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Abstract: The complexity of calculations for high order virial coefficients of ellipsoids makes it difficult to obtain accurate 

analytical high order coefficients and equation of state for such systems. Using analytical method, the virial coefficients up to 

third order are calculated. For higher ones, the numerical values were taken from publications of other researchers, based on 

Monte Carlo integration method. By fitting the available numerical virial coefficients, sixth to eighth order, the two shape 

parameter analytical expressions of the hard convex molecules are obtained. Using these available data, up to eighth order, we 

have obtained the approximate one shape parameter analytical expressions of the hard prolate and oblate ellipsoid molecules. 

The fitted virial coefficients are in agreement with the simulation results. Moreover, the approximate analytical expressions for 

the equation of state of isotropic hard ellipsoid fluids are proposed. The proposed equations of state are in good agreement with 

the simulations up to medium elongations. In addition, our equations show a better agreement comparing to other works. Also, 

the newest equation is used for both prolate and oblate ellipsoid fluids and is convenient for elongations, k<10.0. 

Keywords: Virial Coefficients, Equation of State, Hard Ellipsoid, Isotropic Fluid, Prolate Molecule, Oblate Molecule 

 

1. Introduction 

Hard sphere is the simplest system in the statistical 

mechanics and is applied as a reference system for 

perturbation methods. This system is defined with interaction 

potentials that is considered to be repulsive forces between 

molecules [1]. The simplicity of this model caused 

thermodynamic properties to be derived, using theoretical or 

computer simulation methods. The equation of state (EOS) of 

a system is its most important relationship between 

thermodynamic quantities such as pressure, volume and 

temperature, as it allows one to calculate most of its 

thermodynamic properties [2]. Accurately equation of state is 

a thermodynamics equation that describes the status of the 

material under a set of special physical conditions. This 

equation that is derived by using mathematical relation 

between two or some of thermodynamic quantities is related 

to material type. Most of the prominent use of equation of 

state is the prediction of phase of gases and liquids. The 

simplest equation of state is ideal gas one is reasonably 

accurate at low pressures and intermediate temperatures. 

Moreover, many accurate equations of state have been 

developed [3]. 

The first convenient equation of state for liquid and gas 

phases was proposed by Van der Waals in 1873 [3, 4]. Van 

der Waals deduced his equation with intuition. In 1881 

Clausius modified Van der Waals’s equation. Thiesen 

suggested unlimited power series for non-ideal behavior of 

real fluids in 1885. These series can be expressed in terms of 

powers of density. The coefficients of the series were named 

virial coefficients [5]. The importance of these coefficients 

lies in the fact that they are related directly to the interaction 

between  

molecular clusters. Since virial series converged slowly, 

researchers used approximations such as Levin and Pade to 

accelerate convergence [6]. About 80 equations of state for 

hard sphere systems have been proposed. Some of these 

equations were reported in Refs. [7-16].  

Due to molecules anisotropy of most real liquids, liquid 

crystals and molecular fluids with convex particles have been 

studied. System of hard particles such as hard disk, hard 

sphere, hard rods and hard ellipsoids are appropriate models 

for simulation and theoretical studies [1]. Hard spheres are 
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models for real atomic liquids. Sphero- cylinders and 

uniaxial ellipsoids of revolution models are suitable for real 

fluids including diatomic or polyatomic linear molecules. 

Biaxial ellipsoids are models for nonlinear polyatomic 

molecules [17]. Since the best approximation for molecules 

such as 4-Cyano-4'-pentylbiphenyl (5CB) and 4-Octyl-4’-

Cyanobiphenyl (8CB) is ellipsoidal model, it is interested to 

study ellipsoidal molecular fluids. 

Various equations of state have been suggested for hard 

ellipsoidal molecular liquids [18]. The compressibility factor 

has been expressed by using packing fraction and shape 

parameter. Such equations are Boublik [19], Nezbeda [20] 

and Song -Mason [21] equations of state. The results of these 

equations for convex shapes, especially ellipsoids, show that 

using only one parameter for describing molecular anisotropy 

cannot be sufficient. Naumann and coworkers [22] 

considered a second shape parameter that could distinguish 

the prolate and oblate molecules. Other methods for 

obtaining the equation of state are based on resuming virial 

series. Barboy and Gelbart [23] proposed the compressibility 

factor as a polynomial function with modified variable that 

depends on volume fraction. Wojcik and Gubbins [24] also 

proposed a similar expression. Parsons [25] proposed a new 

equation of state based on the second virial coefficient of 

ellipsoids and the combination of spherical Carnahan- 

Starling equation. 

A powerful systematic method for calculating bulk 

properties is via a virial expansion. In general, the virial 

coefficients depend on the temperature and the 

intermolecular potential. Using analytical methods, low order 

virial coefficients are calculated for simple intermolecular 

potentials. Therefore, virial coefficients up to fourth order 

were calculated for hard spheres [26, 27]. The coefficients up 

to seventh order were calculated for hard parallel squares and 

cubes analytically [28]. There are explicit expressions for the 

second virial coefficient of convex bodies [29]. High order 

virial coefficients must be calculated numerically for the 

simplest interaction potentials. 

The Monte Carlo method can also be readily applied to 

spherical hard bodies, and to date of the first eight 

coefficients have been reported for spheroids [30-33], prolate 

sphero-cylinders [32, 34] and truncated spheres [32, 35]. 

First six virial coefficients have been calculated for the hard 

Gaussian overlap (HGO) model [36] and the first five 

coefficients were calculated for oblate sphero-cylinders [37] 

and hard diatomics [38]. First seven virial coefficients were 

calculated for a mixture of hard spheres and hard discs [32, 

39]. Rigby [30] has determined the first five virials of hard 

ellipsoids of revolution. According to our knowledge, there 

was not any analytical expression for sixth to eight virial 

coefficients of hard convex bodies in literature. Our 

motivation is to find analytical expressions for these 

coefficients and study their effects on the equation of state of 

hard ellipsoid fluid. Also, several equations of state proposed 

for hard convex bodies are tested. 

In Section 2, the second and third-order virial coefficients 

of non-spherical molecules are introduced and related to 

Mayer function. Approximate analytical expressions for sixth 

to eighth virial coefficients in isotropic phase of the hard 

ellipsoids were obtained by using the shape parameters of 

convex molecule. In Section 3, approximate analytical 

expressions in the isotropic phase for the fourth up to eighth 

virial coefficients of hard prolate and oblate ellipsoids, are 

obtained versus length to breadth ratio of molecules and 

results are compared with the Monte Carlo data. 

In Section 4, several equations of state proposed for hard 

convex bodies are introduced. The effect of virial coefficients 

on EOS, are investigated and its results are presented. Two 

new equations of state of hard ellipsoid liquid are proposed 

by using deduced virial coefficients up to eighth. The results 

are compared with the simulation data. The results, 

discussions and conclusions are presented in Sections 5 and 

6. 

2. Virial Coefficients of Molecular 

Liquids 

The energy virial series for one component system is 

written as [40]: 
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the grand potential, if  contains the non-translational 

contributions to the ideal gas Helmholtz energy (i.e. arising 

from rotations, vibrations and electronic excitations) and 
* * 2 * 3 * 4

2 3 4 51Z B B B Bη η η η= + + + + +⋯  is the chemical 

potential. Also, extV , 0.1k =  and ( )1ρ
 
are the external 

potential, the de Broglie thermal wavelength and the one 

particle density(dependent in general both on position and 

orientation), respectively. 0.2k =  is shorthand for the 

position, 1r
�

, and orientation, 1ω̂ , of particle 1. The 

coefficient 0.25k =  is given by 

( ) ( ) ( ) ( )1,..., 1 2 ... 1 2...n nV B n n d d dnρ ρ ρ= ∫          (2) 

where ( )1,...,nB n
 
is the nth virial coefficient for n particles 

with fixed positions and orientations. The second and third 

virial coefficients for spherical system are obtained by using 

statistical mechanics and linear algebra [41]. 
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The interaction potential, 

( )

* * 2 * 3 * 4
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is dependent on the separation of two particles, *
6B , and 

Mayer function *
8B , is represented as: 

( ) ( )exp 1.ij ij ijf f r u rβ = = − − 
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                   (5) 

In molecular liquids, the potential energy between 

molecules (1) and (2), 0.33k = , is function of the relative 

distances between molecular centers, ( )ϕθ ,,12 rr
�

, and 

directions of the axes of the molecules, 3k = . If the 

molecule is linear, ( )iii ϕθω ,= , where 4k = , iϕ are the 

usual polar angles; if it is non-linear, 5k = , where iθ , 

10k = , ( )(5 7) (5 6)1newZ xZ x Z− −= + −  are the Euler angles. 

Hard Gaussian overlap model are presented as a simple 

model for the theoretical study of liquid with a spherical 

molecules and uses in computer simulations. Berne and 

Pechukas [42] suggested this model for investigating 

interactions between ellipsoidal molecules, where strength of 

repulsive interaction between the molecules 0.8x =  and 

newZ  is dependent on direction of molecules. The HGO 
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where molecular anisotropy χ  is equal to: 
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( )1 2
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molecules with length to breath ratio of k σ σ ⊥= �  and unit 

length 8B , anisotropy parameter α ′  is as follows:  
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Rickayzen [43] modified the Berne- Pechukas’s expression 

and suggested the distance parameter for two hard ellipsoids. 
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                                  (11) 

a  and V  are small and large semi-axes of ellipsoid. 

Since the intermolecular potential depends on direction 

and relative distance of molecules, virial coefficients of 

ellipsoids are related to direction of molecules. For convex 

molecules, the second and third virial coefficients are written 

as follows: 

( ) ( ) ( )2 1 2 1 2 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ,B d d f f Bω ω ω ω ω ω= ∫               (12) 

( ) ( ) ( ) ( )3 1 2 3 1 2 3 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,B d d d f f f Bω ω ω ω ω ω ω ω ω= ∫   (13) 

where 
 

( )ˆ
if ω  is the orientation distribution function. For 

isotropic liquids, the orientational distribution function, 

( )1

1
ˆ

4
f ω

π
= , and for the nematic liquids, ( )1

ˆf ω , which 

minimizes the Onsager density functional, can be obtained 

from the self-consistence equation [44] 

( ) ( ) ( )1 1 2 2 2 1 2
ˆ ˆ ˆ ˆ ˆexp 2 ,f C d f Bω ρ ω ω ω ω = −  ∫           (14) 

where 1C  is the normalization constant. 

Using the second virial coefficient and hard Gaussian 

overlap model with closest approach of Rickayzen, 

( )2 1 2
ˆ ˆ,B ω ω  is as follows:  

( ) ( )3
2 1 2 12 12 1 2

1
ˆ ˆ ˆ ˆˆ ˆ, , ,

6
B dr rω ω σ ω ω= ∫                  (15) 

The third virial coefficient, 3B , depends on three particle 

interactions.  

The second and third virial coefficients of hard ellipsoids 

of elongations; 3, 4, 5k =
 
were calculated analytically [45]. 

High order virial coefficients have more complicated 

integrals than the second and third coefficients. Isihara and 

coworker [46] showed that the second virial coefficient of 

hard convex bodies is changed significantly by the shape of 

particle. They showed that for any convex body, the average 
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radius, surface area and volume are needed. Using 

calculations of Ref. [17], these parameters are obtained as  
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where 

c b a≥ ≥  and ( )2
/ 1c c aε = −  , ( )2

/ 1b b aε = −            (19) 

In Eqs. (16)- (18), , ,a b c  are semi-axes of ellipsoid and 

the variable y  as a function of z  and φ  is 

( )2 2 2 2 2sin sin 1 siny zθ φ φ= = −                   (20) 

After occurring these changes in variable, the available 

integrals are calculated from Gradshteyn and Ryzhik’s table 

of integrals and the results are expressed as [47]: 
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are defined as follow: 
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Equation of state of hard ellipsoid liquid using scaled 

particle theory [48] from Ref. [49] is 

( ) ( ) ( )
2 2 2

3 2

1

1 3 1 1

P R S RS

V V V

β ρ ρ
ρ ρ ρ ρ

= + +
− − −

              (29) 

where ( )ij ijf f r= �
 is the single-particle density. By 

expanding Eq. (29) in terms of density, second virial 

coefficient is obtained as follows: 

2B V RS= + .                                   (30) 

This result is consistent with the values obtained by Isihara 

and coworker [46]. For hard convex bodies, this coefficient 

can be rewritten as follows: 

2 1 3
B

V
α= +                                     (31) 

where ( )1 2
ˆ ˆ,u u , the nonsphericity of the molecule is:  

3RS Vα =                                   (32) 

( )ˆ ˆ, ,ij i ju r u u
�

, i  and j  are the mean radius of curvature, 

surface and volume of hard ellipsoid respectively. 

Because of the complex integrals in the higher virial 

coefficients of ellipsoids, these coefficients are calculated 

numerically. One of the most suitable numerical methods is 

application of Monte Carlo integration method [32]. 

Computer simulations of hard ellipsoids were pioneered by 

Viellard – Baron [50] in two dimensions, and by Frenkel and 

Mulder [51] in three dimensions. Allen [52] performed 

computer simulations of biaxial hard ellipsoids. Researchers 

have calculated first eight coefficients of ellipsoids by using 

Monte Carlo method [31-33, 53-55]. 

When two of the main semi- axes of the ellipsoids have the 

same length, the molecule has uniaxial symmetry. Uniaxial 

hard ellipsoids of revolution are commonly denoted as 

prolate spheroids, when the third semi-axes is larger than the 

other two, and oblate spheroids, when it is smaller. If each of 

the three semi-axis has a different size, molecule will have 

biaxial symmetry. Prolate spheroids can be written as iϕ  and 

oblate spheroids as, ( ), ,i i i iω θ φ χ= . Length to width ratio, 

iθ , for the prolate spheroid is iϕ  and for the oblate one is 

1 2k c= . 

Carlos Vega [31] showed that the accuracy of higher virial 

coefficients of hard ellipsoids depends on two non- sphericity 
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parameters. He had fitted successfully the data of third up to 

fifth virial coefficients by using two shape parameters. For 

hard convex bodies, he considered Minkowsky inequalities 

[56] given by 

24 0R Sπ − ≥                              (33) 

( ) ( )3 2
4 3 4 0R Vπ π− ≥                            (34) 

2 12 0S RVπ− ≥ .                               (35) 

Using these inequalities, can be defined two following 

parameters: 
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 are larger than 

unity. The parameter 

( )
2

2

4
1

b

c b
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+
 was also used by 

Naumann and Leland [57] before in their research for a 

general equation of state of hard convex bodies. The value of 

b  for a prolate spheroid is identical to that of an oblate 

spheroid. However, the prolate spheroid presents a large 

value of c  than the oblate one [31]. Vega analytical 

expressions have expressed in terms of two parameters b  

and c . These two new parameters are defined as follows: 

1τ τ′ = −  and 1.α α′ = −                           (40) 

After Vega's procedure, the expressions were fitted on the 

sixth to eighth virial coefficients of hard ellipsoid on the 

isotropic phase that was obtained by the Monte Carlo 

integration method of Refs. [32, 33, 53]. Our fitted 

expressions are as follows: 
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Reduced virial coefficient is defined as 1n
n nB B V

∗ −= , 

where k  is the order of virial coefficient and 
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2 1 1

2 2 2
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1
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b c

a
R d dz y z

π

φ ε ε
π

= + +∫ ∫  is the volume of 

ellipsoidal molecule. In Tables 1- 3 sixth to eighth data 

obtained from the fitted expressions (41)- (43) are compared 

to numerical results of Monte Carlo method [32, 33, 53]. 

3. Approximate Expressions for the 

Virial Coefficients in Terms of 

Anisotropy of the Ellipsoidal Molecule 

For hard uniaxial ellipsoid molecules, simple expressions 

require to express the virial coefficients. Thus, the length to 

width ratio of the molecules, y , was used and the fitted 

expressions for the fourth to eighth virial coefficients are 

obtained. By using the numerically obtained data from Ref. 

[31], the one shape parameter fitted expressions were 

obtained: 

*
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0.46746979 0.043099164
0.043326433 k

k k
+ − −
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5

5

0.0016370622
0.0018380864 k

k
+ +                 (44) 

*
5

2

2 4

84.385238
127.56075 73.211486

39.250862 0.69320015
33.255894

B k
k

k
k k

= − −

+ + +
 

5

5

0.03069714
0.019425168 .k

k
− −                    (45) 

To obtain the approximate analytical expressions for the 

sixth and seventh virial coefficients in isotropic phase, the 

data taken from Ref. [33] were used. These data were 

obtained by the Monte Carlo integration method. The 

following fitted expressions have been obtained.
 

*
6

2

2 4

171.54123
270.43269 196.86354

73.639783 1.2975071
105.40484

B k
k

k
k k

= − −

+ + +

 

3 4

3

14.946275
32.185802 5.2117117k k

k
− − +

5

5

0.10615289
0.29655843 k

k
− −                     (46) 

*
7

2 3

2

19445.746
20654.691 13265.586

11275.588
4946.2668 1024.9761

B k
k

k k
k

= − + +

− − +
 

4 5

3 4

4096.5638 924.74147
104.72333 3.6616578k k

k k
+ − − +

5 6 7

124.61656 9.1066386 0.27389861
.

k k k
+ − +            (47) 

Tables 1- 2 show the accuracy of these expressions in 

comparison with the data obtained by Monte Carlo 

integration method [31, 33] for prolate and oblate ellipsoids.  

Table 1. Sixth reduced virial coefficients for uniaxial hard ellipsoids as 

obtained from Eq. (41) (Fitted) and simulation data from Ref. [33]. 

k  ′α  ′τ  6
*

B
 
(Fitted) 6

*
B

 
(Simulation) 

1/10 3.064 0.209 -686.158 -6686.163 

10 3.064 2.362 -898.710 -898.678 

1/7 1.925 0.192 -1143.33 -1143.302 

7 1.925 1.454 523.530 523.493 

1/5 1.184 0.167 -170.681 -170.970 

5 1.184 0.871 196.813 197.254 

1/4 0.826 0.146 -13.980 -13.233 

4 0.826 0.594 102.384 101.302 

1/3 0.485 0.112 39.593 38.738 

3 0.485 0.335 59.643 59.964 

1/2.75 0.404 0.101 43.386 43.334 

k  ′α  ′τ  6
*

B
 
(Fitted) 6

*
B

 
(Simulation) 

2.75 0.404 0.275 54.037 55.205 

1/1.25 0.018 7.919e-3 40.681 40.541 

1.25 0.018 0.010 40.679 40.432 

Table 2. Seventh reduced virial coefficients for uniaxial hard ellipsoids as 

obtained from Eq. (42) (Fitted) and simulation data from Ref. [33]. 

k  ′α  ′τ  7
*

B
 
(Fitted) 7

*
B

 
(Simulation) 

1/10 3.064 0.209 -9325.652 -9325.650 

10 3.064 2.362 -36880.058 -36881.100 

1/7 1.925 0.192 -1812.873 -1812.970 

7 1.925 1.454 -5935.765 -5935.735 

1/5 1.184 0.167 -212.556 -211.484 

5 1.184 0.871 -400.142 -400.706 

1/4 0.826 0.146 -15.374 -17.736 

4 0.826 0.594 20.372 21.431 

1/3 0.485 0.112 54.242 55.774 

3 0.485 0.335 81.772 83.399 

1/2.75 0.404 0.101 61.750 62.197 

2.75 0.404 0.275 81.900 79.072 

1/1.25 0.018 7.919e-3 54.102 54.316 

1.25 0.018 0.010 54.195 54.050 

Also, in Figures. 1-8, the 4 *B  to 7 *B  results are 

compared with the Monte Carlo data. All the virial 

coefficients data are presented in Refs. [32, 53] and [58] were 

successfully fitted to the following expressions: 

*
8

2 3

2

1226.64041
1399.65739-581.12257 -

432.93525
+67.00695 + +19.67871

B k
k

k k
k

=
 

4

3 4 5

29.54799 9.64466 1.22016
- -4.73111 - + .k

k k k
          (48) 

Table 3. Eighth reduced virial coefficients for uniaxial hard ellipsoids as 

obtained from Eq. (43) (Fitted) and simulation data from Ref. [32, 53, 58]. 

k  ′α  τ ′
 8

*
B

 
(Fitted) 8

*
B

 
(Simulation) 

1/10 3.064 0.209 28390.080 28390.800 

10 3.064 2.362 -25461.808 -25461.800 

1/7 1.925 0.192 2354.460 - 

7 1.925 1.454 -4159.530 -4159.530 

1/5 1.184 0.167 57.624 57.625 

5 1.184 0.871 -561.443 -561.434 

1/4 0.826 0.146 58.187 - 

4 0.826 0.594 -80.920 -80.933 

1/3 0.485 0.112 114.880 - 

3 0.485 0.335 48.727 48.637 

1/2.75 0.404 0.101 113.287 113.280 

2.75 0.404 0.275 56.490 56.620 

1/1.25 0.018 7.919e-3 68.780 69.300 

1.25 0.018 0.010 67.840 67.034 
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Figure 1. Reduced fourth virial coefficient for oblate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained by numerical method [31]. 

 

Figure 2. Reduced fourth virial coefficient for prolate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained by numerical method [31]. 

 
Figure 3. Reduced fifth virial coefficient for oblate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained by numerical method [31].
 

 

Figure 4. Reduced fifth virial coefficient for prolate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained by numerical method [31].
 

 
Figure 5. Reduced sixth virial coefficient for oblate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained from Monte Carlo integration method [33]. 

 
Figure 6. Reduced sixth virial coefficient for prolate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained from Monte Carlo integration method [33]. 
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Figure 7. Reduced seventh virial coefficient for oblate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained from Monte Carlo integration method [33]. 

 

Figure 8. Reduced seventh virial coefficient for prolate spheroids versus 

elongation, k . The solid and doted curves are the present work and data 

obtained from Monte Carlo integration method [33]. 

Table 4. Reduced virial coefficients for hard sphere as limiting case of hard ellipsoid obtained at 0.0α ′ = , 0.0τ ′ =  in Eqs. (41)- (43) and at 1.0k =  in 

Eqs. (44)- (48). The exact values of hard sphere are obtained from Ref. [1]. 

Reduced virial coefficients 
*nB  of hard phere from proposed 

expressions (41)-(43) 

*nB
 
of hard sphere from proposed 

expressions (44)-(48) 
Exact *nB  for hard 

sphere[1] 
*

4B  - 18.348 18.365 

*
5B  - 28.341 28.225 

*
6B  40.634 40.047 39.740 

*
7B  51.909 46.307 53.500 

*
8B  70.000 68.812 70.800 

 

In Figures. 9-10 the 8 *B  results are compared with the 

Monte Carlo data. In Table 4 the virial coefficients of hard 

sphere obtained from Eqs. (41)- (43) as 0.0, 0.0α β′ ′= =  

and Eqs. (44)- (48) as 1k = , are compared with the exact 

value of Ref. [1]. As it is being seen, the results are in good 

agreement. The usefulness of Eqs. (41)- (48) is that they give 

the permission for estimating the virial coefficients of hard 

prolate and oblate ellipsoids up to 10k ≤ , even for values of 

1:1: c  and 1: :c c for which no numerical estimate is 

available. We estimated that the Eqs. (41)- (43) were useful 

for some convex molecules with 10k > . 

 

Figure 9. Reduced eighth virial coefficient versus elongation for oblate hard 

ellipsoids. The solid and doted curves are the present work and data 

obtained from Monte Carlo integration method [32, 53, 57]. 

 
Figure 10. Same as Figure 9 but for prolate hard ellipsoids. 

4. Equation of State of Hard Ellipsoid 

Isotropic Liquid 

4.1. Importance of the Virial Coefficients in the Equation of 

State of Ellipsoidal Molecular Liquid 

More recently, interests in studying the equation of state of 

non – spherical hard body fluid have increased. The 

availability of virial coefficients of hard ellipsoids together 

with the computer simulation data calculated by Frenkel and 
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Mulder [51] makes it possible to test several types of 

analytical equation of state for hard convex body fluids. 

Various equations of state have been proposed in which the 

compressibility factor is expressed in terms only of the 

packing fraction, R  and the shape factor, S [19-21]. Such 

approaches by using a single shape factor must be ultimately 

inadequate, though for systems of small molecular anisotropy 

it may be sufficiently accurate. The modified scheme of 

Naumann and coworkers [22] might be more successful 

generally when extreme shapes must be considered. These 

authors have included a further shape parameter 
1

2
k

c
=  that 

distinguishes the differences between prolate and oblate 

molecules.  

In this subsection, the importance of virial coefficients are 

shown in the equation of state of hard ellipsoid fluid and 

authors’ proposed equations are presented. The virial 

compressibility factor can be written as follows: 

* * 2 * 3 * 4
2 3 4 51 .Z B B B Bη η η η= + + + + +⋯        (49) 

Eq. (49) is an infinite expansion and when higher orders 

are considered, compressibility factor may get more accurate 

and closer to the simulation data. We used the virial 

coefficients up to the eighth as determined in this work. As 

shown in Figures. 11 to 16, contribution of higher virial 

coefficients exceeds the accuracy of the compressibility of 

hard ellipsoid fluids. The obtained compressibility factors at 

8B  level theory have been compared by the simulation data 

of Ref. [31]. The convergence of *nB  level theory in section 

V will be discussed. 

 
Figure 11. Compressibility factor of isotropic hard ellipsoid fluid versus the 

volume fraction of oblate hard ellipsoids with τ and different virial 

coefficients contribution. The Monte Carlo simulation data are from Ref. 

[31] 

 

Figure 12. As in Figure 11 but forτ . 

 
Figure 13. As in Figure 11 but for 

3 3 2 34003.69001 270.316463 216.860675 7760.625008α τ α τ α τ′ ′ ′ ′ ′ ′+ + − + . 

 
Figure 14. As in Figure 11 but for prolate hard ellipsoids with

3 3 5 5156315 .238487 185829 .873849 818 .653436α τ α τ α τ′ ′ ′ ′ ′ ′+ + + . 
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Figure 15. As in Figure 11 but for prolate hard ellipsoids with τ ′ . 

 
Figure 16. As in Figure 11 but for prolate hard ellipsoids with α ′ . 

4.2. Optimization of the Equation of State of Hard Ellipsoid 

Fluid 

More accurate compressibility factor may be obtained by 

considering the higher order virial coefficients, as are shown 

in Figures. 11 to 16. There are more difficulties in calculation 

of higher order of coefficients. Thus, a limited number of 

coefficients can be used and the suitable equation of state be 

deduced. Vega [31] proposed the following equation: 

* * 2 * 3 * 4
2 3 4 51Z B B B Bη η η η= + + + +  

( )
2 3

*
32

2 3 4

1
1 4

1
4

10 18.3648 28.2245

B
η η η η

η

η η η

 + + − − − 
+ − 

  − − − 

              (50) 

By adding calculated 

5

4 5

0.043099164 0.0016370622
0.0018380864 k

k k
− + + up to 

* 2
5 2

84.385238 39.250862
127.56075 73.211486 33.255894B k k

k k
= − − + +

, the following equation have been used: 

* * 2 * 3 * 4
2 3 4 5

* 5 * 6 * 7
6 7 8

1Z B B B B

B B B

η η η η

η η η

= + + + +

+ + +
               (51) 

In addition, we have proposed the equation:  

* * 2 * 3 * 4 * 5
2 3 4 5 61Z B B B B Bη η η η η= + + + + +

 

( )
2 3

*
3* 6 * 7 2

7 8

2 3 4

1
1 4

1
4

10 18.3648 28.2245

B
B B

η η η η
η η η

η η η

 + + − − − 
+ + + − 

  − − − 

 

( )5 6 72 39.74 53.5 70.8 .
4

B η η η− + +                   (52) 

Eq. (51) which is shown in Figures. 11 to 16 is the virial 

expansion truncated up to eighth coefficient. In Eqs. (51) and 

(52), we would consider the first eight terms of virial series 

as determined in this work. In Eq. (52), contribution of virial 

coefficients higher than the eighth coefficient are obtained by 

subtracting from the Carnahan-Starling equation the 

contribution of the first eight virial coefficients of hard 

spheres. In Figures. 17 to 22, results of the expressions (50) 

to (52) are plotted and compared with simulation data of the 

Ref. [31]. The predictions obtained by our new equations of 

state are more suitable than Eq. (50). 

 
Figure 17. Comparison of the compressibility factor of isotropic oblate hard 

ellipsoid fluid obtained from introduced equations (50)- (52) and simulation 

results [31], for 
5 6 7

124.61656 9.1066386 0.27389861

k k k
+ − + . Eqs. (50) to (52) 

are due to Vega, our 8 *B  and our proposed expression, respectively. 

 
Figure 18. As in Figure 17 but for 0.2k = . 
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Figure 19. As in Figure 17 but for 0.33k = . 

 

Figure 20. As in Figure 17 but for prolate hard ellipsoid fluid with *
4B  

 

Figure 21. As in Figure 17 but for prolate hard ellipsoid fluid with α . 

 
Figure 22. As in Figure 17 but for prolate hard ellipsoid fluid with ( )3g α . 

As it is seen in Figure. 23, there are discrepancy with 

simulation results at high elongation and packing fractions. 

Therefore, we have proposed another equation of state for 

hard ellipsoidal molecules. A weighted average of Eqs. (50) 

and (51) gives: 

( )(50) (51)1newZ xZ x Z= + − .                    (53) 

The indices (50) and (51) are concerned Vega and our 

equations of state, respectively. We substituted the optimum 

value of � in the proposed expression and iC
 
are given by: 

* * 2 * 3 * 4
2 3 4 5

* 5 * 6 * 7
6 7 8

1

0.8 0.8 0.8

newZ B B B B

B B B

η η η η

η η η

= + + + +

+ + +
 

( )
2 3

32

2 3 4

1
1 4

.1
20

10 18.3648 28.2245

B
η η η η

η

η η η

 + + − − − − 
+ − 

  − − 

            (54) 

In Figures. 23 to 25, the new EOS has been compared with 

the Eqs. (50), (51) and Simulation data in Ref. [31]. 

 
Figure 23. Comparison of the new compressibility factor of isotropic prolate 

hard ellipsoid fluid newZ  with Eqs. (50), (51) and available simulation data 

[31] for 0.2k = . 



38 Maryam Hashemi et al.:  Analytical Virial Coefficients and New Equations of State of Hard Ellipsoid Fluids  

 

 
Figure 24. As in Figure. 23 but for 5k = . 

 

Figure 25. As in Figure. 23 but for *
6B . 

5. Results and Discussions 

The proposed expressions for sixth to eighth reduced virial 

coefficients based on 0.2k =  and τ ′ , have shown good 

agreement with available data obtained by Monte Carlo 

integration method. This agreement has been indicated in 

Tables 1- 3. Since the calculation of 0.25k =  and τ ′  need 

the first and second kinds of elliptic integrals, the sixth- 

eighth virial coefficients of hard convex molecules can be 

calculated analytically. In the case of prolate and oblate hard 

ellipsoids, the viral coefficients of hard ellipsoids versus an 

elongation parameter, 0.33k = , can be calculated.  

The reduced virial coefficients from fourth up to eighth, in 

terms of elongation are shown in Figures. 1 to 10. The results 

are in agreement with data of Refs. [31-33, 53] obtained by 

Monte Carlo method for 0.1 10k≤ ≤ . Available data to 

obtain a reasonable expression for eighth virial coefficient 

were limited. The results of approximate expressions (43) 

and (48) are shown in Figures. 9-10 and Table 3, for *
8B  and 

a good agreement with Monte Carlo data of Refs. [32, 53] 

can be seen. In Table 4, the virial coefficients for a hard 

sphere as obtained from limiting case of our proposed 

equations are compared with the values of Ref. [1]. The 

results are in good agreement. Also, *nB  converged to exact 

values of hard sphere at 0.0α ′ = , 0.0τ ′ =  in Eqs. (41)- (43) 

and at 1.0k =  in Eqs. (44)- (48).  

We could not find any virial coefficient data for large hard 

ellipsoids of elongations 10.0k >  in literature to compare 

with our results. Hence, the validity of extrapolation of Eqs. 

(41)- (48) cannot be guaranteed.  

Virial coefficients play an important role in calculation the 

equation of state of hard convex fluids. In this study, the 

convergence of the virial series, and the importance of the 

high-order virial coefficients to test the proposed equations of 

state were investigated. As it is shown in Figures. 11 to 16, 

accuracy of EOS of hard prolate and oblate ellipsoidal fluid 

depends on order of virial coefficients. For aspect ratios 

1
10, , 5

10
k = , the results converged toward the simulation 

results at 3 *B  level and reached at 4 *B  and 6 *B , 

respectively. For 1
3,

3
k = , the results converged toward the 

simulation results at 4 *B  level; however, approximately 

reached them at 8 *B  level. The virial expansions up to the 

eighth order, Eq. (51), are convenient equation of state for 

hard oblate and small prolate molecules, approximately, as 

they are shown in Figures. 17 to 22. The higher virials have 

only a small effect on the equation of state of oblate 

molecules. However, this is not true in the case of large 

prolate molecules, and virial expansion up to eighth term is 

not appropriate equation of state. In order to achieve 

convergence, we have suggested Eq. (54). Figures. 23 to 25 

show the accuracy of Eq. (54) at medium elongations as it is 

compared with simulated data. 

This new EOS provides a better agreement than the other 

expressions at higher elongations and densities; however, 

there is failure at 10.0k = . For the extreme aspect ratio 

10.0k = , as shown in Figure. 16, the 4 *B  level of viral 

series gives better agreement than other proposed equations 

of state with simulations. The new proposed EOS can be 

applied to hard biaxial ellipsoid and sphero-cylinder isotropic 

fluids. Also, equation of state of ellipsoid nematic fluid can 

be calculated. 

6. Conclusions 

The complexity of calculations for high order virial 

coefficients of ellipsoids makes it difficult to obtain accurate 

analytical high coefficients and equation of state for such 

systems. In this study, the virial coefficients up to third order 

were calculated by using analytical method [45]. For higher 

ones, the numerical values were taken from available data 

based on Monte Carlo integration method in Refs. [31- 33, 

53, 58]. The approximate two and one shape parameter 

analytical expressions of the hard convex and uniaxial hard 

ellipsoid molecules have been obtained, respectively, by 
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fitting the available virial coefficients data obtained 

numerically, up to eighth order. The two set of approximate 

expressions were examined for prolate and oblate hard 

spheroids with aspect ratios 10.0k ≤ .  

Moreover, the analytical expressions for the equation of 

state of hard ellipsoid fluids were proposed. For isotropic 

hard spheroids up to medium elongations, the new proposed 

equation of state was in good agreement with the simulations. 

For large elongation, 10.0k = , our new EOS failed to 

converge and truncated 4 *B  virial series was close to the 

simulation results. In addition, our proposed equation of state 

showed a better agreement as compared to others. This new 

equation was used for both prolate and oblate ellipsoid fluids.  
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