
 

Cell Biology 
2015; 3(3): 38-49 

Published online October 28, 2015 (http://www.sciencepublishinggroup.com/j/cb) 

doi: 10.11648/j.cb.20150303.11 

ISSN: 2330-0175 (Print); ISSN: 2330-0183 (Online) 

 

Performance Optimisations for a Numerical Solution to a 
3D Model of Tumour-Induced Angiogenesis on a Parallel 
Programming Platform 

Paul M. Darbyshire 

Department of Computational Biophysics, Algenet Cancer Research, Nottingham, UK 

Email address: 
rd@algenet.com 

To cite this article: 
Paul M. Darbyshire. Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis on a Parallel 

Programming Platform. Cell Biology. Vol. 3, No. 3, 2015, pp. 38-49. doi: 10.11648/j.cb.20150303.11 

 

Abstract: The challenging issues of cancer prevention and cure lie in the need for a more detailed knowledge of the dynamic 

processes and mechanisms of cellular behaviour and tumour growth dynamics. In this paper we extend a previous 2D parallel 

implementation of a continuous-discrete model of tumour-induced angiogenesis to the more realistic 3D case. In particular, we 

look in-depth at available performance optimisation techniques to further improve the computational method and explore in 

more detail the hardware architecture. Recent evidence clearly indicates that GPU-accelerated computing can greatly facilitate 

researchers, clinicians and oncologists by performing time-saving in-silico experiments that have the potential to assist in 

quantifying cellular parameters, highlight model features, and help explore new cancer treatments and therapies. 
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1. Introduction 

Over the last decade, high-performance computing (HPC) 

has evolved dramatically, in particular because of the 

accessibility to graphics processing units (GPUs) and the 

emergence of GPU-CPU heterogeneous architectures, which 

have led to a fundamental shift in parallel programming. 

Finite difference methods (FDM), such as those developed 

here, are the first port of call for solving complex biological 

phenomenon described by nonlinear partial differential 

equations (PDEs). However, they require intensive 

computational resources which generally lead to significant 

and time-consuming expense. The advantages of explicit 

time-stepping in FDM over many other types of solutions 

lend themselves well to exploitation in a completely data-

parallel context. In such cases, GPUs can be used to greatly 

accelerate numerical simulations and offer an extremely 

valuable computational technique for tackling such problems. 

The compute unified device architecture (CUDA) 

programming model is especially well-suited to address 

problems that can be expressed as data-parallel computations. 

In a previous paper the authors developed a 2D finite 

difference approximation to a hybrid continuous-discrete 

model of tumour-induced angiogenesis [2]. The numerical 

solution was implemented in both C++ and CUDA C to 

assess the performance benefits of porting from a serial to a 

parallel programming platform. Results indicated a dramatic 

increase in execution time between the two implementations 

and also highlighted a range of potential performance 

improvements available through more advanced data 

manipulation and memory management techniques. In this 

paper, the authors develop a 3D finite difference 

approximation to the same hybrid continuous-discrete model 

and implement some of these advanced features with a view 

to highlighting the potential benefits of modelling cellular 

and cancer dynamics whilst also highlighting the possibilities 

for developing new advanced clinical research tools based on 

GPU-accelerated applications. Indeed, in the last decade in 

silico trials focussed on simulating the different processes of 

solid tumour growth have become more readily accepted by 

the clinical and oncology community. The advantages of 

using GPU-accelerated programs and HPC continually 

highlight the potential performance improvements in solving 

complex mathematical models of biological phenomenon in 

this way [1, 2]. 

In order to progress from the relatively harmless avascular 

phase to the potentially lethal vascular state, solid tumours 

must induce the growth of new blood vessels from existing 
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ones, a process known as angiogenesis. While early models 

of angiogenesis were focused on accurately replicating key 

observed behaviours during the process, more recent models 

have been able to test specific hypotheses and suggest useful 

strategies for antiangiogenic drug development. A key 

mechanism of antiangiogenic therapy is to interfere with the 

process of blood vessel growth and literally starve the tumour 

of its blood supply. Indeed, a new class of cancer treatments 

that block angiogenesis have recently been approved and 

available to treat cancers of the colon, kidney, lung, breast, 

liver, brain, ovaries and thyroid [3-7]. Angiogenesis is 

without doubt a complex biological phenomena and one that 

at a cellular level is dynamic, spatially heterogeneous, 

frequently non-linear, and spans many orders of magnitude, 

both spatially and temporally. Mathematical and 

computational models of vascular formation have generated a 

basic understanding of the processes of capillary assembly 

and morphogenesis during tumour development and growth 

[8, 9]. However, by the time a tumour has grown to a size 

whereby it can be detected by clinical means, there is a 

strong likelihood that it has already reached the vascular 

growth phase and developed its own blood circulatory 

network. For this reason, a thorough understanding of the 

behavioural processes of angiogenesis is essential. The 

development of realistic mathematical and computational 

models of cancer dynamics is a powerful method of testing 

hypotheses, confirming biological experiments, and 

simulating complex behaviour. The model presented here is 

of a hybrid nature in which a system of couple nonlinear 

partial differential equations (PDEs) describing continuous 

chemical and macromolecular dynamics and a discrete 

cellular automata-type model controls cell migration and 

their interaction with neighbouring cells [10]. The main 

objective of the paper is to extend the work developed in [2] 

to the numerical solution of the hybrid continuous-discrete 

model describing tumour-induced angiogenesis to the more 

realistic 3D case. We also wish to address ways in which 

parallel performance can be optimised by making use of the 

explicit GPU hardware architecture and CUDA programming 

model. 

2. A Continuous-Discrete Model of 

Tumour-Induced Angiogenesis 

2.1. The Continuous Model 

For a more detailed treatment of the biological aspects of 

tumour-induced angiogenesis as well as a more rigorous 

mathematical proof, readers are directed to [2, 10] and 

references therein. Here we simply summarise the main 

mathematical development so as to focus on the main issues 

of the paper. If we denote the endothelial cell density by n, 

the TAF and fibronectin concentration by c and f, 

respectively the complete system of scaled coupled nonlinear 

PDEs describing tumour-induced angiogenesis can be written 

as [2, 10]: 
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A description of each of the parameters, and their 

respective values, can be found in [2, 10]. Our system is 

assumed to hold on a 3D spatial domain Ω (i.e., a volume of 

tissue) with appropriate initial conditions; c(x, y, z 0), f(x, y, z 

0) and n(x, y, z 0) [2, 10]. The tumour cells are assumed to be 

confined within a domain Ω ∈ �0,1�� in which no-flux 

(Neumann) boundary conditions are imposed on the 

boundaries of Ω (see Figure 1). 

 

Figure 1. A schematic diagram of the 3D spatial domain Ω and boundary 

��. 

2.2. The Discrete Model 

The technique of tracing the path of an individual 

endothelial cell at a sprout tip was first proposed by 

Anderson et al. [11]. The method involves using standard 

FDM to discretise the continuous model described in (1)-(3) 

over a 3D uniform grid. Then, the resulting coefficients of 

the finite difference seven-point stencil are used to generate 

the probabilities of movement of an individual endothelial 

cell in response to its local microenvironment. 3D stencil 

computations are those in which each node in a 3D grid is 

updated with a weighted average of the six neighbouring 

node values. Two schematic diagrams of a 3D finite 

difference seven-point stencil are shown in Figure 2.  

 

Figure 2. Schematic diagram of the finite difference 7-point 3D stencil.  

We first discretise the continuous model by approximating 

the 3D domain Ω ∈ �0,1�� on a uniform grid of node length, 

width and depth h, and time t by increments of size k. By 

applying a forward finite difference scheme, the fully-explicit 

discretised version of the continuous model can be obtained. 
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For illustration purposes, the endothelial cell discretisation is 

shown below: 
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The coefficients P0–P6 can be thought of as being 

proportional to the probabilities of endothelial movement. 

That is, the coefficient P0, is proportional to the probability 

of no movement, and the coefficients P1, P2, P3, P4, P5, and 

P6, are proportional to the probabilities of moving left, right, 

up and down, out of and into the plane, respectively. The 

exact forms of P0–P6 are functions of both fibronectin and 

TAF concentrations at nearby neighbouring points of an 

individual endothelial cell [2, 10]. 

Each numerical simulation is based on an increased size of 

array width i.e., a finer grained uniform 3D grid. We use a 

constant iteration size of 1,000 time steps to allow for an 

adequate convergence of the numerical solution. At each time 

step, the numerical simulation involves solving the discrete 

model to generate the seven coefficients P0–P6. Based on the 

values of these coefficients, a set of seven probability ranges 

are determined and then a uniform random number is then 

generated on the interval [0, 1], and, depending on the range 

into which this value falls, the current individual endothelial 

cell will remain stationary (Ro), move left (R1), right (R2), 

move up (R3), down (R4), out of (R5), or into the plane (R6).  

The complete set of parameter values used for the numerical 

simulation can be found in [2, 10]. 

3. Implementation 

3.1. The Kepler GK110 Architecture 

The GPU is specialised for computer-intensive, highly data 

parallel computations allowing more transistors to be devoted 

to data processing rather data caching and flow control. More 

specifically, the GPU is especially well-suited to address 

problems that can be expressed such that the same algorithm 

is executed on many data elements in parallel, with high 

arithmetic intensity i.e., the ratio of arithmetic operations to 

memory operations. Since the algorithm is executed on many 

data elements and has high arithmetic intensity, the memory 

access latency can be hidden with calculations instead of big 

data caches. The recent rollout of the Nvidia Kepler GK110 

architecture marked a significant milestone in the evolution 

of GPU-accelerated computing. By offering much higher 

processing power than previous architectures and by 

providing new methods to optimise and increase parallel 

workload execution on the GPU, the Kepler GK110 has 

further revolutionised HPC. Each of the Kepler GK110 

streaming multiprocessor (SMX) units feature 192 

single‐precision CUDA cores, and each core has fully 

pipelined floating‐point and integer arithmetic logic units 

(ALU). Figure 3 shows the major differences between the 

CPU and GPU architectures in terms of ALU, cache and 

dynamic random access memory (DRAM) layout [12]. 

 
Figure 3. A schematic of the CPU vs. GPU architecture [12]. 

Applications running on Kepler GK110 can also take 

advantage of the increased number of registers available to 

each thread to increase instruction level parallelism. The 

Kepler GK110 features a large dedicated L2 cache memory, 

double the amount of L2 available with previous 

architectures. The L2 cache is the primary point of data 

unification between the SMX units, servicing all load, store, 

and texture requests and providing efficient, high speed data 

sharing across the GPU [12]. Table 1 shows some 

specifications for the hardware architecture in the Kepler GK 

110 architecture. 

Table 1. Specifications for the Kepler GK 110 architecture [12]. 

Specification Value 

Warp size 32 

Threads/multiprocessor 2,048 

Threads/block 1,024 

Global memory 3 GB 

L2 cache memory 1,536 KB 

Constant memory 64 KB 

Read-only data cache 48 KB 

The SMX schedules threads in groups of 32 parallel 

threads known as warps. Each SMX features four warp 

schedulers and eight instruction dispatch units, allowing four 

warps to be issued and executed concurrently [12]. Figure 4 

shows a schematic of how warps are scheduled in the Kepler 

GK110 architecture. 

 

Figure 4. A schematic of warp scheduling in the Kepler GK 110 architecture 

[12]. 

The Kepler GK110 memory hierarchy is organised 

similarly way to earlier architectures as shown in Figure 5 

and also enables compiler‐directed use of an additional new 
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cache for read‐only data (see Table 1). 

 

Figure 5. Hierarchal organisation of memory in the Kepler GK 110 architecture. 

When writing parallel programs, it is often necessary to 

communicate values between parallel threads. The typical 

way to do this in the CUDA programming model is to use 

shared memory. However, the Kepler GK110 architecture 

introduced a way to directly share data between threads that 

are part of the same warp i.e., threads in a warp can read 

other registers by using a new instruction called SHFL, or 

shuffle. Firstly, it is possible to use the shuffle instruction to 

free up shared memory to be used for other data. Secondly, 

the shuffle instruction is faster than shared memory since it 

only requires one instruction versus three for shared memory 

(write, synchronise, read). Another potential performance 

advantage for shuffle is that relative to older architectures, 

shared memory bandwidth has doubled on Kepler devices 

and the number of cores has increased by 6×; therefore, the 

shuffle instruction provides another means to share data 

between threads and keep the cores busy with memory 

accesses that have low latency and high bandwidth. 

3.2. Hardware Specifications 

The hardware used for the serial C++ implementation is a 

fourth generation Intel
®
 Quad Core

™
 i7-4790K 4GHz CPU 

processor. The C++ implementation was developed and 

compiled in Microsoft
® 

Visual Studio 2012. The CUDA C++ 

program was also developed in Microsoft
® 

Visual Studio 

2012 using CUDA version 7.0 and tested on an Nvidia 

GeForce
®
 GTX

TM
 780 GPU based on the Kepler GK110 

architecture with Compute Capability 3.5. The Compute 

Capability describes the features of the hardware and reflects 

the set of instructions supported by the device as well as 

other specifications, such as the maximum number of threads 

per block and the number of registers per multiprocessor. 

Moreover, hardware design, number of cores, cache size, and 

supported arithmetic instructions are different for different 

versions of Compute Capability. Higher compute capability 

versions are supersets of lower (i.e., earlier) versions, so they 

are backward compatible. The operating system for both 

configurations is Windows 8.1. Table 2 shows some 

hardware specifications for the Nvidia GeForce
®
 GTX

TM
 780 

GPU. 

Table 2. GPU hardware specifications. 

Specification Nvidia GeForce® GTXTM 780 

GPU clock speed 0.863 GHz 

Memory clock rate 3.004 Ghz 

CUDA cores 2,304 

Memory interface 384-bit 

Peak performance* 3.98 Tflops 

Memory bandwidth 288.4 GB/s 

* Peak single-precision floating-point performance 

3.2.1. Memory Bandwidth 

Bandwidth is usually used to describe the highest possible 

amount of data transfer per unit time, while throughput can 

be used to describe the rate of any kind of information or 

operations carried out per unit time, such as, how many 

instructions are completed per cycle. Limited memory 

bandwidth can become a serious bottleneck to GPU 

performance and while a GPU typically has far greater 

memory bandwidth than a CPU, maximising the use of this 

bandwidth is still a critical issue. If an algorithm spends more 

time computing than transferring data, then it may be 

possible to overlap these operations and completely hide the 

latency associated with transferring data. On the other hand, 

if the algorithm spends less time computing than transferring 

data, it is important to minimise transfer between the CPU 

and GPU. In general, whilst performing code optimisation, it 

is important to determine how the application compares to 

theoretical limits. Theoretical memory bandwidth can be 

calculated using: 

memory clock rate × bus interface width  ×  data rate (5) 

Since the Kepler 110 architecture relies on the graphics 

double data rate random access memory type i.e., GDDR5, 

the theoretical memory bandwidth for the GTX
TM

 780 GPU 

card is 288.4 GB/s �= 3.004 × �384/8� × 2�. Note that bus 

interface width has been converted to bytes. 

3.2.2. Instruction Throughput 

Two types of floating-point numbers are typically used in 

algorithms, single-precision floats and double precision 

doubles. Single precision requires 32 bits (4 bytes) of storage 
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and has an accuracy around 7 decimal places. Double 

precision requires 64 bits (8 bytes) and achieves an accuracy 

around 16 decimal places. Such large discrepancies between 

the two types of numbers have a significant impact on 

numerical simulations. That is, nine decimal places of 

information are lost when using only single-precision, and 

when implementing iterative procedures, such as FDM, this 

can introduce large errors. Results obtained using double-

precision calculations will frequently differ from the same 

operation performed using single-precision arithmetic due to 

rounding issues. Therefore, it is important to be sure to 

compare values of like precision and to express the results 

within a certain tolerance rather than assuming them to be 

exact. Indeed, we can estimate a lower-bound to the 

performance of our CUDA C implementation by estimating 

the (giga) floating point operations per second (Gflops). 

Gflops are a measure of processing speed, equal to the 

number of operations the CPU and GPU can perform per 

second. In general, a processor can do a certain number of 

Gflops every time its internal clock ticks (or cycle). It is 

important to note that there is quite a difference between 

single-precision and double-precision Gflops. A processor 

that is capable of many single-precision Gflops may only be 

capable of a small fraction of that many double-precision 

calculations. We assume the following general formula to 

determine the number of Gflops for our CPU and GPU 

processors, given by: 

clock speed × # cores ×  Klops per clock cycle       (6) 

For the GTX
TM

 780 GPU card, we get 3977 Gflops �=

0.863 × 2304 × 2�  i.e., 3.98 Tflops single-precision. With 

the GK110 architecture, double-precision performance is 

fixed at 1/24 that of single-precision performance i.e., 166 

Gflops double-precision. Based on these values, the 

estimated performance improvement between serial and 

parallel implementations, in terms of Gflops calculations 

alone, should be at least in the region of 31×. Note that, in 

addition to accuracy, the relative conversion between double 

and floating point numbers (and vice versa) can also have a 

detrimental effect on performance. 

We can also measure the performance of an algorithm in 

terms of its compute to memory access ratio (CMA). Many 

numerical algorithms, such as FDM, have a very low CMA 

of around 1.0, implying there is a read or write to memory for 

every floating-point operation. For the GTX
TM

 780 GPU card, 

which has a memory bandwidth of 288.4 GB/sec. At single 

precision (4 bytes) the maximum transfer rate will be 72.1 

Gflops. With a CMA of 1.0, this gives a calculated flop rate 

of 72.1 Gflops, far less than the theoretical maximum of 3.5 

Tflops. In order to achieve optimal memory bandwidth, it is 

vital to ensure that memory Is effectively managed, which 

when correctly managed, can lead to substantial increases in 

data transfer rates, and is vital for delivering performance 

that is close to the theoretical maximum.  

In a GPU, a SMX relies on thread-level parallelism to 

maximise utilisation of its functional units. Utilisation is 

therefore directly linked to the number of resident warps. The 

number of clock cycles between an instruction being issued 

and being completed is defined as instruction latency. Full 

compute resource utilisation is achieved when all warp 

schedulers have an eligible warp at every clock cycle. This 

ensures that the latency of each instruction can be hidden by 

computation from other warps. Whilst bandwidth is usually 

used to describe the highest possible amount of data transfer 

per unit time, while throughput can be used to describe the 

rate of any kind of information or operations carried out per 

unit time, such as, how many instructions are completed per 

cycle. Another useful performance metric is the ratio of 

instructions to bytes. For the GTX
TM

 780 GPU card, the 

theoretical ratio is 13.8 instructions: 1 byte (= 3.98/288.4) i.e., 

if an application issues more than 13.8 instructions for every 

byte accessed, then it is bound by arithmetic performance. 

However, most GPU-accelerated workloads, are bound by 

memory bandwidth. 

4. The CUDA Programming Model 

The CUDA programming model involves running code on 

two different platforms concurrently; a host system (the CPU) 

and a device (the GPU). While GPUs are frequently 

associated with graphics, they are also powerful arithmetic 

engines capable of running thousands of lightweight threads 

in parallel. This capability makes them well suited to 

computations that can leverage parallel execution. Nowadays, 

modern GPUs can support up to 2,304 active threads 

concurrently per multiprocessor. So, for a GPU with 12 

multiprocessors, this leads to more than 27,000 concurrently 

active threads. Threads on a CPU are generally heavyweight 

entities. The operating system must swap threads on and off 

CPU execution channels to provide multithreading capability. 

Context switches (i.e., when two threads are swapped) are 

subsequently slow and expensive. On GPUs, threads are 

extremely lightweight. In a typical system, thousands of 

threads are queued up for work in sets of 32 threads each (i.e., 

warps). If the GPU must wait on one warp of threads, it 

simply begins executing work on another. Since separate 

registers are allocated to all active threads, no swapping of 

registers or other state need occur when switching among 

GPU threads. Resources stay allocated to each thread until it 

completes its execution. In short, CPU cores are designed to 

minimise latency for one or two threads at a time, whereas 

GPUs are designed to handle a large number of concurrent, 

lightweight threads in order to maximise throughput. The 

host system and the device each have their own distinct 

attached physical memories. As the host and device 

memories are separated by the PCI Express (PCIe) bus, data 

in the host memory must be communicated across the bus to 

the device memory. Such continually data transfers usually 

result in memory bottlenecks which can lead to serious 

performance issue when developing GPU-accelerated 

applications.  

The CUDA programming model provides an application 

program interface (API) that exposes the underlying GPU 

architecture; a collection of single instruction, multiple data 
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(SIMD) processors capable of executing thousands of threads 

in parallel. A version of SIMD used by GPUs is the single 

instruction, multiple threads (SIMT) architecture in which 

multiple threads execute an instruction sequence. In CUDA C, 

an instruction sequence is written into a specific function 

known as a kernel that can be executed on a device N times 

in parallel by N different CUDA threads, asynchronously. 

Unlike a C function call, all CUDA kernel launches are 

asynchronous so that control returns to the CPU immediately 

after the CUDA kernel is invoked. An execution 

configuration defines both the number of threads that will 

run the kernel plus their arrangement in a 1D, 2D, or 3D 

computational grid. In its simplest form, the kernel is defined 

using the following CUDA C syntax [13, 14]: 

__global__ kernel<<<dimGrid, dimBlock>>>(); 

Threads are grouped into blocks and blocks are grouped 

into grids as shown schematically in Figure 6. There is a 

limit to the number of threads per block, for the Kepler 

GK110 architecture a thread block may contain up to 1,024 

threads. On the GPU, each multiprocessor is responsible for 

handling one or more blocks in a grid which is further 

divided into a number of streaming processors each handling 

one or more threads in a block. 

 

Figure 6. A schematic representation of threads, blocks and grids. 

In general we want to size our blocks and grids to match 

data requirements and simultaneously maximise occupancy. 

Occupancy measures the efficiency to which we assign how 

many threads are active at any one time. The major factors 

influencing occupancy are efficient memory allocation and 

thread block size. Clearly, thread block size should always be 

a multiple of 32, since threads are scheduled in warps. For 

example, if we have a block size of 50 threads, the GPU will 

still issue commands to 64 threads and this would just be 

waste of resources. It is often necessary to try and size blocks 

based on the maximum numbers of threads and blocks 

corresponding to the Compute Capability of the GPU. The 

theoretical occupancy is the ratio of active warps to the 

maximum warps for a SMX. Each multiprocessor on a device 

has a set of N registers available for use by CUDA thread 

programs. These registers are a shared resource that is 

allocated amongst thread blocks executing on a 

multiprocessor. The CUDA compiler attempts to minimise 

register usage to maximise the number of thread blocks that 

can be active simultaneously. If a program tries to launch a 

kernel for which the registers used per thread times the block 

size is greater than N, the launch will fail. Varying the size of 

the thread block is a standard optimisation to find the best 

occupancy rates. Moreover, high occupancy rates help to 

hide the latency in accessing global memory. 

A block is 1D, 2D, or 3D with the maximum size of the x, 

y, and z dimensions being 1,024, 1,024, and 64, respectively, 

such that M × N × O ≤ 1,024  i.e., the maximum number of 

threads per block. Blocks are subsequently organised into a 

1D, 2D or 3D grid with the maximum size of the x, y, and z 

dimensions being 2
31

-1, 65,535, and 65,535, respectively. An 

example schematic of a block and grid set up is shown in 

Figure 7. There are also a maximum of 65,536 registers 

available per block. 

 

Figure 7. An example CUDA thread grid and block.  

5. Performance Optimisation 

Optimising the performance of CUDA applications most 

often involves optimising data accesses which includes the 

appropriate use of the various available memory spaces (see 

Figure 8) of the GPU architecture. Indeed, appropriate use of 

these memory spaces can have significant performance 

implications for almost every CUDA application. 
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Figure 8. Schematic of the arrangement of available memory spaces. 

Note that Figure 8 includes blocks labelled local memory 

within the multiprocessor. Local memory implies local in the 

scope of each thread. It is a memory abstraction, not an 

actual hardware component. In actuality, local memory gets 

allocated in global memory by the compiler and delivers the 

same performance as any other global memory region. The 

local and global memory spaces are not cached which means 

each memory access to global (or local) memory generates 

an explicit memory access. 

5.1. Global Memory Coalescing 

The latency in accessing global memory can be 

considerable. Although the bandwidth of global memory 

seems high, around 200-300 GB/s, it is very slow compared 

to the Tflop performance capability of a typical GPU. Global 

memory is implemented with dynamic random access 

memories (DRAM) using a parallel access process i.e., each 

time a memory location is accessed, a number of other 

memory locations (that include the requested location) are 

also accessed. If an application utilises data from consecutive 

accessed locations before accessing other locations, the 

DRAM can achieve near peak global memory bandwidth. 

Therefore, global memory delivers the highest memory 

bandwidth only when the global memory accesses can be 

coalesced. The performance penalty for non-coalesced 

memory operations varies according to the size of the data 

type (e.g., 4-bytes). Each active block is split into SIMD 

groups of threads; warps. Each warp contains the same 

number of threads i.e., warp size, which are executed by the 

multiprocessor in a SIMD manner. This means each thread 

within a warp is broadcast the same instruction from the 

instruction store, which directs the thread to perform some 

operation or manipulation of local and/or global memory. 

Active warps are time-sliced; the thread scheduler 

periodically switches from one warp to another to maximise 

the use of the multiprocessor's hardware resources (see 

Figure 9). The order of execution of the warps within a block 

and of blocks themselves is undefined, which means they can 

occur in any order. Moreover, all threads in a warp execute 

the same instruction. When all threads in a warp execute a 

load instruction, the hardware checks if the threads are 

accessing consecutive memory locations. Ideally, thread 0 
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accesses location n, thread 1 accesses location n + 1, ..., 

thread 31 accesses location n + 31, then all accesses are 

coalesced and combined into one single contiguous access.  

Consider the case when the warp scheduler requests 32, 

aligned consecutive 4-byte words from global memory. Each 

memory address will fall into 4 segments of 128 bytes each 

as shown in Figure 10. 

 

Figure 9. A schematic diagram of thread scheduling. 

 

Figure 10. A schematic diagram showing consecutive global memory access. 

The consecutive alignment scenario in Figure 10 will result in 100% coalesced global memory access. Now consider the 

case when the warp scheduler requests 32, permutated consecutive 4-byte words from global memory as shown in Figure 11. 

Each memory address will still fall into 4 segments of 128 bytes and also achieve 100% coalesced global memory reads. 

 

Figure 11. A schematic diagram showing permutated global memory access. 

Figure 12 shows the case when memory addresses are misaligned consecutive 4-byte words. In this case, each memory 

address now falls into at most 5 segments of 160 bytes which results in a lower utilisation of global memory reads (80%).  

 

Figure 12. A schematic diagram showing misaligned global memory access. 

Finally, consider the case when memory addresses are scattered as shown in Figure 13. This results in N segments of N × 32 

bytes and a severe non-coalesced global memory access. 

 

Figure 13. A schematic diagram showing misaligned global memory access. 

It is therefore extremely important to aim for perfect 

address coalescing i.e., optimised address patterns. A warp 

will generally access a contiguous region of memory so it is 

necessary to avoid scattered access patterns or those with 

large strides between threads. 
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5.2. Array Flattening 

In general memory allocated dynamically on the GPU 

cannot use 2D array indexing like you would using C++ i.e., 

a 2D array declared as: Q�R��S�, must first be flattened into 

1D linear array of memory in which each element is indexed 

from the beginning of the array by determining an offset, 

Q�offset� dependent on indices R, S, and the array width. In 

general, such memory allocation utilises row-major order. 

Figure 14 shows an example of how a 2D array is flattened 

into a 1D representation using a row-major order offset. 

 

Figure 14. An example of using an offset to flatten a 2D array into 1D. 

Using linear arrays removes a great deal of the complexity 

associated with transferring a double pointer (i.e., ** or ����) 

array between the host and device. In essence, a nested deep 

copy operation is required in the copy sequence from host to 

device, such that linearising (or flattening) the data allows it 

to be referenced using only a single pointer (*). For a 3D 

array, declared as: Q�R��S��T�, a similar offset is calculated 

but now dependent on indices R, S, T and the array width and 

depth as shown in Figure 15. 

 

Figure 15. An example of using an offset to flatten a 3D array into 1D. 

5.3. Texture Cache 

Together with memory coalescing in global memory 

transfers, exploiting shared memory is a further key 

optimisation. Reusing data stored in shared memory is far 

more efficient than repeatedly loading from global memory, 

as long as it can be used efficiently within a thread block. 

However, with the increases in caching levels for the Kepler 

GK110 architecture, this has become less critical for certain 

types of algorithm [12]. For example, texture memory 

provides a surprising aggregation of capabilities including 

the ability to cache global memory (separate from register, 

global, and shared memory) and dedicated interpolation 

hardware separate from the thread processors. Texture 

memory also provides a way to interact with the display 

capabilities of the GPU. Since optimised data access is very 

important to GPU performance, the use of texture memory 

can (in the right circumstances) provide a large performance 

increase. The best performance will be achieved when the 

threads of a warp read locations that are spatially local. 

Moreover, designed primarily for graphics applications, 

textures are used more generally to maximise memory 

bandwidth in applications where global memory reads do not 

satisfy coherency constraints but nonetheless exhibit a high 

degree of spatial locality [14].  

The Kepler GK110 architecture enables applications to 

utilise texture cache when reading from global memory 

without actually using the texture reference or texture object 

APIs. This is done using LDG instruction which is like a 

global load, except that data is transported through the 

texture cache instead of the regular L1/L2 cache hierarchy. 

To allow access to such bindless textures, pointers to global 

memory must be decorated with __const__ and __restrict__ 

qualifiers. The whole point of __restrict__ is to tell the 

compiler that two or more pointer arguments will never 

overlap in memory. Two pointers alias if the memory to 

which they point overlaps, so in an ideal situation we require 

no redundant memory accesses as a result of pointer aliasing. 

By decorating a pointer with the restrict property, the 

programmer is promising the compiler that any data written 

to through that pointer is not read by any other pointer with 

the __restrict__ property. In other words, the compiler does 

not have to worry that a write to a restrict pointer will cause a 

value read from another restrict pointer to change. Pointer 

aliasing is something developers need to be extremely aware 

of on both the GPU and CPU for which proper use can 

significantly improve performance and code optimisation [13, 

15]. 

5.4. Constant Memory 

Constant memory is read only and cached on-chip and has 

only one read port, but can broadcast data from this port 

across a warp. This means that constant memory access is 

effective when all threads in a warp read the same address, 

but when threads in a warp read different addresses the reads 

are serialised. Since constant memory is cached, a read from 

constant memory costs one memory read from device 

memory only on a cache miss; otherwise, it just costs one 

read from the constant cache. That is, since constant memory 

is cached, consecutive reads of the same address will not 

incur any additional memory traffic. Constant memory is 

declared using the __constant__ keyword and must be 

declared outside of the main body of the program and the 

kernel function. Constant cache is written to only by the host 

and subsequently initialised in the main body of the program 

using cudaMemcpyToSymbol(). Constant memory is perfect 



47 Paul M. Darbyshire:  Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis   

on a Parallel Programming Platform 

for coefficients and other data that are used uniformly across 

threads [13, 15].  

6. C++ and CUDA C Algorithms 

The main body of the C++ implementation is shown in 

Algorithm 1. 

 

Achieving a high-level of performance and optimisation 

using the CUDA programming model requires careful 

attention to detail [1, 2, 16-18]. Porting from C++ to CUDA 

C involves additional coding, as well as some efficient 

manipulation of the kernel function in respect of thread 

deployment and memory management. Within the CUDA 

programming model, CUDA C code is required to initialise 

memory on the device, and to deal with the transfers of data 

to the device and back to the host after the kernel execution 

has completed. In general, there are three steps that are 

essential to the successfully execution of a kernel on the GPU. 

Firstly, data must be initialised and transferred from the host 

to the device global memory. Once the data is on the GPU, 

the kernel is executed N times and launches the required 

number of N threads for the device. When all threads have 

completed execution (enforced through synchronisation) data 

is transferred back to the host from the device. In the CUDA 

programming model, device memory is typically allocated 

using cudaMalloc()and data is transferred between host and 

device memory using cudaMemcpy depending on the data 

flow i.e., either cudaMemcpyHostToDevice or 

cudaMemcpyDeviceToHost. Memory is subsequently freed 

after completion using cudaFree(). Making efficient use of 

available memory (e.g. texture cache, constant memory) can 

reduce the amount of data that has to be physically 

transferred between host and device, which is typically the 

performance bottleneck. The algorithms for the 

implementation of the CUDA C kernel and the main body are 

shown in Algorithms 2 and 3. 

 

 

The actual performance improvement is be based on the 

execution time of each of the C++ and CUDA C 

implementations.  Here, the execution time is the difference 

between two clock statements in each of the C++ and CUDA 

C algorithms. One placed at the start, and the other at the end 

of the main looping routine (including the memory transfer in 

CUDA C). Thus, execution time represents the time taken to 

complete the entire process of a single simulation of the 

numerical solution to the hybrid continuous-discrete model. 

With CUDA C, it is important to remember that calls to kernels 

are asynchronous. Therefore, to accurately measure the elapsed 

time for a particular call or sequence of CUDA calls, it is 

necessary to synchronise the CPU thread with the GPU by 

calling cudaDeviceSynchronize() immediately before starting 

and stopping the CPU timer. cudaDeviceSynchronize() blocks 

the calling CPU thread until all CUDA calls previously issued 

by the thread are completed. The CUDA event API provides 

calls that create and destroy events, record events (timestamp), 

and convert timestamp differences into a floating point value 

i.e., milliseconds (ms) with a resolution of approximately ½ 

ms. cudaEventRecord() is used to place the start and stop 

events into the default stream i.e., stream 0. The device will 

record a timestamp for the event when it reaches that event in 

the stream. The cudaEventElapsedTime() function returns the 

time elapsed between the recording of the start and stop events. 
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7. Results and Discussion 

Usually we require a host function to verify the results 

from the kernel to check that both versions are indeed 

producing the same answer. This usually achieved by setting 

the execution configuration to <<<1, 1>>>, so that the kernel 

is forced to run with only one block and one thread. This 

emulates a sequential implementation. In addition, this is 

very useful for verifying that numeric results are bitwise 

exact from one simulation to another, especially if 

encountering order of operations issues. Table 3 shows the 

magnitude of speedup (×) of the CUDA C implementation 

over that of C++ based on execution time and for a range of 

block dimensions up to the maximum allowable threads per 

block i.e., 1,024. Table 4 shows average occupancy, memory 

bandwidth, and instruction throughput for the range of block 

dimensions. 

Table 3. Speedup (×) of CUDA C over the C++ implementation. 

 Block Dimensions (x, y, z) 

Grid Size/ Speedup (×) �U × U × U� �VW × VW × U� �VW × U × U� �VW × X × U� �WU × U × U� 

100 × 100 × 100 19.8 27.9 32.7 31.4 26.9 

200 × 200 × 200 21.1 37.6 40.8 39.5 32.0 

300 × 300 × 300 22.8 40.5 43.5 42.3 39.4 

400 × 400 × 140 23.7 44.1 46.9 45.5 40.3 

Table 4. Average occupancy, bandwidth, and throughput. 

 Block Dimensions (x, y, z) 

 �U × U × U� �VW × VW × U� �VW × U × U� �VW × X × U� �WU × U × U� 

# Threads 64 1,024 256 512 1,024 

Avg. Occupancy (%) 48.3 90.8 92.4 91.6 84.6 

Avg. Bandwidth (GB/s) 113.4 128.6 162.1 157.8 99.2 
Avg. Throughput (Gflops)  28.3 32.1 40.5 39.5 24.8 

 

Table 3 & 4 show that the optimal block dimensions are 

�16 × 4 × 4�  resulting in the best performance in terms of 

execution speed, bandwidth and throughput. Notice that 

average memory bandwidth and throughput are only 56% that 

of their theoretical peak values which suggests there are likely 

further areas of optimisation that need to be investigated. 

However, it is not that surprising since theoretical values are 

rarely achieved in reality. An optimal choice of execution 

configuration can often lead to performance benefits at the 

expense of a higher occupancy. For example, a very low 

occupancy such as the one obtained with block dimension 

�4 × 4 × 4� is clearly a bad allocation of resources and will 

generally lead to poor performance. However, the �64 × 4 ×

4 configuration resulted in a high occupancy but the lowest of 

throughput. So, it is not necessarily the case that the highest 

occupancy always results in optimum performance. Moreover, 

it is fair to say that algorithm optimisation is an exhaustive 

process i.e., involving identify an opportunity for optimisation, 

apply and testing, verify the speedup achieved, and repeating. 

It is not necessary for a programmer to spend large amounts of 

time memorising the bulk of all possible optimisation 

strategies prior to achieving reasonable speedups. Instead, 

strategies can be applied incrementally as they are understood. 

As we have seen, optimisations can be applied at various levels, 

from overlapping data transfers with computation all the way 

down to fine-tuning floating-point operations. The available 

profiling tools are invaluable for guiding this process, as they 

can help suggest a next-best course of action for the 

developer's optimisation efforts and provide references into the 

relevant portions of the optimisation section of this guide. 

When attempting to optimise CUDA C applications, it pays to 

know how to measure performance accurately and to 

understand the role that bandwidth plays in performance 

measurement. 

Further areas of improved performance and code 

optimisation are currently being explored by the authors, 

including methods such as data prefetching and 

improvements to the instruction mix. Data prefetching 

involved masking the loading of data from global memory to 

register by overlapping data access and computation. 

Instruction mix optimisation is where code is refactored to 

maximise the number of floating-point operations as opposed 

to addressing and branching. An example would be loop 

unrolling, which decreases loop iterations whilst increasing 

the number of floating-point calculations per iteration. These 

optimisations are again based on maximising the available 

memory bandwidth. 

8. Conclusions 

The main objective of this paper was to extend previous 

work by implementing a hybrid continuous-discrete model 

describing tumour-induced angiogenesis in the more realistic 

3D case. We also addressed ways in which performance can be 

optimised by making use of the GPU hardware architecture 

and the CUDA programming model. Indeed, CUDA has 

proved to be a natural programming model to deploy 

applications in a modern massively-parallel (i.e., highly-

threaded) environment. We consider several orders of 

magnitude performance increase over existing technology a 

disruptive change that can dramatically alter various aspects of 

the techniques and methods applied to computational biology. 

For example, computational tasks that previously would have 

taken a year can now complete in a few days, hour long 

computations suddenly become interactive being completed in 

seconds. Moreover, new technology will allow the tractability 

of previously intractable complex real-time processing tasks. 

Data-parallel processing maps data elements to parallel 
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processing threads. Many applications that process large data 

sets can use a data-parallel programming model to speed up 

computations. For example, 3D rendering, large sets of pixels 

and vertices are mapped to parallel threads. Similarly, image 

and media processing applications such as post-processing of 

rendered images, video encoding and decoding, image 

scaling, stereo vision, and pattern recognition can map image 

blocks and pixels to parallel processing threads. In fact, many 

algorithms can be accelerated by data-parallel processing, 

from general signal processing or physics simulation to 

computational biology. In terms of clinical research, 

developing realistic highly-complex cancer simulations using 

such technologies will lead to new therapy strategies, 

optimised drug delivery systems, interactive computer 

simulations of dynamic oncological process, and other 

advanced cancer treatment possibilities. Radiation therapies 

with ion beams can precisely target cancerous tumours, while 

leaving surrounding healthy tissue unharmed. Such targeted 

therapy leads to less invasive surgery, shorter hospital stays 

and speedier recovery times. The drawback is that 

conventional ion accelerators tend to be huge in both size and 

cost. This puts them beyond the budget for most medical 

facilities. Creating live computational simulations and adding 

physical phenomena to the algorithms was once considered 

impossible. Now, with the parallel processing power of GPUs, 

it is no longer impossible. Moreover, the race is on to 

understand how cell mutation causes cancer, which kills 

hundreds of thousands worldwide each year and is the second 

leading cause of death in the U.K. Research is focused on 

anti-cancer drug discovery pipelines using advanced 

molecular dynamics simulations powered by GPUs. 

Enormous gains in computing power are enabling a new 

framework for drug discovery utilising computer simulations 

to capture various shapes of a tumour suppressor, the protein 

called p53, known as the guardian of the genome because it 

is a key regulator of cell growth and development in normal 

cells. Indeed, computer simulations capture not just how 

proteins are built, but how they function inside the body. 

Such simulations running on GPU-accelerated computers can 

reveal new binding sites that may help cancer researchers 

create new drugs to help reactivate p53 when it mutates and 

ceases to function correctly. Clearly, the continued 

development of parallel processed computer simulations 

using GPUs is of paramount importance. Such technologies 

can clearly aid in the understanding of complex mathematical 

models and underlying biological processes, whilst also 

helping to uncover the elusive cure for cancer. 
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