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Abstract: This paper presents a method of constructing the half-rate irregular quasi-cyclic low-density parity-check codes 

which can provide linear encoding algorithm and their H-matrices may contain almost the least “1” elements comparing with 

H-matrices of all existing LDPC codes. This method shows that three kinds of special structural matrices, respectively named 

as S-matrix, M-matrix and A-matrix, are defined and constructed. With regard to the arbitrary large structural girth based on 

A-matrix, its general pattern is conceived and its basic rule is proved. A general method of constructing M-matrix with the 

inevitable girth larger than 24 is introduced by using generalized block design and treating A-matrix as its sub-matrix. S-matrix 

is generated by substituting specially circular-shift values for non-zero elements in M-matrix. Combining H
d
-matrix generated 

from lifting the S-matrix and H
p
-matrix with the approximate lower triangular array structure forms the H-matrix, i.e. H=[H

d
 

H
p
], which defines a class of half-rate irregular QC-LDPC codes with maximum column weight 3 and inevitable girth of length 

26. Simulation tests show that the performance of the presented QC-LDPC code can achieve the signal-noise-ratio of below 

2dB at the bit-error-rate of 10
-5

, which is comparable with the performance of the practical QC-LDPC codes in industrial 

Standard, but the complication of the former owing to the least “1” elements in H-matrix is lower than that of the later, as well 

as the storage requirement is smaller. 

Keywords: Quasi-Cycle Low-Density Parity-Check (QC-LDPC) Code, Sparse Parity-Check Matrix, Girth,  

Generalized Block Design 

 

1. Introduction 

The irregular quasi-cyclic low-density parity-check (QC- 

LDPC) codes with linear encodable structure, here called the 

practical codes, are adopted by several IEEE industrial 

Standards [1-2] because of their perfect performance, 

inherently parallelizable decoding algorithm and linear 

encoding algorithm which are well suited for hardware 

implementation. Since the methods of constructing these 

practical codes have not yet been published up to now, besides 

it is necessary to probe into whether there are better practical 

codes (i.e., lower complexity and/or better performance, as 

well as algebraic structural codes), the method of designing 

the structural QC-LDPC codes has been a research hotspot in 

the field of error correcting codes in recent years [4-9, 11-13]. 

The LDPC code defined by partitioned parity-check matrix, 

H-matrix for short, first appeared in appendix C of Gallager’s 

Ph.D dissertation in [3]. At the beginning, a special array 

structure, named as the array codes in [4], was studied. Later 

then, the general array structure, named as the quasi-cycle 

(QC)-LDPC code, had received enormous attention, because 

each sub-matrix in H-matrix can be generated by simply 

circular-shifting an identity matrix in [5-6] and the H-matrix 

can be implemented by shift register in [7]. An important 

parameter in the process of studying the LDPC codes is strongly 

considered, and it is girth. The performance of a LDPC code 

with iterative decoding strongly depends on the girth which is 

defined as the length of the shortest cycle in a Tanner graph 

associated with the H-matrix. In [5-6, 8-9], the girth structure 

of full-element QC-LDPC codes is studied, and a significant 

conclusion is that the girth of length 4,6,8,10 , called the 

evitable girth or the free girth, can be eliminated by designing 
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circular-shift value, and one kind of girth of length larger than 

at least 12  can not be eliminated and this girth is called the 

inevitable girth. Here the term “inevitable girth”, introduced in 

[9], means that this girth can not be eliminated by designing the 

circular-shift value, or the “inevitable girth” is independent of 

the size of sub-matrix and the circular-shift value. For the 

convenience of elaboration, girth or cycle in an H-matrix is 

divided into two classes: the free girth (cycle) and the 

inevitable girth (cycle). If there are four “1” elements at four 

crossing positions of any two rows and any two columns 

within H-matrix of defining a QC-LDPC code, like the type 
1 1

1 1

 
 
 

, the paper [7] called this case unsatisfying row-column 

(RC) constraint, then the Tanner graph associated with this 

H-matrix contains the free girth of length 4. If an H-matrix 

does not contain such submatrix as the type 1 1

1 1

 
 
 

, then the 

H-matrix is thought of as satisfying RC-constraint and there is 

no any free girth of length 4 in its Tanner graph. Many papers 

describes that if there is no free girth of length 4 in Tanner 

graph of an H-matrix, then the LDPC codes defined by this 

H-matrix performs perfect. But this paper effectively observes 

that it is not enough just to eliminate the free 4-girth in Tanner 

graph of H-matrix, especially for those cases that the 

maximum column weigh of an H-matrix is 3 or the maximum 

degree of its Tanner graph is 3, only eliminating the free girth 

of length larger than 4, such as 6, 8, 10 and so on, and making 

the inevitable girth as larger as possible, can make the LDPC 

code have good performance. 

In order to eliminate the inevitable girth of length 12, the 

model matrix, M-matrix for short, corresponding to the 

H-matrix of QC-LDPC codes must be sparse matrix instead of 

full-one matrix, or the H-matrix must consist of partial 

permutation submatrices and partial full-zero submatrices, or 

the shift matrix, S-matrix for short, is an sparse matrix rather 

than a full-element matrix. Here the definitions involving 

M-matrix and S-matrix are available in section 2.2. 

From the application point of view, the less the H-matrix 

contains “1” elements, the lower the complications of 

encoders and decoders for the QC-LDPC codes are. Therefore, 

the investigation of H-matrix with small column weight has 

been paid attention to [5-6, 12-13]. The paper [12] studied the 

regular QC-LDPC codes with column weight three. The paper 

[13] discussed the irregular QC-LDPC codes with column 

weight three and two which gives perfect performance. But 

there is less report about the irregular QC-LDPC codes with 

column weight three and two under the constraint of 

framework of the linear encodable structure. In this paper, the 

author will pay attention to the algebraic method of 

constructing the practical irregular QC-LDPC codes with 

maximum column weight 3 as well as their girth structures 

under the constraint of framework available linear encoding 

algorithm. 

The paper [9] investigated the protograph code and built up 

the concept of the inevitable girth with length 2i , 6,7,8,9,10i =  

for all subgraph patterns which are used to construct 

protograph codes. In this paper, the matrix corresponding to 

this subgraph pattern which can form an inevitable girth is 

called the atom matrix, A-matrix for short. The girth of an 

A-matrix is expanded from 6,7,8,9,10i =  of the protograph 

2iP  to 10i >  of 2iA . The general construction of A-matrix is 

defined and the general rule of its structural girth is proved. 

The author uses two A-matrices and the method of 

generalized block design to construct an M-matrix, which is 

called as the model matrix or also the base matrix of 

H-matrix in some papers, and guarantees that there is no 

4-cycle in H-matrix with approximate lower triangular array. 

In fact, the design of H-matrix is simply transformed into the 

design of M-matrix and S-matrix, and the design of the 

M-matrix is divided further on into the design of A-matrix. 

The contributions of this paper are summarized as follows: 

1) A-matrix with arbitrary large inevitable girth is defined 

and created, and its general structural features are 

discussed and proved. The inevitable girth in a 

(0,1)-matrix can be generated by means of algebraic 

method rather than computer searching method, and the 

size of inevitable girth is any positive integer 6i >  

rather than only restricted to 7,8,9,10i =  [9]. 

2) An half-rate irregular H-matrix with linear encoding 

algorithm, column weight three and two and without 

4-cycle is exactly constructed for the first time and its 

tanner exactly contains two inevitable girths of length 26 

or maybe even large. 

3) It is declared for the first time that H-matrix without 

4-cycle performs badly over the additive white Gaussian 

noise (AWGN) channel and with belief propagation (BP) 

iterative decoding algorithm and binary phase-shift 

keying (BPSK) modulation, and the performance of 

H-matrix under the same environment can be improved 

only if the small free cycles, such as 6, 8, 10, 12 and so 

on, are eliminated at the greatest extent or completely 

and the inevitable girth is as large as possible in Tanner 

graph of this H-matrix. 

4) A simulation result with practical application is first 

presented, this it is that the group of different 

code-length and half-rate irregular QC-LDPC codes 

defined by H-matrix with linear encoder based on 

approximate lower triangular array matrix and maximum 

column weight three perform within 1.9dB from the 

Shannon limit at the BER of 10
-5

, in addition, they have 

the lowest complication because of the least “1” 

elements in H-matrix and occupy the least memory 

because of maximum column weight three comparing 

with the existing practical half-rate irregular QC-LDPC 

codes in multiple industrial standards. 

The outline of the paper is as follows. Section 2 describes 

the basic knowledge which will be used in this paper. Section 

3 investigates the general rule of arbitrary large girth in 

A-matrix. Section 4 presents a method of constructing 

M-matrix by means of two A-matrices. Section 5 discusses 

some consideration of S-matrix and Section 6 gives the 

results of the digital simulation for the presented QC-LDPC 

codes. Finally, Section 7 concludes the paper. 
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2. Preliminaries 

2.1. A Practical Framework of Irregular QC-LDPC Codes  

A practical framework of the sparse parity check matrix, 

H-matrix for short, which is used to define the irregular 

QC-LDPC codes is the following ( )q q t× +  array: 

0,0 0,1 0,2 0, 0, 1

1,0 1,1 1,2 1, 1, 1

2,0 2,1 2,2 2, 2, 1

,0 ,1 ,2 , , 1

1,0

0 0

0 0

0 0 0

0 0

[ ]

j t

j j t

j t

i i i i j i t

q

a a a a a

a a a a a

a a a a a

d p

a a a a a

a a

−

−

−

−

−

= =

I I I I I I I 0 0 0 0

I I I I I 0 I I 0 0 0

I I I I I 0 0

H H H I 0 0 I I 0 0

I I I I I 0 0 0 0 0

0 I I

I I

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

⋯ ⋯ ⋱ ⋱

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

1,1 1,2 1, 1, 1 0 0q q q j q ta a a− − − − −

 
 
 
 
 
 
 
 
 
 
 
  

I I I I 0 0 0 0 I⋯ ⋯ ⋯

                (1) 

where the p
H -matrix with the size M M qn qn× = ×  is an 

approximate lower triangular array matrix which can provide 

linear encoding algorithm and the d
H -matrix with the size 

M K qn tn× = ×  is an q t×  array; n  is the size of sub-matrix 

,i jaI  and 0I ; ,i jaI is either a full-zero matrix or a permutation 

matrix and 0I  is an identity matrix; the subscript ,i ja  is 

either the circular-left-shift value (CSV) of a permutation 

matrix if ,i jaI is a permutation matrix or a symbol, denoted as 

“ z ”, if ,i jaI is a full-zero matrix, { }ija Z z∈ ∪ , 0 1i q≤ ≤ − , 

0 1j t≤ ≤ − , { }z  denotes that the set {}⋅  only contains a 

symbol “ z ”. In addition, three matrices at three positions, 

such as the first, / 2q th and last positions within the most-left 

column of p
H , are simple identity matrix instead of 

circular-shift permutation matrix, because CSVs either 

consume clock period or occupy memory cells, or even both. 

The meaning of what is called “practical framework” is that 

the approximate lower triangular array of p
H  in H-matrix can 

complete the linear encoding operation. 

2.2. Definition of Several Special Matrices 

Definition 1 [shift matrix]: All subscript values ,i ja s are 

extracted from all sub-matrix ,i jaI s in d
H -matrix of (1) and 

form the following q t×  sparse integer matrix: 

0,0 0,1 0, 0, 1

1,0 1,1 1, 1, 1

,0 ,1 , , 1

1,0 1,1 1, 1, 1

( )

j t

j t

d

i i i j i t

q q q j q t

a a a a

a a a a

S
a a a a

a a a a

−

−

−

− − − − −

 
 
 
 
 = =
 
 
 
 
 

S H

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

  (2) 

then matrix of (2) is called the shift matrix or subscript matrix, 

S-matrix for short.□ 

Definition 2 [model matrix]: If one creates a matrix in such 

way that one makes all permutation matrices in d
H -matrix of 

(1) be substituted by 1’s and all full-zero matrices by 0’s, then 

this new matrix is called the model matrix of d
H -matrix of (1), 

M-matrix for short. M-matrix is a q t×  binary matrix. □ 

Definition 3 [atom matrix]: For any positive integer α  and 
β , let 1β α= + . If α α×  and α β×  two binary matrices 

satisfy the following structural constraints, respectively 

1) For a α α×  matrix, there must exist only one row which 

has maximum weight 3 and each of the other 1α −  rows 

has minimum weight 2; there must exist only one column 

which has maximum weight 3 and each of the other 1α −  

columns has minimum weight 2;  

2) For a α β×  matrix, there must exist only one row which 

has maximum weight 4 and each of the other 1α −  rows 

has minimum weight 2; the weight of each column 

among β  columns is 2;  

then both α α×  and α β×  matrices are called the atom 

matrix, A-matrix for short, denoted as α α×A  and α β×A . □ 

A mandatory provision for an A-matrix is that an A-matrix 

must contain at least a “0” element or an A-matrix is not a 

full-1 matrix. For the convenience of description, the author 

calls the matrix, such as 2 2

1 1

1 1
×

 =  
 

A  or 12
2 3

1 1 1

1 1 1
×

 =  
 

A , the pseudo 

atom matrix. 

If an H-matrix is completely formed by a group of 

permutation matrices, then the H-matrix is regular and the 

corresponding S-matrix is formed by purity integers, which is 

called full-element S-matrix (FS-matrix). If an H-matrix is 

formed by partial permutation matrices and partial full-zero 

matrices, then the H-matrix is either regular or irregular and 

the corresponding S-matrix is formed by partial integers and 

partial symbols, denoted as z  in this paper, which is called 

the sparse S-matrix (SS-matrix). 

Because p
H of (1) is fixed, the main task is to design d

H - 

matrix in this paper. For this goal, this paper is concerned with 

the structural design of M-matrix corresponding to the d
H - 

matrix, and it is required that this M-matrix satisfies the 

following constraint:  

1) M-matrix itself satisfies the RC constraint;  

2) There is no two adjacent “1” elements at each column of 

M-matrix;  

3) Any two of three positions, such as the first, / 2q th and 

last positions, on each of t  columns in the M-matrix are not 

occupied by “1” elements at the same time.  

The above constraints 2) and 3) avoid the 4-cycle between 
d

H  and p
H . Therefore, the above three constraints guarantee 

that the H-matrix of (1) does not contain the free girth of 

length 4. 

 



25 Li Peng:  A Method of Constructing the Half-Rate QC-LDPC Codes with Linear Encoder, Maximum Column Weight  

Three and Inevitable Girth 26 

2.3. Necessary and Sufficient Condition of Girth 2g  

In Theorem 2.1 of the paper [6], Fossorier gave the 

necessary and sufficient condition for the Tanner graph of 

H-matrix defined in (1) to have a girth 2g , 2,3,...g = . This 

condition is also suited to M-matrix and A-matrix. For 

S-matrix of (2), the author makes the following modification.  

Theorem 1: If the difference ( )
1 1, , ,k k k k k kt t k q t q tq a a

+ +
∆ = −  (or 

( )
1 1, , ,k k k k k kq q k q t q tt a a

+ +
∆ = − ) of element values of two positions on 

any row (column) in the S-matrix defined by (2) exists, then a 

necessary and sufficient condition for the Tanner graph 

representation of d
H -matrix formed through lifting the 

S-matrix to have a girth at least 2( 1)g +  is  

1

1

,
0

( ) 0
k k

m

t t k
k

q
+

−

=
∆ ≠∑  (or 

1

1

,
0

( ) 0
k k

m

q q k
k

t
+

−

=
∆ ≠∑ ) ( mod n )   (3) 

for all m , 2 m g≤ ≤ , all kq  and 1kq + , 10 , 1k kq q q+≤ ≤ − , all kt  

and 1kt + , 10 , 1k kt t t+≤ ≤ − , with 0 mt t= , 1k kq q +≠  and 1k kt t +≠ .  

Note that because symbol z  of S-matrix results in the 

difference ( )
1 1, , ,k k k k k kt t k q t q tq a a

+ +
∆ = −  not to exist, expression (3) 

is only a sufficient condition when S-matrix is sparse. 

If one draws a horizontal line between any two elements on 

any one of q  rows and a vertical line between any two 

elements on any one of t  columns in S-matrix, then the 

closed path formed by g  horizontal lines and g  vertical 

lines demonstrates the structure of a cycle or a girth in 

S-matrix. Through lifting the S-matrix by using a group of 
n n×  permutation matrices, the corresponding d

H -matrix 

contains n  such structural cycles or girths. From Theorem 1, 

the next corollary follows. 

Corollary 2: For any g  rows in S-matrix of (2), if the 

mod n  sum of any g  difference values 1, ( )
k kt t kq

+
∆ ’s equals 

zero, then the g  horizontal lines corresponding to the g  

difference values must generate a closed path formed by 2g  

lines. Conversely, if g  horizontal lines can form a cycle of 

length 2g , then the mod n  sum of the g  difference values 

must equal zero. □ 

From Theorem 1 and Corollary 2, the next corollary 

follows.  

Corollary 3: If there is a girth whose length is 2g  in 

S-matrix, then there is also a 2g -girth of same structure in 

corresponding M-matrix. □ 

Obviously, the method of drawing horizontal and vertical 

lines in M-matrix can be used to investigate the girth 

characteristic of M-matrix. Because the distribution of all 1’s 

in M-matrix is still complex, so the girth characteristic of 

A-matrix which can be used to construct M-matrix is 

considered firstly. From a structural girth point of view, an 

A-matrix can be seen as a basic unit of an M-matrix (shown as 

in Fig. 3). 

Note that interpretation of terminology. The same-row 

horizontal lines mean that there are two or more horizontal 

lines on the same row, which corresponds to two or more 

subscript differences on the same row. The different-row 

horizontal lines mean that all horizontal lines are located on 

different rows. The horizontal lines in an A-matrix have the 

following corollary. 

Corollary 4: The following cases are naturally satisfied in 

an A-matrix: 

1) On the row containing only two “1” elements, there must 

exactly be two same-row horizontal lines whose length is 

same. 

2) On the row containing only three “1” elements, there 

must exactly be three same-row horizontal lines in which 

the sum of lengths of any two horizontal lines must be 

equal to the length of the remaining one. 

3) On the row containing only four “1” elements, there must 

exactly be four same-row horizontal lines such that two 

cases appear: either the sum of length of three horizontal 

lines equals the length of the remaining one or the sum of 

length of any two horizontal lines equals the sum of 

length of the remaining two. 

2.4. Structural Characters of Inevitable Girth 2g  

Researches show that the girth 4, 6, 8 and 10 in a 

full-element S-matrix (FS-matrix) can be eliminated by 

designing element values (circular-shift values) of S-matrix by 

means of algebraic method and computer searching method. 

For example, in the paper [5], under the strict constraint of 

structure parameters , ,n q t , that is that n  must be prime and 

all shift values 
1 1

, { : 0,1,..., 1, 0,1,..., 1}j i
i ja i q j tφ ϕ− −= = − = −  must 

satisfy the constraint of elements in a multiplicative group 

which means a set of integers modulo n , i.e., 1j nφ − < , 
1i nϕ − < , 1(mod )t nφ = , 1(mod )q nϕ = , an efficient arrangement 

of all elements 1 1j iφ ϕ− −  generates a FS-matrix in which the 

cycles formed by 4,6,8,10  lines can be eliminated and the 

girth is at least 12 . Thus a significant conclusion is that the 

girth 12 in a FS-matrix is inevitable. In other words, the model 

matrix corresponding to a FS-matrix is a full-1 matrix and 

includes many pseudo A-matrices like the type 12
2 3

1 1 1

1 1 1
×

 =  
 

A  in 

which there must be inevitable girth 12. One can still infer that 

if a 2 3×  sub-matrix in an M-matrix is filled to the full of “1” 

elements, then there must be inevitable girth 12 in this 

M-matrix. Furthermore, if all elements on six crossing 

positions of any two non-neighbor rows (columns) and any 

three non-neighbor columns (rows) in any an M-matrix are 

filled by six “1” elements, then there exists inevitable girth 12 

in this M-matrix. If one wants to destroy the structure of the 

inevitable girth 12 in a pseudo A-matrix, farther in an 

M-matrix including any number of pseudo A-matrices, as long 

as he/she substitutes one “0” element for any one of six “1” 

elements in the pseudo A-matrix, then the girth 12 in this 

pseudo A-matrix can be eliminated. 

The paper [9] gives some A-matrices with girth larger than 

12 by means of the searching method of computer. These 

A-matrices are seen as the subgraph patterns of the protograph 

codes and include girth 2g , 7,8,9,10g = . Generally, the 

structures of inevitable girth of length 14,16,18, 20  have a 

general pattern as follows: 
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14
3 3

1 1 1

1 1 0 ,

1 0 1

×

 
 =  
  

A
16
3 4

1 1 1 1

1 1 0 0 ,

0 0 1 1

×

 
 =  
  

A

18
4 4

1 1 1 0

1 1 0 0
,

1 0 0 1

0 0 1 1

×

 
 
 =
 
 
  

A 20
4 5

1 1 1 1 0

1 1 0 0 0

0 0 1 0 1

0 0 0 1 1

×

 
 
 =
 
 
  

A  

The following makes an A-matrix 14
3 3×A  with inevitable 

girth 14 as an example in order to explain its structural 

characteristics. An 14
3 3×A  has the following structural 

characteristic: its size is 3 3× ; the total number of non-zero 

elements is 7, the total number of zero elements is 2 ; the 

distribution of column weight is that any a column has three 

1’s and the other two columns include two 1’s respectively; the 

distribution of row weight is that any a row has three 1’s and 

the other two rows include two 1’s respectively; in particular, 
14
3 3×A  contains at least two free 4-girths (observing all 

A-matrices in the following set of 14
3 3{ }×A ). For a 14

3 3×A  in Fig. 

1, (a) shows the case of seven horizontal lines, (b) shows the 

case of the inevitable girth of length14, (c) shows that a 14
3 3×A  

contains two free girths of length 4 and (d) shows that a 14
3 3×A  

contains one free cycle of length 6 .  

 

Fig. 1. (a) shows 7 horizontal lines, (b) shows an inevitable 14-girth in 14
3 3×A , 

(c) shows two 4-cycles in 14
3 3×A  and (d) shows one 6-cycle in 14

3 3×A . 

All A-matrices with inevitable girth 14  form a set { }14
3 3×A . 

According to the definition of A-matrix, the author 

enumerated all 18 elements in this set as follows: 

{ }14
3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0

1 0 1 , 1 1 0 , 0 1 1 , 1 1 0 , 0 1 1 , 1 0 1 , 1 1 1 , 1 1 1 , 1 1 1 ,

1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1

0 1 1

1 1 1

1 1

× =

                 
                 
                 
                                  

A

1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1

, 1 1 1 , 1 1 1 , 1 0 1 , 0 1 1 , 1 1 0 , 0 1 1 , 1 0 1 , 1 1 0

0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

                 
                 
                 
                                  

 

 

Similarly, one can analyze the structural characteristics of 

the other A-matrices with inevitable girth 16,18, 20 , but it is 

difficult for a person to enumerate all A-matrices in the sets 
16
3 4{ }×A , 18

4 4{ }×A  and 20
4 5{ }×A . One also observes that 16

3 4×A  

contains two free 4-cycles and one free 8-cycle, 18
4 4×A  

contains one free 4-cycle, one free 6-cycle and one free 

8-cycle, and 20
4 5×A  contains one free 4-cycle, one free 

6-cycle and one free 10-cycle. All these free cycles can easily 

be destroyed by designing circular-shift values. 

3. Girth Structure of Atom Matrix 

Without loss of generality, the author will deduce the 

general structural characteristic with regard to arbitrarily large 

girth in an A-matrix with arbitrary size α . 

Theorem 5 [the structural rule of girth in an A-matrix]: Let 
3α ≥  be an arbitrary positive integer. 

1. Let g  be an odd number and α α×  be the size of an 

A-matrix. If 2 1g α= + , then there exactly exists an 

inevitable girth 2g  except those free girth and free 

cycles smaller than and equal to 2g  in this A-matrix 

which can be denoted as 2g
α α×A . 

2. Let g  be an even number, α β×  or ×β α  be the size 

of an A-matrix and 1β α= + . If 2 2( 1)g β α= = + , then 

there exactly exists an inevitable girth 2g  except those 

free girth and free cycles smaller than and equal to 2g  

in this A-matrix or in its transposed matrix, which can be 

denoted as 2g
α β×A  or 2 2[( ) ]g T g

α β β α× ×A , respectively.  

Proof: According to the definition of A-matrix and 

Corollary 4, there always exist 2( 1) 3 2 1α α− + = + , 2( 1) 4α − + =  
2( 1)α +  and 2β  “1” elements which can generate 2 1α + , 
2( 1)α +  and 2β  horizontal lines in three α α× , α β×  and 
β α×  A-matrices, respectively. Due to 2 1g α= +  for an odd 

number g  or 2 2( 1)g β α= = +  for an even number g , then 

there exist a closed path formed by g  horizontal lines and g  

vertical lines in each of three A-matrices 2g
α α×A , 

2g
α β×A  and 

2[( ) ]g T
β αα β ××A . Obviously, this closed path of lenght 2g  is 
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independent of the subscript value ,i ja  and the size n  of 

permutation matrix and is only dependent of the size α  of an 

A-matrix. Therefore, this closed path of lenght 2g  in each of 

three A-matrices is an inevitable cycle 2g . 

In each of three A-matrices, all “1” elements take part in 

constructing this inevitable cycle 2g , so there is no 

superabundant “1” elements that can form an inevitable cycle 

larger than 2g . Furthermore, if any one of g  “1” elements 

does not take part in constructing this inevitable cycle 2g , 

then the remnant 1g −  “1” elements can not generate an 

inevitable cycle less than or equal to 2g , despite the fact that 

they can form several free cycles and free girth less than or 

equal to 2g . So this inevitable cycle in each of three 

A-matrices is the minimum inevitable cycle 2g , that is, it is 

an inevitable girth 2g . □ 

According to the rule of Theorem 5, one can design an 

A-matrix with any large girth. Next, the author will gave two 

examples about how to design the A-matrix with inevitable 

girth 2g  and 10g > . 

Example 1: Let 12g =  which is an even number. According 

to the rule 2) of Theorem 5, one has / 2 1 5gα = − =  and 
/ 2 6gβ = = . So he/she gets an 5 6×  A-matrix in which the 

weight of each of six columns is 2; the distribution of row 

weight is that any row has four “1” elements and each of the 

other four rows has two “1” elements. This distribution of row 

weight can generate at least 12 horizontal lines. Therefore, one 

can get an A-matrix 24
5 6×A  with an inevitable girth of length 24 

shown as in Fig. 2 (a). 

24
5 6

1 0 1 0 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 1 0 0 0 1

×

 
 
 
 =
 
 
 
 

A

 

(a) 

50
12 12

1 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0

×

 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
  

A

 

(b) 

Fig. 2. (a) shows the girth 24 of the A-matrix 24
5 6×A  and (b) shows the girth 50 

of the A-matrix 50
12 12×A . 

Example 2: Let 25g =  which is an odd number. According 

to the rule 1) of Theorem 5, one has ( 1) / 2 12gα = − = . So 

he/she gets a 12 12×  matrix in which the distribution of row 

weight is that any row has three “1” elements and each of the 

other eleven rows has two “1” elements. The distribution of 

column weight is the same as the distribution of row weight. 

This distribution of row weight can generate 25 horizontal 

lines. Therefore, one can get an A-matrix 50
12 12×A  with an 

inevitable girth of length 50 shown as in Fig. 2 (b). 

Obviously, A-matrices 24
5 6×A  and 50

12 12×A  have a lot of 

patterns which can form the sets of 24
5 6{ }×A  and 50

12 12{ }×A , 

respectively. In other words, the problem of constructing an 

A-matrix with any large girth based on Theorem 5 is a 

multi-solution problem and the A-matrix with determinate 

structural characteristic can form a solution set, which hints 

that the distribution of all “1” elements in an A-matrix has a 

random-like characteristic under the constraint of a fixed 

framework of “A-matrix” which is determined by the 

parameter α  and some deterministic distribution of row 

weight and column weight. For any positive integer α , a 

α α×  A-matrix (or ( 1)α α× +  A-matrix) must exactly 

contain an inevitable girth of length 4 2α +  (or 4 4α + ) and 

three free girths of length less than 2α  (or 2 2α + ). 

4. Design M-Matrix by Using A-Matrix  

This Section will describe a method how to construct an 

M-matrix by selecting several elements in the set formed by 

A-matrix. 

Firstly, let 6α =  and 13g =  is an odd number, according to 

the definition 3 of atom matrix, the author constructs an 6 6×  

A-matrix in which there are thirteen “1” elements and the 

distribution of row weight is that any row, for example the first 

row, among six rows has three 1’s and each of the other five 

rows has two 1’s. According to 1) and 2) of Corollary 4, 

thirteen “1” elements can generate thirteen horizontal lines. 

According to the rule 1) of Theorem 5, the thirteen horizontal 

lines form an inevitable girth of length 26. The presented 

A-matrix 26
6 6×A , in fact selected from the set 26

6 6{ }×A , has the 

following general pattern: 

1,3 1,2 2,3

1,3 1,3

2,3 2,326

6 6

1,2 1,2

1,3 1,3

2,3 2,3

0 1 0 0 1 1

1 0 0 1 0 0

0 0 1 0 0 1

1 0 0 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

×

 
 
 
 

=  
 
 
 
  

A       (4) 

The requirement of selecting this 26
6 6×A  is that there is no 

any 4-cycle and 6-cycle in it. Observe the distribution of 

thirteen “1” elements in 26
6 6×A  of (4) and discover that eight 

“1” elements with the subscript 1 or 2 respectively form an 

8-cycle and ten “1” elements with the subscript 3 form a 

10-cycle. The 26
6 6×A -matrix with an inevitable 26-girth indeed 

does not contain 4-cycle and 6-cycle, therefore, its free girth is 
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at least 8. It's worth noting that the A-matrix 26
6 6×A  of (4), 

whose meaningful characteristics are to contain an inevitable 

26-girth, two free 8-girths and one free 10-cycle and not to 

contain any free 4-cycle and free 6-cycle, is not the only 

pattern, and here is constructed by using observation method. 

In particular, the author constructed 26
6 6×A  of (4) by using the 

following constraints: i) there is no such column that contains 

two adjacent “1” elements in it; ii) it satisfies RC-constraint; 

iii) there is no any free 6-cycle in it. 

Secondly, the author constructs an 6 m×  M-matrix by using 

the above A-matrix 26
6 6×A , where 6m ≥  is any positive integer. 

In this 6 m×  M-matrix, there only exists an inevitable 

26-girth, two free 8-girths and a free 10-cycle formed by an 

A-matrix 26
6 6×A , and the new 6m −  columns are either the 

full-0 columns or the full-1 columns. Those new columns of 

weight 1 are selected randomly and the position of each “1” 

element is arranged randomly, but the distribution of all “1” 

elements in these new 6m −  columns must guarantee not to 

generate any new cycle. That is, the 6 m×  M-matrix does not 

contain the free 4-cycle, the free 6-cycle and the inevitable 

girth of length less than 26. Therefore, its free girth is also at 

least 8 and its inevitable girth is also exactly 26. Let 12m = , 

then the 6 12×  M-matrix generate the new six columns in 

which there are a full-0 column and five full-1 columns. For 

example, this 6 12×  M-matrix may have the following 

pattern: 

26 girth

0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 1 0 0

 
 
 
 
 
 
 
 
 
 
  

���������

    (5) 

Thirdly, the author constructed an 12 12×  M-matrix by 

stacking up two 6 12×  M-matrices similarly to (5). This 
12 12×  M-matrix is required in such way that it has the same 

row and column weights all of which are equal to three and 

does exactly not contain 4-cycle. In order to achieve the aim, 

the positions of ten indeterminate “1” elements in the 12 12×  

M-matrix need to be considered carefully. As long as those 

columns of weight 1 in two 6 12×  M-matrices are suitably 

placed and the same two A-matrices 26
6 6×A  of (4) are properly 

arranged at the top left corner and the bottom right corner, 

respectively, in the 12 12×  M-matrix, then this new created 
12 12×  M-matrix can guarantee not to contain 4-cycle. 

However, the distribution of ten indeterminate “1” elements 

must generate 6-cycle. Here comes into being a research 

proposition that in an 12 12×  M-matrix with row and column 

weight 3, whether or not there must be any free 6-cycle. The 

design procedure of this 12 12×  M-matrix is shown in Fig. 3.  

For 12q t= = , let the M-matrix corresponding to d
H - 

matrix in (1) be constructed by 26

12 12×M  in Fig. 3. In the 

sequence, the author will give a method to determine the 

positions of ten indeterminate “1” elements in 26

12 12×M . 

26 girth

0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 1 0 0

 pile up the first 6 12 M-matrix on the top of the second

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
  

⇓ ×

���������

26 girth

26

12 12

2 3 2,3

1 1

2 2

0 1 0 0 1 1

1 0 0 1 0 0

0 0 1 0 0 1

1 0 0 0 1 0

0 0 1 0 1 0 0

0 0 0 1 0 0 1 0 1 0 0 0

generate an 12 12 M-matrix with inevitable girth 26

0 1 0 0 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0

×

 
 
 
 
 
 
 
 
 
 
  

⇓ ×
=M

���������

2 2

1 1

3 3

3 3

3 3

1 1

3 3

2 2

0 0

0 1 0 1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 1

0 0 1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 3. shows the process of constructing an 12 12×  M-matrix without 

4-cycle and with two inevitable girths of length 26, and the new 6, 8, 

10-cycles formed by ten “1” elements and indicated by the subscripts 1, 2, 3, 

respectively. 

Because its row and column weights are 3, this M-matrix 
26

12 12×M  contains thirty-six “1” elements in which the positions 

of twenty-six “1” elements are given by two inevitable 

26-girths and the positions of ten “1” elements are not known. 

The author used trituple to denote row coordinates of three “1” 

elements on each column in 26

12 12×M , so one can get the below 

twelve trituples: 

(2,4,6)(1,5, )(3,6, )(2,5, )(1,4, )(1,3, )

(8,10,12)(7,11, )(9,12, )(8,11, )(7,10, )(7,9, )

a c d e f

g h s u w
  (6) 

where positive integer , , , , , , , , ,a c d e f g h s u w  denote the row 
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coordinates of unknown positions of ten “1” elements in 
26

12 12×M . Considering constraints 1) and 2) in sub-section 2.1, 

one can deduce the range of ten unknown numbers 
, , , , , , , , ,a c d e f g h s u w : , , , , {8,9,10,11,12}a c d e f ∈ , a c d e f≠ ≠ ≠ ≠ , 
, , , , {2,3,4,5,6}g h s u w∈ , g h s u w≠ ≠ ≠ ≠ . Further considering 

constraints 2) and 3) in sub-section 2.1, one can get 
, , , {12}a c e f ∉  and 12d = , , , , {6}g h u w∉  and 6s = . So (6) is 

changed into the following pattern by bringing 12d =  and 
6s =  into (6): 

(2, 4, 6)(1,5, )(3, 6, )(2,5,12)(1, 4, )(1, 3, )

(8,10,12)(7,11, )(9,12, )(8,11, 6)(7,10, )(7, 9, )

a c e f

g h u w
 (7) 

From (7), one can get 8,11c ≠  and 2,5h ≠  in order to avoid 

the 4-girth in 26

12 12×M . The remaining issues is to determine eight 

unknown numbers , , {8,9,10,11}a e f ∈ , {9,10}c∈ , {3,4}h ∈  and 
, , {2,3,4,5}g u w∈ .The author borrows five parameters , , , ,b v k r λ  

and some concepts of BIBD based on combinatorial design 

theory in [10] in order to solve , , , , , , ,a c e f g h u w . Let the number 

of varieties 12v q= =  denote the number of rows of 26

12 12×M , the 

number of blocks 12b t= =  the number of columns, 3k =  the 

column weight, 3r =  the row weight and 1λ =  means that 

any pair of 12v =  varieties occurs exactly once in 12b =  

blocks which is equivalent that 26

12 12×M  does not contain any 

free 4-cycle. Because , , ,v k r λ  do not satisfy the constraint 
( 1) ( 1)r k vλ− = − , this ( , , , , )b v k r λ  block design is not a BIBD 

and the author call it the generalization block design. Under 

the condition of satisfying the constraints 1), 2) and 3) in the 

sub-section 2.1 for 26

12 12×M , there are some limited collections of 

12b =  blocks with regard to ( , , , ) (12,3,3,1)v k r λ = . The author 

selected 11, 10, 9, 8a c e f= = = =  and 4, 3, 2, 5g h u w= = = =  from 

a collection of enumerating all blocks which satisfy the above 

series of constraints and formed the following exact twelve 

trituples : 

(2,4,6)(1,5,11)(3,6,10)(2,5,12)(1,4,9)(1,3,8)

(8,10,12)(4,7,11)(3,9,12)(6,8,11)(2,7,10)(5,7,9)
   (8) 

Fig. 3 shows the structure of 26

12 12×M -matrix in which many 

new cycles of length 6, 8 and 10 are generated. For example, 

six “1” elements with the subscript 1 show a free 6-cycle, eight 

“1” elements with the subscript 2 show a free 8-cycle and ten 

“1” elements with the subscript 3 shows a free 10-cycle. 

Although it is difficult for one to determine the number and 

the structure of all free 6, 8 and 10-cycles in 26

12 12×M , one can 

conclude that there is no the free girth of length 4 in 26

12 12×M and 

its girth is at least 6.  

Many paper reported that if an H-matrix does not contain 

any free girth of length 4, then the LDPC code defined by it 

can provide perfect performance. But this is not always the 

case, especially when the maximum column weight is 3. If one 

regards 26

12 12×M  in Fig. 3 as the M-matrix corresponding to d
H  

of (1), uses thirty-six n n×  identity matrices to lift all “1” 

elements in 26

12 12×M  and twenty-five n n×  identity matrices to 

lift all 0I -submatrices in p
H  of (1), then one can create an 

H-matrix without the free girth of length 4. Nevertheless the 

QC-LDPC code defined by this H-matrix performs badly 

which can be seen from the simulation testing curves in Fig. 5 

of Section 5, where there are three dot lines respectively with 

code length 8304,4704,3720n =  which show the bad 

performance in the signal-noise-rate (SNB) of below 7 dB at 

the bit-error-rate (BER) of 10-6. In consideration of the above 

simulation results, researchers need to use a group of 

circular-shift permutation matrix rather than identity matrix to 

lift M-matrix corresponding to d
H  of (1) in order to eliminate 

the small free cycles, such as free 6, 8 and 10 cycles, as more 

as possible or completely. Therefore, the next section will 

discuss how to design the circular shift values in S-matrix. 

5. Designing S-Matrix and Digital 

Simulation 

Once M-matrix is determined by twelve trituples of (8), 

then the corresponding S-matrix possesses the fixed structure, 

and the remaining problem is to determine the value of each 

element in S-matrix. In fact, designing S-matrix is to find out 

the CSVs which are placed the positions determined by twelve 

trituples of (8). There are many papers introducing the 

methods of designing full-element shift (FS)-matrix, for 

example, multiplication group 
[4-5, 11]

 and addition group 
[11]

. 

But there are few papers investigating how to construct the 

sparse shift (SS) matrix. A viable method is first to design a 

FS-matrix without free 4-cycle by using the algebraic method 

and then to use the predesign M-matrix without free 4-cycle to 

mask this FS-matrix so as to obtain a SS-matrix which is the 

desired result. In this paper, the author choose a group of the 

existing CSVs from the base model matrix of the half-rate 

QC-LDPC codes in IEEE 802.16e Standard to create a 

SS-matrix. This treatment method is based on two thoughts. 

On the one hand, the half-rate irregular QC-LDPC codes with 

maximum column weight three in the framework of (1) has 

not been reported by far to be able to provide the good 

performance, for example, below 2dB at the BER of 10
-5

; on 

the other hand, the main goal of this paper is to demonstrate by 

means of the simulation tests whether or not there exists such 

the H-matrix, with maximum column weight 3 and the 

inevitable girth 26 under the constraint of the framework of (1), 

that it can define the half-rate irregular QC-LDPC codes with 

the above perfect performance. Therefore, the author had 

extracted the CSVs from the half-rate QC-LDPC code of 

Standard [1] and formed the following twelve trituples of 

circular-shift values according to the position coordinates 

provided by twelve trituples of (8): 

(61,12,43)(94,27,11)(47,95,7)(24,53,65)(22,46,83)(81,24,66)

(61,12,43)(9,94,27)(55,47,95)(25,24,53)(72,22,46)(12,81,24)
 (9) 

According to (1), (8) and (9), one can get an H-matrix of 

(10) at the top of the next page.  

All 36 shift values are determined in such way that seven 

among the twelve tripules of (9) is in 1-1 correspondence with 

the shift values of seven columns with column weight 3 in the 

base model matrix which corresponds to the half-rate 
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d
H -matrix in IEEE 802.16e, and one of the other five tripules 

is formed by selecting arbitrarily and respectively three values 

from each of five columns with column weight 6. Note that in 

H-matrix of (10), the shift values of the thirteen positions in 

one inevitable girth of length 26 are the same as those in 

another, respectively.  

1,3 1,2 2,3
5 94 6 22 5,6 81

1,3 1,3
4 61 24 4 72

2,3 2,3
47 5 24 5 55

1,2 1,2
12 46 9

1,3 1,3
5 27 5 53 12

2,3 2,3
4 43 4 95 25

1,3 1,2 2,3
6 94 22 6 81

[ ]d p= =H H H

0 I 0 0 I I 0 0 0 0 0 0

I 0 0 I 0 0 0 0 0 0 I 0

0 0 I 0 0 I 0 0 I 0 0 0

I 0 0 0 I 0 0 I 0 0 0 0

0 I 0 I 0 0 0 0 0 0 0 I

I 0 I 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 I 0 0 I I

0 0 0

0 0

0 0

0 0

0 0

0 0

0

1,3 1,3
6 66 61 6 24

2,3 2,3
6 83 47 6 24

1,2 1,2
4 7 12 4 46

1,3 1,3
11 6 27 6 53

2,3 2,3
5 65 43 5 95

I I 0 0 0 0 0 0 0 0 0 0

0 I I 0 0 0 0 0 0 0 0 0

0 0 I I 0 0 0 0 0 0 0 0

0 0 0 I I 0 0 0 0 0 0 0

0 0 0 0 I I 0 0 0 0 0 0

I 0 0

0 0 I I 0 0 I 0 0

0 0 0 0 I 0 0 0 I 0 0 I

0 0 I 0 0 0 I 0 0 0 I 0

0 I 0 0 0 0 0 I 0 I 0 0

0 0 0 I 0 0 I 0 I 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

0 0 I I 0 0 0 0 0

0 0 0 0 0 0 I I 0 0 0 0

0 0 0 0 0 0 0 I I 0 0 0

0 0 0 0 0 0 0 0 I I 0 0

0 0 0 0 0 0 0 0 0 I I 0

0 0 0 0 0 0 0 0 0 0 I I

I 0 0 0 0 0 0 0 0 0 0 I

 (10) 

As each column of d
H -matrix array of (10) contains only 

three circular shift permutation matrixes, so that the simplified 

representation of d
H -matrix can be formed as follows. One 

can define a number pair with subscript: ( , )τµ η  which is used 

to denote the position of each shift value in SS-matrix 

corresponding to d
H -matrix, where the subscript value τ  

denotes the column index of SS-matrix corresponding to 
d

H -matrix of (10), µ  denotes the row index of the shift 

values on the τ th column and η  denotes the shift values on 

the τ th column and the µ th row in the SS-matrix. Then this 

SS-matrix can be represented as the following 36 number 

pairs: 

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6

7 7 7 8 8 8

(2 , 6 1) , (4 ,12 ) , (6 , 4 3) , (1, 94 ) , (5, 2 7 ) , (11,11) , (3, 4 7 ) , (6 , 95) , (10 , 7 )

(2 , 24 ) , (5, 53) , (12 , 6 5) , (1, 22 ) , (4 , 4 6 ) , (9 , 83) , (1, 8 1) , (3, 24 ) , (8, 66 )

(8, 6 1) , (10 ,1 2 ) , (12 , 43) , (4 , 33) , (7 , 9 4 ) , (1 1, 27 ) , (3, 55 9 9 9

10 10 10 11 11 11 12 12 1 2

) , (9, 47 ) , (1 2 , 9 5)

(6 , 2 5) , (8, 2 4 ) , (11, 5 3) , (2 , 7 2 ) , (7 , 22 ) , (10 , 4 6 ) , (5, 2 ) , (7 , 8 1) , (9 , 2 4 )

 

 
The above simplified representation of d

H -matrix provides 

a kind of storage structure for H-matrix in memorizer. 

Remark 1: Under the framework of (1) with maximum 

column weight 3 and the inevitable girth at least 26, the 

H-matrix of (10) is not the only one. If one reselects the 

A-matrix similar to (4), or redesigns the twelve trituples like 

(8) which has many selection schemes, or uses the optimizing 

searching method or the algebraic method to construct the 

SS-matrix, then he/she can obtain an H-matrix different from 

(10) under the same framework. The H-matrix obtained by the 

above methods can still guarantee a group of different-length 

half-rate irregular QC-LDPC codes to perform below 2dB at 

the BER of 10-5. 

Remark 2: The method of constructing the M-matrix 

introduces the randomness from two aspects. On the one hand, 

the set 26
6 6{ }×A  contains 3136!/13! 5.974 10≈ ×  selectable 

solutions from which the author chose a 26
6 6×A  of (4). 

Although the 26
6 6×A  of (4) is designed by considering the 

following constrains: first no 4-cycle and then satisfy three 

conditions in Section 2.2 through integrated into account the 

arrangement of two 26
6 6×A  matrices in M-matrix, the aspect of 

26
6 6×A  similar to (4) still has thousands of ways. So the 26

6 6×A  of 

(4) is a random-like atom matrix. On the other hand, in the 

process of constructing 26

12 12×M -matrix, the uncertain 

distribution of ten “1” elements introduces the randomness. 

Therefore, the method of constructing M-matrix is a 

random-like method. In this paper, the SS-matrix is 

constructed by using random method, but in fact, one can 

basically use the algebraic method to construct the SS-matrix. 

For example, firstly, the FS-matrix is constructed by means of 

the method of addition group and multiplication group in [11]; 

secondly, the SS-matrix can be formed by applying 26

12 12×M  in 

Fig. 3 to mask the above FS-matrix. So this method of 

constructing SS-matrix is not completely algebraic method 

because of the random-like property of 26

12 12×M . 

6. Simulation Results 

For the 1/2 rate irregular QC-LDPC codes defined by 

H-matrix of (10), the author tested the performance of the 

lowest point of the characteristic curve in the coordinate 

system formed by the signal-noise-ratio (SNR) and the bit 

error rate (BER) for the different code lengths from 72N =  to 
12000N =  by the ergodic positive integer of the circular shift 

permutation submatrix size n  from 3n =  to 500n =  in order 

to obtain a set of codes in which all codes of different length 

perform below 2 dB at the BER of 10-5. If one modifies (8) 

and/or (9) under the same framework, then the code length 

contained in this set is changed. In the other word, the trituples 

different from (8) and/or (9) can generate the different code 

set of various code lengths.  
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Table 1 gives one set of the half-rate irregular QC-LDPC 

codes with various code lengths defined by H-matrix of (10) in 

which each code length is less than 1200 and the SNR of each 

code is between 2dB and 3dB when the BER is 10-5. Table 2 

gives another code set in which each code length is larger than 

1200 and the SNR of each code is below 2dB when the BER is 

10-5. The first column of two Tables gives the index of the 

code number in the code set. 

In the following, the 1/2 codes of several length is selected 

from the code sets in Table 1 and 2, their error performances 

over the AWGN channel with belief propagation (BP) 

iterative decoding algorithm and binary phase-shift keying 

(BPSK) modulation are computed. The maximum number of 

decoding iterations is 50. 

Fig. 4 shows the performance comparisons between the 

half-rate short-length irregular QC-LDPC codes listed in 

Table 1 and those adopted by IEEE 802.16e and IEEE 802.11n 

Standard. Three codes selected from Table 1 have code length  

504,720,1056N =  whose corresponding sizes of the circular 

shift permutation matrices are 21,30,44n = , respectively. Three 

codes selected from IEEE 802.16e Standard have code lengths 

576,768,1056N =  and their submatrix sizes 24,32,44n = , which 

are approximate or equal to the sizes of the presented codes, 

respectively. IEEE 802.11n Standard only adopts a short code 

of length 648N =  and its submatrix has the size 27n = . 

Table 1. half-rate short-length codes below 3dB. 

number Code length (N) 
Information 

length (K) 

Size of 

submatrix (n) 

1 504 252 21 

2 696 348 29 

3 720 360 30 

4 840 420 35 

5 912 456 38 

6 984 492 41 

7 1056 528 44 

8 1128 564 47 

From Fig. 4, it is seen that the selected codes from Table 1 

(three solid lines) outperform the Standard codes (three dot 

lines for IEEE 802.16e and one dash line for IEEE 802.11n). 

In addition, Fig. 4 also reveals the Standard codes have the 

error floor (see the dot line with the circle corresponding to the 

code of length 576N =  in IEEE 802.16e Standard and the 

dash line with the nabla symbol corresponding to the code of 

length 648N =  in IEEE 802.11n Standard) and the ups and 

downs change of BER within the small-range of SNR (see the 

dot line with triangular symbol corresponding to the code of 

768N =  in IEEE 802.16e Standard). In addition, the 

maximum column weight of the half-rate QC-LDPC codes is 

6 in IEEE 802.16e Standard and 12 in IEEE 802.11n Standard, 

but the half-rate QC-LDPC codes defined by (10) has only the 

maximum column weight 3. The simulation tests in Fig. 4 

indicates that for the case of short-length codes, the half-rate 

irregular QC-LDPC codes defined by the H-matrix similar to 

(10) perform not only in slightly better performance and but 

also in lower complexity than those adopted by the Standards. 

Table 2. half-rate middle-length codes below 2dB. 

Number Code length(N) 
Information 

length (K) 

Size of sub 

matrix(n) 

1 3288 1644 137 

2 3720 1860 155 

3 3816 1908 159 

4 3864 1932 161 

5 3888 1944 162 

6 4032 2016 168 

7 4080 2040 170 

8 4152 2076 173 

9 4344 2172 181 

10 4488 2244 187 

11 4704 2352 196 

12 4800 2400 200 

13 4896 2448 204 

14 5112 2556 213 

15 7584 3792 316 

16 8232 4116 343 

17 8304 4152 346 

18 8784 4392 366 

19 8904 4452 371 

20 9648 4824 402 

21 10656 5328 444 

Fig. 5 shows the performance comparisons of the codes 

defined by (1) in which array d
H -matrix is constructed 

between by lifting the circular shift permutation matrices for 
26

12 12×M  in Fig. 3, like (10) and by lifting the identity matrix 

without circular shift values for the same 26

12 12×M . Three solid 

lines within 2dB at the BER of 10-5, which show the 

performance of the half-rate irregular QC-LDPC codes with 

circular shift values, outperform three dot lines near 7dB at the 

BER of 10-5, which show the performance of those neither 

circular shift values nor 4-girth, in about 5dB or more, for the 

code length 3720,4704,8304N =  corresponding to the 

submatrix sizes 155,196,346n = , respectively.  

The reason of distinctive performance between two groups 

of codes with the same M-matrix 26

12 12×M  but the different 

lifting cases can be analyzed as follows. According to the 

necessary and sufficient condition of the existence of girth of 

S-matrix in Theorem 1, one can analyze the case of the cycles 

in H-matrix of (10). It is necessary for one to list the 

expressions of the algebraic sum of the circular shift values of 

those cycles emphasized by left superscripts and left 

subscripts in H-matrix of (10). There are three types of cycles 

in H-matrix of (10).  

Type one: Two 8-cycles and one 10-cycle formed by the 

subscript 1, 2 and 3 in (4) may correspondingly be exhibited 

by the left superscript 1, 2 and 3 in d
H  of (10) as the possible 

formation of four 8-cycles and two 10-cycles, and the 

algebraic sum of the circular shift values of these potential 

free (for simplification, these two words are omitted in the 

following) cycles are calculated as follows. 

For 8-cycle with left superscript 1, one can get: 

22 94 12 46 24 61 27 53 169− + − + − + − = − . 

For 8-cycle with left superscript 2, one can get:  



Communications 2014; 2(3): 22-34  32 

 

8 1 2 2 4 7 2 4 4 3 9 5 4 6 1 2 6 4− + − + − + − =  

For 10-cycle with left superscript 3, one can get: 

81 94 47 24 43 95 24 61 27 53 105− + − + − + − + − = −  

1 1.5 2 2.5 3 3.5
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N=720, n=30, CSV

N=1056, n=44, CSV 

N=576, n=24, IEEE802.16e

N=648, n=27, IEEE802.11n

N=768, n=32, IEE802.16e

N=1056, n=44, IEEE802.16e

 

Fig. 4. Performance comparison of the QC-LDPC codes for short code length between in this paper and in IEEE standard. 
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Fig. 5. Performance comparison of the 1/2 rate irregular QC-LDPC codes with length 8304,4704,3720n =  for 12 12×M with CSV and without CSV. 

Type two: One 6-cycle, one 8-cycle and one 10-cycle 

indicated by the subscript 1, 2 and 3 within 26

12 12×M -matrix in 

Fig. 3 undoubtedly are expanded into n  6-cycles, n  

8-cycles and n  10-cycles if 26

12 12×M  is lifted by identity matrix. 

If 26

12 12×M  is lifted by circular shift permutation matrix, such as 

d
H -matrix of (10), then the three cycles within 26

12 12×M -matrix 

in Fig. 3 are exhibited by left subscript 4, 5 and 6 in d
H  of 

(10), and the algebraic sum of the circular shift values of these 

potential free cycles are calculated as follows: 

72 61 7 46 43 95 80− + − + − = −  for 6-cycle; 

81 94 55 24 65 95 27 53 38− + − + − + − = −  for 8-cycle; 

81 22 24 66 27 53 81 94 83 24 37− + − + − + − + − =  for 10-cycle. 

Type three: The first, the sixth, the seventh, the tenth and the 

twelfth columns in d
H -matrix of (10) combining with the 

bidiagonal matrix of p
H -matrix of (10) can generate the 

following eight free 6-cycles: 
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61 12 0 0 0 0 49− + − + − = , this 6-cycle appears two times; 

12 43 0 0 0 0 31− + − + − = − , this 6-cycle appears two times; 

25 24 0 0 0 0 1− + − + − = , this 6-cycle appears one time;  

12 81 0 0 0 0 69− + − + − = − , this 6-cycle appears one time; 

81 24 0 0 0 0 57− + − + − = , this 6-cycle appears two times. 

In addition, the maximum free cycles formed by combining 

the second and the forth columns of d
H  with those 

corresponding columns of p
H  are two potential free 

22-cycles, and their algebraic sums of circular shift values are 
94 11 83− =  and 24 65 41− = , respectively. The other potential 

free cycles between d
H  and p

H , such as 8, 10, 12, 14, 16, 18, 

20 potential free cycles, can also be observed and analyzed. 

Although, it is difficult to enumerate all potential free cycles 

within H-matrix of (10), the author thought that the above 

three types should be able to explain some problems. 

One can observe from the above analyses with regard to the 

algebraic sums of circular shift values that the mod n  sun of 

each algebraic sum for each submatrix size n  in Table 1 and 

2 is not equal to zero in most situations, that is to say all 

potential free cycles of the above three types have been 

deleted to a large extent, which results in that the codes based 

on circular-shifting permutation matrix is superior to the codes 

based on the identity matrix in spite of no 4-cycle.  

From the above analyses about the mod n  sun of circular 

shift values for potential free cycles in H-matrix, the author 

can dauntlessly conjecture without proof that there must exist 

such proposition that the girth in H-matrix of (1) is just the 

inevitable girth of length 2g , each of those potential free 

cycles of length less than 2g  is likely to be deleted by the 

applicable circular shift values whose mod n  sun for each n , 

for example in Table 1 and 2, is not equal to zero. 

7. Conclusion and Future Work 

Under the framework of the QC-LDPC codes with linear 

encodable structure, the maximum column weight three and 

the inevitable girth of length at least 2g  ( 10g > ), the design 

of a sparse parity check matrix can be decomposed into the 

design of the atom matrix, the medal matrix and the sparse 

shift matrix. The atom matrix will be investigated with the 

aid of the mathematic tool of graph theory. The medal matrix 

is constructed by means of the block design based on 

combinatorial mathematics. The design of shift matrix needs 

to use the multiplicative group and the addition group over 

the finite field as well as block design based on combinatorial 

mathematics. The inevitable girth of the full-element shift 

matrix is exactly 12, and that of the sparse shift matrix may 

be arbitrary size only if the size of the framework is not the 

limit. Under the condition of deleting the free girth by means 

of circular shift values, the size of girth for the QC-LDPC 

codes under the presented framework depends on the size of 

the inevitable girth, and generally, the performance of the 

codes can be improved as the size of the inevitable girth 

increases.  

Under the constraint of the framework presented in this 

paper, the future research work has three points. First is to 

find out the fixed structural A-matrix with the inevitable girth 

as large as possible from the sets 2{ }g
α α×A  and 2{ }g

α β×A . 

Second is to design M-matrix without 4-cycle and 6-cycle. 

Third is to investigate the algebraic method how to construct 

sparse shift matrix in which all free cycles less than an 

inevitable girth can be deleted by means of circular shift 

values.  
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