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Abstract: Our aim in this paper is to present the design and implementation of a new numerical method to solve a class of 

stochastic delay population models. Firstly, a stochastic predator-prey model with time-delay and white noise is established. 

And then, a numerical simulation method based on the Milstein method is proposed to simulate the stochastic population 

model. Finally, the numerical solutions of the population model are obtained by using MATLAB software. The simulation 

results show that the new numerical simulation method can truly reflect the persistence and extinction process of stochastic 

predator-prey model, and provide a reference for solving the numerical simulation of the similar population models. 
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1. Introduction 

The living environment of biological populations is 

affected by human activities and environmental changes, and 

the influence of environmental noise on the living 

environment of the population cannot be ignored, which has 

attracted the attention of biologists and has become a new 

research direction. Maja Vasilova [1] studied the stochastic 

Gilpin-Ayala predator-prey system with time-varying delays, 

and obtained the long-term gradual progress, mean 

estimation and population extinction of the system. Miljana 

Jovanovic and MajaVasilova [2] studied the non-autonomous 

stochastic Gilpin-Ayala competition system with 

time-varying delays, and obtained the conditions of 

population extinction, non-sustained survival, average 

persistent survival and weak persistent survival. Aadil 

Lahrouz and Adel Sufficient Settati [3] gave the necessary 

and sufficient conditions which guarantee the permanence of 

a stochastic disturbance SIRS system. Zhang [4] established 

a stochastic predator-prey model with time delay and 

predator diffusion, and discussed the existence of a unique 

global positive solution, the conditions for population 

extinction and average persistence. In 2017, Zhang et al [5] 

proposed a stochastic non-autonomous Lotka–Volterra 

predator–prey model with impulsive effects, and proved the 

system has an unique periodic solution which is globally 

attractive, the persistence and extinction of each species. 

In the existing literature describing population dynamics 

randomization, it is often assumed that the intrinsic growth 

rate is the most sensitive parameter [6-8] to study the model. 

In general, it is assumed that the population grows in an 

environment where ambient noise is the main interfering rate 

of intrinsic growth, so that the intrinsic growth rate is 

described as an average plus an error term. At the same time, 

the well-known central limit theorem pointed out that the 

error term obeys a normal distribution. In a relatively short 

time, can use ( )i iB tσ ɺ  replace this error term, where iσ  is the 

stochastic interference intensity of the population and ( )iB tɺ  is 

the standard white noise. That is, the ( )iB tɺ  is Brownian motion 

defined on the complete probability space ( , , )F PΩ . If still use 

ir  to represent the average growth rate of the population, then 

the growth rate will change to ( )i i ir B tσ+ ɺ . Then, take into 

account the intraspecific density constraints of predator 

populations. Wang [9] obtained a randomized model of the 

deterministic system as follows: 
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However, to the best of the authors’ knowledge, to this day, 

still less scholars consider the stochastic multiple populations 

ecological model with delays. Motivated by the above works, 

this paper proposes a stochastic three-species predator-prey 

model with time-delay and white noise, and explore the 

application of MATLAB soft in solving the numerical 

solution of the stochastic population model. The rest of this 

paper is organized as follows: In Section 2, a stochastic 

predator-prey model is proposed. The numerical solutions of 

the model are obtained in Section 3. The conclusion is given 

in the Section 4. 

2. Built of Model 

Competition-cooperation is a common inter-relationship 

among populations in the ecosystem. Many scholars have 

achieved certain results in the research of such models 

[10-15]. In nature, the impact of environmental noise on 

biological populations is also crucial. When the ambient 

noise is large enough, the population may even be extinct. 

The biological population simulation with environmental 

noise is closer to the real situation. At the same time, the lag 

caused by the pregnancy of biological populations is 

ubiquitous in the ecosystem, and the differential equation 

model with time delay has more complex dynamic behavior 

than the general differential equation model. Considering 

these factors, this paper proposes a three-species 

predator-prey models with delays and white noise, in which 

the two prey populations compete with each other. The 

stochastic three-species predator-prey model is as follows: 
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where 1( )x t  and 2 ( )x t  are prey populations, 3 )x t（  is a 

predator population, ( ) ( 1, 2,3)ix t i =  is the population 

density of the three populations at the moment t , 

( 1, 2)ir i =  represents the natural growth rates of the prey 

populations, 3 ( )r t  is the death rate of the predator 

population. ( 1, 2)iia i =  represents the competition loss 

within the population, 12a  and 21a  represents the 

competitive loss between the population 1( )x t  and the 

population 2 ( )x t , 13a  and 23a  represents the predation 

parameter of the population 3 ( )x t  versus the population 

1( )x t  and 2 ( )x t , 31a  and 32a  represents the 

transformation parameter of population 3 ( )x t  predator 

population 1( )x t  and 2 ( )x t . The ( )iB tɺ  is Brownian motion 

defined on the complete probability space ( , , )F PΩ . 

In the stochastic population model, it is usually assumed 

that the birth rate and mortality of the population are 

stochastic. Such a solution no longer approaches a stable 

positive equilibrium state, but fluctuates at a certain average 

value. Therefore, studying population extinction and 

persistent survival becomes a core issue with a stochastic 

perturbation population model. Below the Milstein method 

will be used to numerically simulate the persistence and 

extinction of the model. 

3. Numerical Simulation 

In this section, The Milstein numerical simulation method 

[16-19] will be used to solve the numerical solutions for the 

models (2). Firstly, the Milstein method will be introduced. 

Considering the autonomous scalar stochastic differential 

equation SDE: 

0 0 0

( ) ( ( )) ( ( )) ( ),

( ) ( [ , ]),

dy t f y t dt g y t dw t

y t y t t T

= +
 = ∈

       (3) 

where ( )f y and ( )g y are continuous measurable functions on 

0[ , ]t T , respectively called offset coefficient and diffusion 

coefficient, , ( )y R w t∈  is a standard wiener process, and its 

increment 

( ) ( ) ( )w t w t h w t∆ = + −                 (4)
 

follows a normal distribution N(0, )h . 

The explicit Milstein m 

2
1 ( ) ( ) [ ] (( ) ) / 2.n n n n n n ny y f y h g y w g g w h+ ′= + + ∆ + ∆ −                       (5) 
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When the parameters in the model (2) take different values, the numerical solutions are obtained for the models (2), 

respectively, which are shown in Figure 1 to Figure 6. 

In Figure 1, the parameters are taken as follows: 

1 2 3 11 22 12 21 13 23 31 32

1 2 3

1.2, 1, 0.4, 2.5, 1.5, 0.5, 1.2, 1.2, 1, 0.8, 1.5,

0.02.

r r r a a a a a a a a

σ σ σ
= = = = = = = = = = =
= = =

 

The Milstein method is used to process the stochastic items, and the system persistence time series graph under stochastic 

disturbance is obtained, and shown in Figure 1. 

 

 

Figure 1. System persistence time series diagram under stochastic perturbation. 

From the Figure 1, it can be seen that under stochastic 

disturbance, the three species survive continuously, and the 

1x
 

and 2x  populations compete with each other and are 

restricted by the population 3x . Due to the influence of the 

time-delay, their trends are roughly the same, only delayed in 

time. When the density 3x  of the predator population 

density increases, the densities 1x  and 2x  of prey 

populations are decreasing. After that, the density of the 

predator population 3x decreases, and the densities
 
of the prey 

populations 1x  and 2x  increase. Repeatedly. Figure 1 

reflects these features very well. 

In Figure 2, the parameters are taken as follows: 
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1 2 3 11 22 12 21 13 23 31 32

1 2 3

1.2, 1, 0.5, 2.5, 1.5, 0.5, 1.2, 1.2, 1, 0.8, 1.5,

0.

r r r a a a a a a a a

σ σ σ
= = = = = = = = = = =
= = =

 

The system persistence time series graph of the determined model is obtained without considering stochastic interference, 

which is shown in Figure 2. 

 

Figure 2. System persistence time series graph of the determined model. 

From the Figure 2, it can be seen that in the absence of stochastic interference, the population density curves of the three 

species are relatively smooth. Due to the influence of time lag, the trends of 1x  and 2x  populations are roughly the same, 

but there is a delay in time. After a short period of volatility, three populations tend to balance and no longer volatility, which is 

obviously not in line with the laws of biological population changes in nature. 

In Figure 3, the parameters are taken as follows: 

1 2 3 11 22 12 21 13 23 31 32

1 2 3

0.45, 0.35, 3, 1.3, 2.3, 2.5, 1.2, 7, 8, 1.8, 1.5,

0.2.

r r r a a a a a a a a

σ σ σ
= = = = = = = = = = =
= = =

 

The system extinction time series graph under stochastic interference is obtained, which is shown in Figure 3.  
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Figure 3. System extinction time series graph under stochastic disturbance. 

From the Figure 3, the stochastic disturbances also affect the extinction of biological populations. Due to the effect of 

stochastic disturbances, the density of biological populations is also fluctuating in the trend of decline, which is in line with 

natural laws and the species are eventually extinct. 

In Figure 4, the parameters are taken as follows:  

1 2 3 11 22 12 21 13 23 31 32

1 2 3

0.1, 0.12, 2, 3, 8, 8, 3.5, 2, 2.5, 3.8, 1.8,

0.

r r r a a a a a a a a

σ σ σ
= = = = = = = = = = =
= = =

 

The system extinction time series graph of the determined model is obtained without considering stochastic interference, 

which is shown in Figure 4. 

 

Figure 4. System extinction time series graph of the determined model. 

From the Figure 4, it can be seen that in the absence of random interference, the population density curves of the three 

species are vertically decreased until extinct and there is no fluctuation trend. Obviously, the system with stochastic 

interference is more scientific. 

In Figure 5, the parameters are taken as follows:  

1 2 3 11 22 12 21 13 23 31 32

1 2 3

1.5, 1.3, 1.1, 1.1, 2.3, 2.5, 1.2, 2.5, 2.5, 3.8, 1.8,

0.02.
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The extinction time series graph of the system prey population 2x  under stochastic interference is obtained, which is 

shown in Figure 5. 

 

 

Figure 5. Extinction time series graph of prey population 2x  under stochastic disturbance. 
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Figure 6. Extinction time series graph of predator population 3x  under stochastic disturbance. 

From the Figure 6, it can be seen that under the action of 

stochastic disturbances, the predator populations 3x  is 

extinct, and the prey population 1x  and 2x  are living in 

the system together. 

From Figures 1-6, it is obvious that the stochastic 

disturbances items have influence both on the permanence of 

the original system. Therefore, in some ecosystems, some 

species can be controlled to maintain the balance and 

sustainable development of the ecosystem, and this is also the 

practical significance of this topic. 

According to the data in Figure 1, the code for writing 

stochastic items using the Milstein method is as follows: 

Code 1 

clc; 

x1=cell(1,1); 

x2=cell(1,1); 

x3=cell(1,1); 

x1{1}(1)=sin(-0.3*rand)+0.5; 

x2{1}(1)=sin(-0.3*rand)+0.5; 

x3{1}(1)=sin(-0.4*rand)+0.5; 

h=0.01; 

tend=30; 

tau1=1; 

tau2=2; 

t=0; 

k=1; 

while t<=tend 

x1{1}(k+1)=x1{1}(k)+h*x1{1}(k)*(1.2-2.5*x1{1}(max(1

,k-tau1/h))-0.5*x2{1}(max(1,k-tau2/h))-(1.2*x3{1}(k)/(1+x1

{1}(k)+x3{1}(k))))+0.02*x1{1}(k)*randn+0.02^2*0.5*x1{1

}(k)*(randn^2-h); 

x2{1}(k+1)=x2{1}(k)+h*x2{1}(k)*(1-1.2*x1{1}(max(1,k

-tau1/h))-1.5*x2{1}(max(1,k-tau2/h))-(1*x3{1}(k)/(1+x2{1}

(k)+x3{1}(k))))+0.02*x2{1}(k)*randn+0.02^2*0.5*x2{1}(k

)*(randn^2-h); 

x3{1}(k+1)=x3{1}(k)+h*x3{1}(k)*(-0.4+(0.8*x1{1}(k)/(

1+x1{1}(k)+x3{1}(k)))+(1.5*x2{1}(k)/(1+x2{1}(k)+x3{1}(

k))))+0.02*x3{1}(k)*randn+0.02^2*0.5*x3{1}(k)*(randn^2-

h); 

k=k+1;  

t=t+h;  

end 

tt=(0:h:tend); 

plot(tt,x1{1},'b','linewidth',2) 

hold on 

plot(tt,x2{1},'r','linewidth',2) 

hold on 

plot(tt,x3{1},'g','linewidth',2) 

xlabel('t'); 

legend('x1(t)', 'x2(t)', 'x3(t)'); 

hold on 

According to the data in Figure 2, some of the code 1 are 

modified as follows: 

x1{1}(k+1)=x1{1}(k)+h*x1{1}(k)*(1.2-2.5*x1{1}(max(1

,k-tau1/h))-0.5*x2{1}(max(1,k-tau2/h))-(1.2*x3{1}(k)/(1+x1

{1}(k)+x3{1}(k)))) 

x2{1}(k+1)=x2{1}(k)+h*x2{1}(k)*(1-1.2*x1{1}(max(1,k

-tau1/h))-1.5*x2{1}(max(1,k-tau2/h))-(1*x3{1}(k)/(1+x2{1}

(k)+x3{1}(k)))) 

x3{1}(k+1)=x3{1}(k)+h*x3{1}(k)*(-0.5+(0.8*x1{1}(k)/(

1+x1{1}(k)+x3{1}(k)))+(1.5*x2{1}(k)/(1+x2{1}(k)+x3{1}(

k)))) 

According to the data in Figure 3, some of the code 1 are 

modified as follows: 

x1{1}(k+1)=x1{1}(k)+h*x1{1}(k)*(0.45-1.3*x1{1}(max(

1,k-tau1/h))-2.5*x2{1}(max(1,k-tau2/h))-(7*x3{1}(k)/(1+x1

{1}(k)+x3{1}(k))))+0.2*x1{1}(k)*randn+0.2^2*0.5*x1{1}(

k)*(randn^2-h); 

x2{1}(k+1)=x2{1}(k)+h*x2{1}(k)*(0.35-1.2*x1{1}(max(

1,k-tau1/h))-2.3*x2{1}(max(1,k-tau2/h))-(8*x3{1}(k)/(1+x2

{1}(k)+x3{1}(k))))+ 

0.2*x2{1}(k)*randn+0.2^2*0.5*x2{1}(k)*(randn^2-h); 

x3{1}(k+1)=x3{1}(k)+h*x3{1}(k)*(-3+(1.8*x1{1}(k)/(1+

x1{1}(k)+x3{1}(k)))+(1.5*x2{1}(k)/(1+x2{1}(k)+x3{1}(k))

))+ 0.2*x3{1}(k)*randn+0.2^2*0.5*x3{1}(k)*(randn^2-h); 

According to the data in Figure 4, some of the code 1 are 

modified as follows: 

x1{1}(k+1)=x1{1}(k)+h*x1{1}(k)*(0.1-3*x1{1}(max(1,k
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-tau1/h))-8*x2{1}(max(1,k-tau2/h))-(2*x3{1}(k)/(1+x1{1}(k

)+x3{1}(k)))); 

x2{1}(k+1)=x2{1}(k)+h*x2{1}(k)*(0.12-3.5*x1{1}(max(

1,k-tau1/h))-8*x2{1}(max(1,k-tau2/h))-(2.5*x3{1}(k)/(1+x2

{1}(k)+x3{1}(k)))); 

x3{1}(k+1)=x3{1}(k)+h*x3{1}(k)*(-2+(3.8*x1{1}(k)/(1+

x1{1}(k)+x3{1}(k)))+(1.8*x2{1}(k)/(1+x2{1}(k)+x3{1}(k))

)); 

According to the data in Figure 5, some of the code 1 are 

modified as follows: 

x1{1}(k+1)=x1{1}(k)+h*x1{1}(k)*(1.5-1.1*x1{1}(max(1

,k-tau1/h))-2.5*x2{1}(max(1,k-tau2/h))-(2.5*x3{1}(k)/(1+x1

{1}(k)+x3{1}(k))))+0.02*x1{1}(k)*randn+0.02^2*0.5*x1{1

}(k)*(randn^2-h); 

x2{1}(k+1)=x2{1}(k)+h*x2{1}(k)*(1.3-1.2*x1{1}(max(1

,k-tau1/h))-2.3*x2{1}(max(1,k-tau2/h))-(2.5*x3{1}(k)/(1+x2

{1}(k)+x3{1}(k))))+0.02*x2{1}(k)*randn+0.02^2*0.5*x2{1

}(k)*(randn^2-h); 

x3{1}(k+1)=x3{1}(k)+h*x3{1}(k)*(-1.1+(3.8*x1{1}(k)/(

1+x1{1}(k)+x3{1}(k)))+(1.8*x2{1}(k)/(1+x2{1}(k)+x3{1}(

k))))+0.02*x3{1}(k)*randn+0.02^2*0.5*x3{1}(k)*(randn^2-

h); 

According to the data in Figure 6, some of the code 1 are 

modified as follows: 

x1{1}(k+1)=x1{1}(k)+h*x1{1}(k)*(1.2-2.5*x1{1}(max(1

,k-tau1/h))-0.5*x2{1}(max(1,k-tau2/h))-(1.2*x3{1}(k)/(1+x1

{1}(k)+x3{1}(k))))+0.02*x1{1}(k)*randn+0.02^2*0.5*x1{1

}(k)*(randn^2-h); 

x2{1}(k+1)=x2{1}(k)+h*x2{1}(k)*(1-1.2*x1{1}(max(1,k

-tau1/h))-1.5*x2{1}(max(1,k-tau2/h))-(1*x3{1}(k)/(1+x2{1}

(k)+x3{1}(k))))+ 

0.02*x2{1}(k)*randn+0.02^2*0.5*x2{1}(k)*(randn^2-h); 

x3{1}(k+1)=x3{1}(k)+h*x3{1}(k)*(-0.8+(0.8*x1{1}(k)/(

1+x1{1}(k)+x3{1}(k)))+(1.5*x2{1}(k)/(1+x2{1}(k)+x3{1}(

k))))+ 

0.02*x3{1}(k)*randn+0.02^2*0.5*x3{1}(k)*(randn^2-h); 

4. Conclusion 

This paper presents the design and implementation of a new 

numerical method to solve a class of stochastic delay 

population models. This method is a powerful tool for solving 

various population models and can also be applied to other 

nonlinear differential equations in mathematical physics. 

Computations are performed using the software package 

MATLAB7.0. The simulation results show that the new 

numerical simulation method can truly reflect the persistence 

and extinction process of stochastic predator-prey model. 
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