T T T

t h t h t d t
h x Z x d h x Z x d h x Z x dα α α α α α α α α

− − −

− − −
− = − −∫ ∫ ∫ɺ ɺ ɺ ɺ ɺ ɺ . 
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Using Lemma 1 again, we have 

2

( )

12 2( ) ( )
t d t

T

t h
h x Z x dα α α

−

−
−∫ ɺ ɺ

2 2

( ) ( )
2 1

2
2

( ) ( )
( )

T
t d t t d t

t h t h

h h
x d Z x d

h d t
α α α α

− −

− −

−    ≤ −    −    ∫ ∫ɺ ɺ  

and 

1

12 2
( )

( ) ( )
t h

T

t d t
h x Z x dα α α

−

−
−∫ ɺ ɺ

1 12 1
2

( ) ( )1

( ) ( )
( )

T
t h t h

t d t t d t

h h
x d Z x d

d t h
α α α α

− −

− −

−    ≤ −    −    ∫ ∫ɺ ɺ . 

Thus 

1

2

2 2

1 1

12 2

( ) ( )
2 1

2
2

2 1
2

( ) ( )1

( ) ( )

( ) ( )
( )

( ) ( ) .
( )

t h
T

t h

t d t t d t
T

t h t h

t h t h
T

t d t t d t

h x Z x d

h h
x d Z x d

h d t

h h
x d Z x d

d t h

α α α

α α α α

α α α α

−

−

− −

− −

− −

− −

−

−≤ −
−
−

−
−

∫

∫ ∫

∫ ∫

ɺ ɺ

ɺ ɺ

ɺ ɺ

 

From the reciprocally convex combination lemmas [23] and [27], there exists a matrix 1S with appropriate dimension such that 

2 1

2

0
*

Z S

Z

 
≥ 

 
 

then 

1 1

2 2

1 1

2 2

( ) ( )
2 1 2 1

2 2
( ) ( )2 1

( ) ( )2 1

( )
2

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

*
( ) ( )

t d t t d t t h t h
T T

t h t h t d t t d t

T
t h t h

t d t t d t

t d t t d

t h t h

h h h h
x d Z x d x d Z x d

h d t d t h

x d x d
Z S

Z
x d x d

α α α α α α α α

α α α α

α α α α

− − − −

− − − −

− −

− −

− −

− −

− −
− −

− −

 
   
 ≤ −  
   
  

∫ ∫ ∫ ∫

∫ ∫

∫

ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ ɺ
( )

.
t

 
 
 
 
  ∫

 

Namely 

1 1

2 2

( ) ( )
2 1 2 1

2 2
( ) ( )2 1

3 2 2 3 2 3 2 1 2 4 2 4 2 2 4

( ) ( ) ( ) ( )
( ) ( )

( )[( ) ( ) 2( ) ( ) ( ) ( ) ] ( ).

t d t t d t t h t h
T T

t h t h t d t t d t

T T T T

h h h h
x d Z x d x d Z x d

h d t d t h

t e e Z e e e e S e e e e Z e e t

α α α α α α α α

η η

− − − −

− − − −

− −
− −

− −

≤ − − − + − − + − −

∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ

            (13) 

Similarly, there exists a matrix 2S with appropriate dimension such that 

4 2

4

0
*

Z S

Z

 
≥ 

 
, 

then 

1

2
12 4 8 4 8 8 2 9 9 4 9( ) ( ) ( )[ 2 ] ( )

t h
T T T T T

t h
h x Z x d t e Z e e S e e Z e tα α α η η

−

−
− ≤ − + +∫                     (14) 

Additionally, 

1

1 2

4 22 0
1 1

4 1 2 1 2( ) ( )( ) ( ) ( ) ( ) ( ) ( )
4 4 2 2

t h t
T T T

t
h t h t

h h
V x x t R R x t d x s R x s ds d x s R x s ds

θ θ

γ γθ θ
−

− + − +
= + − −∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ ɺ ɺ ɺ           (15) 

On basis of Lemma 2, one obtains 
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1

2 0
1

1 1 1 7 1 1 1 7( ) ( ) ( )[( ) ( ) ] ( )
2

t
T T T

h t

h
d x s R x s ds t h e e R h e e t

θ
θ η η

− +
− ≤ − − −∫ ∫ ɺ ɺ                      (16) 

and 

1

2
2 12 1 8 9 2 12 1 8 9( ) ( ) ( )[( ) ( ) ] ( ).

2

h t
T T T

h t
d x s R x s ds t h e e e R h e e e t

θ

γ θ η η
−

− +
− ≤ − − − − −∫ ∫ ɺ ɺ                  (17) 

Combining with (8)-(17), one concludes 

( ) ( ) ( ),T
tV x t tη η≤ Σɺ                                           (18) 

where 

2 2
1 1 1 3 12 4 1 2 3 2 3 2 1 3 3

4 2 4 5 5 4 5 6 5 6 7 3 7 8 4 8 8 2 9 9 4 9

3 2 2 3 2 3 2 1 2 4 2 4 2 2 4

1 1 7 1 1 1 7

( ) ( 1) ( )

( ) 2

( ) ( ) 2( ) ( ) ( ) ( )

( ) ( )

T T T T

T T T T T T T

T T T

T

e Q h Z h Z e e Q e e Q Q Q e

e Q e e Q Q e e Q e e Z e e Z e e S e e Z e

e e Z e e e e S e e e e Z e e

h e e R h e e

µΣ = Ω + Γ ΥΓ + + + + − + − +

− + − − − − − −

− − − − − − − − −

− − − − 12 1 8 9 2 12 1 8 9( ) ( ) .Th e e e R h e e e− − − −

 

According to the Lyapunov stability theory, if (6) and (7) 
hold, then 0Σ < , which ensure that system (1) is globally 
asymptotically stable. This completes the proof of Theorem 
1. 

Remark 1 In Ref. [3-4, 18], the cross term 

1

2
2( ) ( )

h t
T

h t
d x s R x s ds

θ
θ

−

− +
−∫ ∫ ɺ ɺ  

arising in the derivative of ( )tV x  was enlarged directly by 

the Jensen’s double integral inequality. However, those 

similar terms existing in the derivative of ( )tV x such as 

1

2
12 4( ) ( )

t h
T

t h
h x s Z x s ds

−

−
−∫ , 

1

2
12 2( ) ( )

t h
T

t h
h x s Z x s ds

−

−
−∫ ɺ ɺ . 

For such integral terms, the authors of Ref. [3-4] and [18] 
firstly divided them into sum of two parts respectively. Each 
part was then enlarged by the Jensen’s integral inequality 
rather than being enlarged each term by directly the Jensen’s 
integral inequality. Specifically, that is 

1 1

2 2

( )

12 4 12 4 12 4
( )

( ) ( ) ( ) ( ) ( ) ( )
t h t d t t h

T T T

t h t h t d t
h x Z x d h x Z x d h x Z x dα α α α α α α α α

− − −

− − −
− = − −∫ ∫ ∫  

1 1

2 2

( ) ( )
12 12

4 4
( ) ( )2 1

( ) ( ) ( ) ( )
( ) ( )

t d t t d t t h t h
T T

t h t h t d t t d t

h h
x s dsZ x s ds x s dsZ x s ds

h d t d t h

− − − −

− − − −
≤ − −

− −∫ ∫ ∫ ∫  

not 

1 1 1

2 2 2
12 4 4( ) ( ) ( ) ( )

t h t h t h
T T

t h t h t h
h x s Z x s ds x s Z x s

− − −

− − −
− ≤ −∫ ∫ ∫ . 

Such approach can reduce conservatism in a way, as claimed in the literature, for example Ref. [17]. Therefore, it is 
unavoidable that such inconsistent tackle will lead to some conservatism. Differently from aforementioned previous literature, 

we cope with the term
1

2
2( ) ( )

h t
T

h t
d x s R x s ds

θ
θ

−

− +
−∫ ∫ ɺ ɺ as follows: 

1 1

2 2

( )

2 2 2
( )

( ) ( ) ( ) ( ) ( ) ( )
h t d t t h t

T T T

h t h t d t t
d x s R x s ds d x s R x s ds d x s R x s ds

θ θ θ
θ θ θ

− − −

− + − + − +
− = − −∫ ∫ ∫ ∫ ∫ ∫ɺ ɺ ɺ ɺ ɺ ɺ . 

Subsequently, we enlarge each part lying on the right-hand 
side of the above equality by Lemma 2. In short, we 
surmount the shortcoming iteming from such inconsistent 
tackle and obtain some less conservative conditions 
compared with those in the literature. 

Remark 2 The conservatism reduction of the proposed 

criteria derived in this paper is thanks to twofold. The first 
aspect has been stated in Remark 1; the second one is our 
modified augmented LKF, where the lower and the upper 
bounds of the delay and the delay derivative are fully 
exploited by chosen the terms like 
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1

2
2( ) ( )

t h
T

t h
x Q x dα α α

−

−∫ , 
1

3
( )

( ) ( )
t h

T

t d t
x Q x dα α α

−

−∫ , 
1

2
12 4( ) ( )

h t
T

h t
d h x Z x d

θ
θ α α α

−

− +∫ ∫ . 

Numerical examples are to validate such assertion further 
in section 4. 

When the delay derivative may be unknown or does not 
exist, one can obtain a delay-dependent and 
delay-rate-independent stability criterion by setting 3 0Q =  

in Theorem 1. That is: 

Corollary 1 For given 1 2,h h , the system (1) subject to (2) is 

globally asymptotically stable if there exist symmetric 

positive definite matrices with appropriate dimensions

5 5[ ] , ( 1, 2, 4,5)ij iP P Q i×= = , ( 1, 2,3, 4)jZ i = and ( 1,2)kR k =  

such that for any matrices 1S and 2S the following LMIs hold 

simultaneously 

2 1

2

0
*

Z S

Z

 
≥ 

 
, 

4 2

4

0
*

Z S

Z

 
≥ 

 
, 

2 2
1 1 1 3 12 4 1 3 2 1 3 4 2 4

5 5 4 5 6 5 6 7 3 7 8 4 8 8 2 9 9 4 9

3 2 2 3 2 3 2 1 2 4 2 4 2 2 4

1 1 7 1 1 1 7 12 1 8 9 2 1

( ) ( )

( ) 2

( ) ( ) 2( ) ( ) ( ) ( )

( ) ( ) ( ) (

T T T T

T T T T T T

T T T

T

e Q h Z h Z e e Q Q e e Q e

e Q Q e e Q e e Z e e Z e e S e e Z e

e e Z e e e e S e e e e Z e e

h e e R h e e h e e e R h

Ω + Γ ΥΓ + + + + − −

+ − − − − − −

− − − − − − − − −

− − − − − − 2 1 8 9 ) 0.Te e e− − <

 

and notations , ,Ω Υ Γ are defined in Theorem 1. 

4. Numerical Examples 

In this section, two examples are presented to illustrate the 
proposed stability criteria in this paper. 

Example 1. Consider the system (1) with 

2.0 0.0

0.0 0.9
A

− 
=  − 

, 1

1.0 0.0

1.0 1.0
A

− 
=  − − 

. 

For various µ and unknown µ , the allowable upper bound 

on delay 2h , which ensures the globally asymptotic stability 

of the system (1) for given lower bound 1h are listed in Table 

1 and Table 2, respectively. From Table 1, it is clear that the 

proposed method can give much larger 2h than those in [3, 17, 

18] in most of cases. 
From Table 2, the proposed criterion is less conservative 

than those reported in [17-20] except the case when 1 1.0h = . 

Table 1. Allowable upper bounds 2h with different 1h and µ for Example 1. 

h1 Methods µ=0.30 µ=0.50 µ=0.90 

2.0 

[17] 2.6972 2.5048 2.5048 

[18] 3.0129 2.5663 2.5663 

[3] 3.0129 2.6099 2.6099 

Theorem 1 3.0327 2.6137 2.6137 

3.0 

[17] 3.2591 3.2591 3.2591 

[18] 3.3408 3.3408 3.3408 

[3] 3.3891 3.3891 3.3891 

Theorem 1 3.3912 3.3912 3.3912 

4.0 

[17] 4.0744 4.0744 4.0744 

[18] 4.1690 4.1690 4.1690 

[3] 4.1978 4.1978 4.1978 

Theorem 1 4.1749 4.1749 4.1749 

 

Table 2. Allowable upper bounds 2h with various 1h and unknown µ for 

Example 1. 

Methods h1 1.0 2.0 3.0 4.0 

[17] h2 1.8737 2.5049 3.2591 4.0744 
[18] h2 1.9008 2.5663 3.3408 4.169 
[19] h2 1.9422 2.5383 3.2749 4.0787 
(N=1)      
[20] h2 1.9422 2.5383 3.2749 4.0787 
(N=1)      
Corollary 1 h2 1.9127 2.5729 3.3517 4.1758 

Example 2. Consider the system (1) with 

0.0 1.0

1.0 2.0
A

 
=  − − 

, 1

0.0 0.0

1.0 1.0
A

 
=  − 

 

For various µ  and given lower bound 1h , the allowable 

upper bound on delay 2h , which guarantees the globally 

asymptotic stability of the system (1) is listed in Table 3. For 

1 0h =  and various µ , the allowable upper bound on delay 

2h , which ensures the globally asymptotic stability of the 

system (1) can be obtained in Table 4. From Tables 3 and 4, 

the proposed method in this paper gives larger 2h  in most of 

cases than those in the literature. 

Table 3. Allowable upper bounds 2h with various 1h and 0.3µ = for Example 2. 

Methods h1 0.30 0.50 0.80 1.0 

[17] h2 2.2224 2.2278 2.2388 2.2474 
[18] h2 2.2634 2.2858 2.3078 2.3167 
Theorem 1 h2 2.2729 2.2932 2.3137 2.3228 

Table 4. Allowable upper bounds 2h with various µ and 1 0h = for Example 2. 

Methods µ 0.10 0.20 0.50 0.80 

[21] h2 6.5906 3.6728 1.4118 1.2759 
[32] h2 7.1480 4.4660 2.3521 1.7682 
[31] h2 7.1765 4.5438 2.4963 1.9225 
Theorem 1 h2 7.1489 4.4832 2.4970 1.8284 
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5. Conclusions 

In this paper, we develop the delay-range-dependent 
stability criterion for delayed systems. The Jensen’s integral 
inequality, together with the reciprocally convex lemma, was 
employed and the derivative of the LKF was estimated more 
tightly. As a result, a novel stability criterion is derived and 
as by-product a delay-rate-independent criterion is also 
obtained. Two numerical examples are provided to 
substantiate the validity of the proposed method. 

Although the proposed stability criteria do not remarkably 
have reduction in conservativeness, they are significant since 
there are fewer decisive variables including them and less 
computational complexity to test the proposed criteria. 
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