

Cell Biology
2015; 3(3): 38-49

Published online October 28, 2015 (http://www.sciencepublishinggroup.com/j/cb)

doi: 10.11648/j.cb.20150303.11

ISSN: 2330-0175 (Print); ISSN: 2330-0183 (Online)

Performance Optimisations for a Numerical Solution to a
3D Model of Tumour-Induced Angiogenesis on a Parallel
Programming Platform

Paul M. Darbyshire

Department of Computational Biophysics, Algenet Cancer Research, Nottingham, UK

Email address:
rd@algenet.com

To cite this article:
Paul M. Darbyshire. Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis on a Parallel

Programming Platform. Cell Biology. Vol. 3, No. 3, 2015, pp. 38-49. doi: 10.11648/j.cb.20150303.11

Abstract: The challenging issues of cancer prevention and cure lie in the need for a more detailed knowledge of the dynamic

processes and mechanisms of cellular behaviour and tumour growth dynamics. In this paper we extend a previous 2D parallel

implementation of a continuous-discrete model of tumour-induced angiogenesis to the more realistic 3D case. In particular, we

look in-depth at available performance optimisation techniques to further improve the computational method and explore in

more detail the hardware architecture. Recent evidence clearly indicates that GPU-accelerated computing can greatly facilitate

researchers, clinicians and oncologists by performing time-saving in-silico experiments that have the potential to assist in

quantifying cellular parameters, highlight model features, and help explore new cancer treatments and therapies.

Keywords: Tumour-Induced Angiogenesis, Compute Unified Device Architecture (CUDA),

Graphical Processing Unit (GPU), High-Performance Computing (HPC)

1. Introduction

Over the last decade, high-performance computing (HPC)

has evolved dramatically, in particular because of the

accessibility to graphics processing units (GPUs) and the

emergence of GPU-CPU heterogeneous architectures, which

have led to a fundamental shift in parallel programming.

Finite difference methods (FDM), such as those developed

here, are the first port of call for solving complex biological

phenomenon described by nonlinear partial differential

equations (PDEs). However, they require intensive

computational resources which generally lead to significant

and time-consuming expense. The advantages of explicit

time-stepping in FDM over many other types of solutions

lend themselves well to exploitation in a completely data-

parallel context. In such cases, GPUs can be used to greatly

accelerate numerical simulations and offer an extremely

valuable computational technique for tackling such problems.

The compute unified device architecture (CUDA)

programming model is especially well-suited to address

problems that can be expressed as data-parallel computations.

In a previous paper the authors developed a 2D finite

difference approximation to a hybrid continuous-discrete

model of tumour-induced angiogenesis [2]. The numerical

solution was implemented in both C++ and CUDA C to

assess the performance benefits of porting from a serial to a

parallel programming platform. Results indicated a dramatic

increase in execution time between the two implementations

and also highlighted a range of potential performance

improvements available through more advanced data

manipulation and memory management techniques. In this

paper, the authors develop a 3D finite difference

approximation to the same hybrid continuous-discrete model

and implement some of these advanced features with a view

to highlighting the potential benefits of modelling cellular

and cancer dynamics whilst also highlighting the possibilities

for developing new advanced clinical research tools based on

GPU-accelerated applications. Indeed, in the last decade in

silico trials focussed on simulating the different processes of

solid tumour growth have become more readily accepted by

the clinical and oncology community. The advantages of

using GPU-accelerated programs and HPC continually

highlight the potential performance improvements in solving

complex mathematical models of biological phenomenon in

this way [1, 2].

In order to progress from the relatively harmless avascular

phase to the potentially lethal vascular state, solid tumours

must induce the growth of new blood vessels from existing

39 Paul M. Darbyshire: Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis

on a Parallel Programming Platform

ones, a process known as angiogenesis. While early models

of angiogenesis were focused on accurately replicating key

observed behaviours during the process, more recent models

have been able to test specific hypotheses and suggest useful

strategies for antiangiogenic drug development. A key

mechanism of antiangiogenic therapy is to interfere with the

process of blood vessel growth and literally starve the tumour

of its blood supply. Indeed, a new class of cancer treatments

that block angiogenesis have recently been approved and

available to treat cancers of the colon, kidney, lung, breast,

liver, brain, ovaries and thyroid [3-7]. Angiogenesis is

without doubt a complex biological phenomena and one that

at a cellular level is dynamic, spatially heterogeneous,

frequently non-linear, and spans many orders of magnitude,

both spatially and temporally. Mathematical and

computational models of vascular formation have generated a

basic understanding of the processes of capillary assembly

and morphogenesis during tumour development and growth

[8, 9]. However, by the time a tumour has grown to a size

whereby it can be detected by clinical means, there is a

strong likelihood that it has already reached the vascular

growth phase and developed its own blood circulatory

network. For this reason, a thorough understanding of the

behavioural processes of angiogenesis is essential. The

development of realistic mathematical and computational

models of cancer dynamics is a powerful method of testing

hypotheses, confirming biological experiments, and

simulating complex behaviour. The model presented here is

of a hybrid nature in which a system of couple nonlinear

partial differential equations (PDEs) describing continuous

chemical and macromolecular dynamics and a discrete

cellular automata-type model controls cell migration and

their interaction with neighbouring cells [10]. The main

objective of the paper is to extend the work developed in [2]

to the numerical solution of the hybrid continuous-discrete

model describing tumour-induced angiogenesis to the more

realistic 3D case. We also wish to address ways in which

parallel performance can be optimised by making use of the

explicit GPU hardware architecture and CUDA programming

model.

2. A Continuous-Discrete Model of

Tumour-Induced Angiogenesis

2.1. The Continuous Model

For a more detailed treatment of the biological aspects of

tumour-induced angiogenesis as well as a more rigorous

mathematical proof, readers are directed to [2, 10] and

references therein. Here we simply summarise the main

mathematical development so as to focus on the main issues

of the paper. If we denote the endothelial cell density by n,

the TAF and fibronectin concentration by c and f,

respectively the complete system of scaled coupled nonlinear

PDEs describing tumour-induced angiogenesis can be written

as [2, 10]:

��

��
= �∇�� − ∇ ∙ ���
��∇
� − �∇ ∙ ��∇�� (1)

��

��
= �� − ��� (2)

��

��
= −��
 (3)

A description of each of the parameters, and their

respective values, can be found in [2, 10]. Our system is

assumed to hold on a 3D spatial domain Ω (i.e., a volume of

tissue) with appropriate initial conditions; c(x, y, z 0), f(x, y, z

0) and n(x, y, z 0) [2, 10]. The tumour cells are assumed to be

confined within a domain Ω ∈ �0,1�� in which no-flux

(Neumann) boundary conditions are imposed on the

boundaries of Ω (see Figure 1).

Figure 1. A schematic diagram of the 3D spatial domain Ω and boundary

��.

2.2. The Discrete Model

The technique of tracing the path of an individual

endothelial cell at a sprout tip was first proposed by

Anderson et al. [11]. The method involves using standard

FDM to discretise the continuous model described in (1)-(3)

over a 3D uniform grid. Then, the resulting coefficients of

the finite difference seven-point stencil are used to generate

the probabilities of movement of an individual endothelial

cell in response to its local microenvironment. 3D stencil

computations are those in which each node in a 3D grid is

updated with a weighted average of the six neighbouring

node values. Two schematic diagrams of a 3D finite

difference seven-point stencil are shown in Figure 2.

Figure 2. Schematic diagram of the finite difference 7-point 3D stencil.

We first discretise the continuous model by approximating

the 3D domain Ω ∈ �0,1�� on a uniform grid of node length,

width and depth h, and time t by increments of size k. By

applying a forward finite difference scheme, the fully-explicit

discretised version of the continuous model can be obtained.

 Cell Biology 2015; 3(3): 38-49 40

For illustration purposes, the endothelial cell discretisation is

shown below:

�!,",#
$%&

= �!,",#
$

'(+ �!%&,",#
$

'& + �!*&,",#
$

'� + �!,"%&,#
$

'� +

�!,"*&,#
$

'+ + �!,",#%&
$

', + �!,",#*&
$

'- (4)

The coefficients P0–P6 can be thought of as being

proportional to the probabilities of endothelial movement.

That is, the coefficient P0, is proportional to the probability

of no movement, and the coefficients P1, P2, P3, P4, P5, and

P6, are proportional to the probabilities of moving left, right,

up and down, out of and into the plane, respectively. The

exact forms of P0–P6 are functions of both fibronectin and

TAF concentrations at nearby neighbouring points of an

individual endothelial cell [2, 10].

Each numerical simulation is based on an increased size of

array width i.e., a finer grained uniform 3D grid. We use a

constant iteration size of 1,000 time steps to allow for an

adequate convergence of the numerical solution. At each time

step, the numerical simulation involves solving the discrete

model to generate the seven coefficients P0–P6. Based on the

values of these coefficients, a set of seven probability ranges

are determined and then a uniform random number is then

generated on the interval [0, 1], and, depending on the range

into which this value falls, the current individual endothelial

cell will remain stationary (Ro), move left (R1), right (R2),

move up (R3), down (R4), out of (R5), or into the plane (R6).

The complete set of parameter values used for the numerical

simulation can be found in [2, 10].

3. Implementation

3.1. The Kepler GK110 Architecture

The GPU is specialised for computer-intensive, highly data

parallel computations allowing more transistors to be devoted

to data processing rather data caching and flow control. More

specifically, the GPU is especially well-suited to address

problems that can be expressed such that the same algorithm

is executed on many data elements in parallel, with high

arithmetic intensity i.e., the ratio of arithmetic operations to

memory operations. Since the algorithm is executed on many

data elements and has high arithmetic intensity, the memory

access latency can be hidden with calculations instead of big

data caches. The recent rollout of the Nvidia Kepler GK110

architecture marked a significant milestone in the evolution

of GPU-accelerated computing. By offering much higher

processing power than previous architectures and by

providing new methods to optimise and increase parallel

workload execution on the GPU, the Kepler GK110 has

further revolutionised HPC. Each of the Kepler GK110

streaming multiprocessor (SMX) units feature 192

single‐precision CUDA cores, and each core has fully

pipelined floating‐point and integer arithmetic logic units

(ALU). Figure 3 shows the major differences between the

CPU and GPU architectures in terms of ALU, cache and

dynamic random access memory (DRAM) layout [12].

Figure 3. A schematic of the CPU vs. GPU architecture [12].

Applications running on Kepler GK110 can also take

advantage of the increased number of registers available to

each thread to increase instruction level parallelism. The

Kepler GK110 features a large dedicated L2 cache memory,

double the amount of L2 available with previous

architectures. The L2 cache is the primary point of data

unification between the SMX units, servicing all load, store,

and texture requests and providing efficient, high speed data

sharing across the GPU [12]. Table 1 shows some

specifications for the hardware architecture in the Kepler GK

110 architecture.

Table 1. Specifications for the Kepler GK 110 architecture [12].

Specification Value

Warp size 32

Threads/multiprocessor 2,048

Threads/block 1,024

Global memory 3 GB

L2 cache memory 1,536 KB

Constant memory 64 KB

Read-only data cache 48 KB

The SMX schedules threads in groups of 32 parallel

threads known as warps. Each SMX features four warp

schedulers and eight instruction dispatch units, allowing four

warps to be issued and executed concurrently [12]. Figure 4

shows a schematic of how warps are scheduled in the Kepler

GK110 architecture.

Figure 4. A schematic of warp scheduling in the Kepler GK 110 architecture

[12].

The Kepler GK110 memory hierarchy is organised

similarly way to earlier architectures as shown in Figure 5

and also enables compiler‐directed use of an additional new

41 Paul M. Darbyshire: Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis

on a Parallel Programming Platform

cache for read‐only data (see Table 1).

Figure 5. Hierarchal organisation of memory in the Kepler GK 110 architecture.

When writing parallel programs, it is often necessary to

communicate values between parallel threads. The typical

way to do this in the CUDA programming model is to use

shared memory. However, the Kepler GK110 architecture

introduced a way to directly share data between threads that

are part of the same warp i.e., threads in a warp can read

other registers by using a new instruction called SHFL, or

shuffle. Firstly, it is possible to use the shuffle instruction to

free up shared memory to be used for other data. Secondly,

the shuffle instruction is faster than shared memory since it

only requires one instruction versus three for shared memory

(write, synchronise, read). Another potential performance

advantage for shuffle is that relative to older architectures,

shared memory bandwidth has doubled on Kepler devices

and the number of cores has increased by 6×; therefore, the

shuffle instruction provides another means to share data

between threads and keep the cores busy with memory

accesses that have low latency and high bandwidth.

3.2. Hardware Specifications

The hardware used for the serial C++ implementation is a

fourth generation Intel
®
 Quad Core

™
 i7-4790K 4GHz CPU

processor. The C++ implementation was developed and

compiled in Microsoft
®

Visual Studio 2012. The CUDA C++

program was also developed in Microsoft
®

Visual Studio

2012 using CUDA version 7.0 and tested on an Nvidia

GeForce
®
 GTX

TM
 780 GPU based on the Kepler GK110

architecture with Compute Capability 3.5. The Compute

Capability describes the features of the hardware and reflects

the set of instructions supported by the device as well as

other specifications, such as the maximum number of threads

per block and the number of registers per multiprocessor.

Moreover, hardware design, number of cores, cache size, and

supported arithmetic instructions are different for different

versions of Compute Capability. Higher compute capability

versions are supersets of lower (i.e., earlier) versions, so they

are backward compatible. The operating system for both

configurations is Windows 8.1. Table 2 shows some

hardware specifications for the Nvidia GeForce
®
 GTX

TM
 780

GPU.

Table 2. GPU hardware specifications.

Specification Nvidia GeForce® GTXTM 780

GPU clock speed 0.863 GHz

Memory clock rate 3.004 Ghz

CUDA cores 2,304

Memory interface 384-bit

Peak performance* 3.98 Tflops

Memory bandwidth 288.4 GB/s

* Peak single-precision floating-point performance

3.2.1. Memory Bandwidth

Bandwidth is usually used to describe the highest possible

amount of data transfer per unit time, while throughput can

be used to describe the rate of any kind of information or

operations carried out per unit time, such as, how many

instructions are completed per cycle. Limited memory

bandwidth can become a serious bottleneck to GPU

performance and while a GPU typically has far greater

memory bandwidth than a CPU, maximising the use of this

bandwidth is still a critical issue. If an algorithm spends more

time computing than transferring data, then it may be

possible to overlap these operations and completely hide the

latency associated with transferring data. On the other hand,

if the algorithm spends less time computing than transferring

data, it is important to minimise transfer between the CPU

and GPU. In general, whilst performing code optimisation, it

is important to determine how the application compares to

theoretical limits. Theoretical memory bandwidth can be

calculated using:

memory clock rate × bus interface width × data rate (5)

Since the Kepler 110 architecture relies on the graphics

double data rate random access memory type i.e., GDDR5,

the theoretical memory bandwidth for the GTX
TM

 780 GPU

card is 288.4 GB/s �= 3.004 × �384/8� × 2�. Note that bus

interface width has been converted to bytes.

3.2.2. Instruction Throughput

Two types of floating-point numbers are typically used in

algorithms, single-precision floats and double precision

doubles. Single precision requires 32 bits (4 bytes) of storage

 Cell Biology 2015; 3(3): 38-49 42

and has an accuracy around 7 decimal places. Double

precision requires 64 bits (8 bytes) and achieves an accuracy

around 16 decimal places. Such large discrepancies between

the two types of numbers have a significant impact on

numerical simulations. That is, nine decimal places of

information are lost when using only single-precision, and

when implementing iterative procedures, such as FDM, this

can introduce large errors. Results obtained using double-

precision calculations will frequently differ from the same

operation performed using single-precision arithmetic due to

rounding issues. Therefore, it is important to be sure to

compare values of like precision and to express the results

within a certain tolerance rather than assuming them to be

exact. Indeed, we can estimate a lower-bound to the

performance of our CUDA C implementation by estimating

the (giga) floating point operations per second (Gflops).

Gflops are a measure of processing speed, equal to the

number of operations the CPU and GPU can perform per

second. In general, a processor can do a certain number of

Gflops every time its internal clock ticks (or cycle). It is

important to note that there is quite a difference between

single-precision and double-precision Gflops. A processor

that is capable of many single-precision Gflops may only be

capable of a small fraction of that many double-precision

calculations. We assume the following general formula to

determine the number of Gflops for our CPU and GPU

processors, given by:

clock speed × # cores × Klops per clock cycle (6)

For the GTX
TM

 780 GPU card, we get 3977 Gflops �=

0.863 × 2304 × 2� i.e., 3.98 Tflops single-precision. With

the GK110 architecture, double-precision performance is

fixed at 1/24 that of single-precision performance i.e., 166

Gflops double-precision. Based on these values, the

estimated performance improvement between serial and

parallel implementations, in terms of Gflops calculations

alone, should be at least in the region of 31×. Note that, in

addition to accuracy, the relative conversion between double

and floating point numbers (and vice versa) can also have a

detrimental effect on performance.

We can also measure the performance of an algorithm in

terms of its compute to memory access ratio (CMA). Many

numerical algorithms, such as FDM, have a very low CMA

of around 1.0, implying there is a read or write to memory for

every floating-point operation. For the GTX
TM

 780 GPU card,

which has a memory bandwidth of 288.4 GB/sec. At single

precision (4 bytes) the maximum transfer rate will be 72.1

Gflops. With a CMA of 1.0, this gives a calculated flop rate

of 72.1 Gflops, far less than the theoretical maximum of 3.5

Tflops. In order to achieve optimal memory bandwidth, it is

vital to ensure that memory Is effectively managed, which

when correctly managed, can lead to substantial increases in

data transfer rates, and is vital for delivering performance

that is close to the theoretical maximum.

In a GPU, a SMX relies on thread-level parallelism to

maximise utilisation of its functional units. Utilisation is

therefore directly linked to the number of resident warps. The

number of clock cycles between an instruction being issued

and being completed is defined as instruction latency. Full

compute resource utilisation is achieved when all warp

schedulers have an eligible warp at every clock cycle. This

ensures that the latency of each instruction can be hidden by

computation from other warps. Whilst bandwidth is usually

used to describe the highest possible amount of data transfer

per unit time, while throughput can be used to describe the

rate of any kind of information or operations carried out per

unit time, such as, how many instructions are completed per

cycle. Another useful performance metric is the ratio of

instructions to bytes. For the GTX
TM

 780 GPU card, the

theoretical ratio is 13.8 instructions: 1 byte (= 3.98/288.4) i.e.,

if an application issues more than 13.8 instructions for every

byte accessed, then it is bound by arithmetic performance.

However, most GPU-accelerated workloads, are bound by

memory bandwidth.

4. The CUDA Programming Model

The CUDA programming model involves running code on

two different platforms concurrently; a host system (the CPU)

and a device (the GPU). While GPUs are frequently

associated with graphics, they are also powerful arithmetic

engines capable of running thousands of lightweight threads

in parallel. This capability makes them well suited to

computations that can leverage parallel execution. Nowadays,

modern GPUs can support up to 2,304 active threads

concurrently per multiprocessor. So, for a GPU with 12

multiprocessors, this leads to more than 27,000 concurrently

active threads. Threads on a CPU are generally heavyweight

entities. The operating system must swap threads on and off

CPU execution channels to provide multithreading capability.

Context switches (i.e., when two threads are swapped) are

subsequently slow and expensive. On GPUs, threads are

extremely lightweight. In a typical system, thousands of

threads are queued up for work in sets of 32 threads each (i.e.,

warps). If the GPU must wait on one warp of threads, it

simply begins executing work on another. Since separate

registers are allocated to all active threads, no swapping of

registers or other state need occur when switching among

GPU threads. Resources stay allocated to each thread until it

completes its execution. In short, CPU cores are designed to

minimise latency for one or two threads at a time, whereas

GPUs are designed to handle a large number of concurrent,

lightweight threads in order to maximise throughput. The

host system and the device each have their own distinct

attached physical memories. As the host and device

memories are separated by the PCI Express (PCIe) bus, data

in the host memory must be communicated across the bus to

the device memory. Such continually data transfers usually

result in memory bottlenecks which can lead to serious

performance issue when developing GPU-accelerated

applications.

The CUDA programming model provides an application

program interface (API) that exposes the underlying GPU

architecture; a collection of single instruction, multiple data

43 Paul M. Darbyshire: Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis

on a Parallel Programming Platform

(SIMD) processors capable of executing thousands of threads

in parallel. A version of SIMD used by GPUs is the single

instruction, multiple threads (SIMT) architecture in which

multiple threads execute an instruction sequence. In CUDA C,

an instruction sequence is written into a specific function

known as a kernel that can be executed on a device N times

in parallel by N different CUDA threads, asynchronously.

Unlike a C function call, all CUDA kernel launches are

asynchronous so that control returns to the CPU immediately

after the CUDA kernel is invoked. An execution

configuration defines both the number of threads that will

run the kernel plus their arrangement in a 1D, 2D, or 3D

computational grid. In its simplest form, the kernel is defined

using the following CUDA C syntax [13, 14]:

__global__ kernel<<<dimGrid, dimBlock>>>();

Threads are grouped into blocks and blocks are grouped

into grids as shown schematically in Figure 6. There is a

limit to the number of threads per block, for the Kepler

GK110 architecture a thread block may contain up to 1,024

threads. On the GPU, each multiprocessor is responsible for

handling one or more blocks in a grid which is further

divided into a number of streaming processors each handling

one or more threads in a block.

Figure 6. A schematic representation of threads, blocks and grids.

In general we want to size our blocks and grids to match

data requirements and simultaneously maximise occupancy.

Occupancy measures the efficiency to which we assign how

many threads are active at any one time. The major factors

influencing occupancy are efficient memory allocation and

thread block size. Clearly, thread block size should always be

a multiple of 32, since threads are scheduled in warps. For

example, if we have a block size of 50 threads, the GPU will

still issue commands to 64 threads and this would just be

waste of resources. It is often necessary to try and size blocks

based on the maximum numbers of threads and blocks

corresponding to the Compute Capability of the GPU. The

theoretical occupancy is the ratio of active warps to the

maximum warps for a SMX. Each multiprocessor on a device

has a set of N registers available for use by CUDA thread

programs. These registers are a shared resource that is

allocated amongst thread blocks executing on a

multiprocessor. The CUDA compiler attempts to minimise

register usage to maximise the number of thread blocks that

can be active simultaneously. If a program tries to launch a

kernel for which the registers used per thread times the block

size is greater than N, the launch will fail. Varying the size of

the thread block is a standard optimisation to find the best

occupancy rates. Moreover, high occupancy rates help to

hide the latency in accessing global memory.

A block is 1D, 2D, or 3D with the maximum size of the x,

y, and z dimensions being 1,024, 1,024, and 64, respectively,

such that M × N × O ≤ 1,024 i.e., the maximum number of

threads per block. Blocks are subsequently organised into a

1D, 2D or 3D grid with the maximum size of the x, y, and z

dimensions being 2
31

-1, 65,535, and 65,535, respectively. An

example schematic of a block and grid set up is shown in

Figure 7. There are also a maximum of 65,536 registers

available per block.

Figure 7. An example CUDA thread grid and block.

5. Performance Optimisation

Optimising the performance of CUDA applications most

often involves optimising data accesses which includes the

appropriate use of the various available memory spaces (see

Figure 8) of the GPU architecture. Indeed, appropriate use of

these memory spaces can have significant performance

implications for almost every CUDA application.

 Cell Biology 2015; 3(3): 38-49 44

Figure 8. Schematic of the arrangement of available memory spaces.

Note that Figure 8 includes blocks labelled local memory

within the multiprocessor. Local memory implies local in the

scope of each thread. It is a memory abstraction, not an

actual hardware component. In actuality, local memory gets

allocated in global memory by the compiler and delivers the

same performance as any other global memory region. The

local and global memory spaces are not cached which means

each memory access to global (or local) memory generates

an explicit memory access.

5.1. Global Memory Coalescing

The latency in accessing global memory can be

considerable. Although the bandwidth of global memory

seems high, around 200-300 GB/s, it is very slow compared

to the Tflop performance capability of a typical GPU. Global

memory is implemented with dynamic random access

memories (DRAM) using a parallel access process i.e., each

time a memory location is accessed, a number of other

memory locations (that include the requested location) are

also accessed. If an application utilises data from consecutive

accessed locations before accessing other locations, the

DRAM can achieve near peak global memory bandwidth.

Therefore, global memory delivers the highest memory

bandwidth only when the global memory accesses can be

coalesced. The performance penalty for non-coalesced

memory operations varies according to the size of the data

type (e.g., 4-bytes). Each active block is split into SIMD

groups of threads; warps. Each warp contains the same

number of threads i.e., warp size, which are executed by the

multiprocessor in a SIMD manner. This means each thread

within a warp is broadcast the same instruction from the

instruction store, which directs the thread to perform some

operation or manipulation of local and/or global memory.

Active warps are time-sliced; the thread scheduler

periodically switches from one warp to another to maximise

the use of the multiprocessor's hardware resources (see

Figure 9). The order of execution of the warps within a block

and of blocks themselves is undefined, which means they can

occur in any order. Moreover, all threads in a warp execute

the same instruction. When all threads in a warp execute a

load instruction, the hardware checks if the threads are

accessing consecutive memory locations. Ideally, thread 0

45 Paul M. Darbyshire: Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis

on a Parallel Programming Platform

accesses location n, thread 1 accesses location n + 1, ...,

thread 31 accesses location n + 31, then all accesses are

coalesced and combined into one single contiguous access.

Consider the case when the warp scheduler requests 32,

aligned consecutive 4-byte words from global memory. Each

memory address will fall into 4 segments of 128 bytes each

as shown in Figure 10.

Figure 9. A schematic diagram of thread scheduling.

Figure 10. A schematic diagram showing consecutive global memory access.

The consecutive alignment scenario in Figure 10 will result in 100% coalesced global memory access. Now consider the

case when the warp scheduler requests 32, permutated consecutive 4-byte words from global memory as shown in Figure 11.

Each memory address will still fall into 4 segments of 128 bytes and also achieve 100% coalesced global memory reads.

Figure 11. A schematic diagram showing permutated global memory access.

Figure 12 shows the case when memory addresses are misaligned consecutive 4-byte words. In this case, each memory

address now falls into at most 5 segments of 160 bytes which results in a lower utilisation of global memory reads (80%).

Figure 12. A schematic diagram showing misaligned global memory access.

Finally, consider the case when memory addresses are scattered as shown in Figure 13. This results in N segments of N × 32

bytes and a severe non-coalesced global memory access.

Figure 13. A schematic diagram showing misaligned global memory access.

It is therefore extremely important to aim for perfect

address coalescing i.e., optimised address patterns. A warp

will generally access a contiguous region of memory so it is

necessary to avoid scattered access patterns or those with

large strides between threads.

 Cell Biology 2015; 3(3): 38-49 46

5.2. Array Flattening

In general memory allocated dynamically on the GPU

cannot use 2D array indexing like you would using C++ i.e.,

a 2D array declared as: Q�R��S�, must first be flattened into

1D linear array of memory in which each element is indexed

from the beginning of the array by determining an offset,

Q�offset� dependent on indices R, S, and the array width. In

general, such memory allocation utilises row-major order.

Figure 14 shows an example of how a 2D array is flattened

into a 1D representation using a row-major order offset.

Figure 14. An example of using an offset to flatten a 2D array into 1D.

Using linear arrays removes a great deal of the complexity

associated with transferring a double pointer (i.e., ** or ����)

array between the host and device. In essence, a nested deep

copy operation is required in the copy sequence from host to

device, such that linearising (or flattening) the data allows it

to be referenced using only a single pointer (*). For a 3D

array, declared as: Q�R��S��T�, a similar offset is calculated

but now dependent on indices R, S, T and the array width and

depth as shown in Figure 15.

Figure 15. An example of using an offset to flatten a 3D array into 1D.

5.3. Texture Cache

Together with memory coalescing in global memory

transfers, exploiting shared memory is a further key

optimisation. Reusing data stored in shared memory is far

more efficient than repeatedly loading from global memory,

as long as it can be used efficiently within a thread block.

However, with the increases in caching levels for the Kepler

GK110 architecture, this has become less critical for certain

types of algorithm [12]. For example, texture memory

provides a surprising aggregation of capabilities including

the ability to cache global memory (separate from register,

global, and shared memory) and dedicated interpolation

hardware separate from the thread processors. Texture

memory also provides a way to interact with the display

capabilities of the GPU. Since optimised data access is very

important to GPU performance, the use of texture memory

can (in the right circumstances) provide a large performance

increase. The best performance will be achieved when the

threads of a warp read locations that are spatially local.

Moreover, designed primarily for graphics applications,

textures are used more generally to maximise memory

bandwidth in applications where global memory reads do not

satisfy coherency constraints but nonetheless exhibit a high

degree of spatial locality [14].

The Kepler GK110 architecture enables applications to

utilise texture cache when reading from global memory

without actually using the texture reference or texture object

APIs. This is done using LDG instruction which is like a

global load, except that data is transported through the

texture cache instead of the regular L1/L2 cache hierarchy.

To allow access to such bindless textures, pointers to global

memory must be decorated with __const__ and __restrict__

qualifiers. The whole point of __restrict__ is to tell the

compiler that two or more pointer arguments will never

overlap in memory. Two pointers alias if the memory to

which they point overlaps, so in an ideal situation we require

no redundant memory accesses as a result of pointer aliasing.

By decorating a pointer with the restrict property, the

programmer is promising the compiler that any data written

to through that pointer is not read by any other pointer with

the __restrict__ property. In other words, the compiler does

not have to worry that a write to a restrict pointer will cause a

value read from another restrict pointer to change. Pointer

aliasing is something developers need to be extremely aware

of on both the GPU and CPU for which proper use can

significantly improve performance and code optimisation [13,

15].

5.4. Constant Memory

Constant memory is read only and cached on-chip and has

only one read port, but can broadcast data from this port

across a warp. This means that constant memory access is

effective when all threads in a warp read the same address,

but when threads in a warp read different addresses the reads

are serialised. Since constant memory is cached, a read from

constant memory costs one memory read from device

memory only on a cache miss; otherwise, it just costs one

read from the constant cache. That is, since constant memory

is cached, consecutive reads of the same address will not

incur any additional memory traffic. Constant memory is

declared using the __constant__ keyword and must be

declared outside of the main body of the program and the

kernel function. Constant cache is written to only by the host

and subsequently initialised in the main body of the program

using cudaMemcpyToSymbol(). Constant memory is perfect

47 Paul M. Darbyshire: Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis

on a Parallel Programming Platform

for coefficients and other data that are used uniformly across

threads [13, 15].

6. C++ and CUDA C Algorithms

The main body of the C++ implementation is shown in

Algorithm 1.

Achieving a high-level of performance and optimisation

using the CUDA programming model requires careful

attention to detail [1, 2, 16-18]. Porting from C++ to CUDA

C involves additional coding, as well as some efficient

manipulation of the kernel function in respect of thread

deployment and memory management. Within the CUDA

programming model, CUDA C code is required to initialise

memory on the device, and to deal with the transfers of data

to the device and back to the host after the kernel execution

has completed. In general, there are three steps that are

essential to the successfully execution of a kernel on the GPU.

Firstly, data must be initialised and transferred from the host

to the device global memory. Once the data is on the GPU,

the kernel is executed N times and launches the required

number of N threads for the device. When all threads have

completed execution (enforced through synchronisation) data

is transferred back to the host from the device. In the CUDA

programming model, device memory is typically allocated

using cudaMalloc()and data is transferred between host and

device memory using cudaMemcpy depending on the data

flow i.e., either cudaMemcpyHostToDevice or

cudaMemcpyDeviceToHost. Memory is subsequently freed

after completion using cudaFree(). Making efficient use of

available memory (e.g. texture cache, constant memory) can

reduce the amount of data that has to be physically

transferred between host and device, which is typically the

performance bottleneck. The algorithms for the

implementation of the CUDA C kernel and the main body are

shown in Algorithms 2 and 3.

The actual performance improvement is be based on the

execution time of each of the C++ and CUDA C

implementations. Here, the execution time is the difference

between two clock statements in each of the C++ and CUDA

C algorithms. One placed at the start, and the other at the end

of the main looping routine (including the memory transfer in

CUDA C). Thus, execution time represents the time taken to

complete the entire process of a single simulation of the

numerical solution to the hybrid continuous-discrete model.

With CUDA C, it is important to remember that calls to kernels

are asynchronous. Therefore, to accurately measure the elapsed

time for a particular call or sequence of CUDA calls, it is

necessary to synchronise the CPU thread with the GPU by

calling cudaDeviceSynchronize() immediately before starting

and stopping the CPU timer. cudaDeviceSynchronize() blocks

the calling CPU thread until all CUDA calls previously issued

by the thread are completed. The CUDA event API provides

calls that create and destroy events, record events (timestamp),

and convert timestamp differences into a floating point value

i.e., milliseconds (ms) with a resolution of approximately ½

ms. cudaEventRecord() is used to place the start and stop

events into the default stream i.e., stream 0. The device will

record a timestamp for the event when it reaches that event in

the stream. The cudaEventElapsedTime() function returns the

time elapsed between the recording of the start and stop events.

 Cell Biology 2015; 3(3): 38-49 48

7. Results and Discussion

Usually we require a host function to verify the results

from the kernel to check that both versions are indeed

producing the same answer. This usually achieved by setting

the execution configuration to <<<1, 1>>>, so that the kernel

is forced to run with only one block and one thread. This

emulates a sequential implementation. In addition, this is

very useful for verifying that numeric results are bitwise

exact from one simulation to another, especially if

encountering order of operations issues. Table 3 shows the

magnitude of speedup (×) of the CUDA C implementation

over that of C++ based on execution time and for a range of

block dimensions up to the maximum allowable threads per

block i.e., 1,024. Table 4 shows average occupancy, memory

bandwidth, and instruction throughput for the range of block

dimensions.

Table 3. Speedup (×) of CUDA C over the C++ implementation.

 Block Dimensions (x, y, z)

Grid Size/ Speedup (×) �U × U × U� �VW × VW × U� �VW × U × U� �VW × X × U� �WU × U × U�

100 × 100 × 100 19.8 27.9 32.7 31.4 26.9

200 × 200 × 200 21.1 37.6 40.8 39.5 32.0

300 × 300 × 300 22.8 40.5 43.5 42.3 39.4

400 × 400 × 140 23.7 44.1 46.9 45.5 40.3

Table 4. Average occupancy, bandwidth, and throughput.

 Block Dimensions (x, y, z)

 �U × U × U� �VW × VW × U� �VW × U × U� �VW × X × U� �WU × U × U�

Threads 64 1,024 256 512 1,024

Avg. Occupancy (%) 48.3 90.8 92.4 91.6 84.6

Avg. Bandwidth (GB/s) 113.4 128.6 162.1 157.8 99.2
Avg. Throughput (Gflops) 28.3 32.1 40.5 39.5 24.8

Table 3 & 4 show that the optimal block dimensions are

�16 × 4 × 4� resulting in the best performance in terms of

execution speed, bandwidth and throughput. Notice that

average memory bandwidth and throughput are only 56% that

of their theoretical peak values which suggests there are likely

further areas of optimisation that need to be investigated.

However, it is not that surprising since theoretical values are

rarely achieved in reality. An optimal choice of execution

configuration can often lead to performance benefits at the

expense of a higher occupancy. For example, a very low

occupancy such as the one obtained with block dimension

�4 × 4 × 4� is clearly a bad allocation of resources and will

generally lead to poor performance. However, the �64 × 4 ×

4 configuration resulted in a high occupancy but the lowest of

throughput. So, it is not necessarily the case that the highest

occupancy always results in optimum performance. Moreover,

it is fair to say that algorithm optimisation is an exhaustive

process i.e., involving identify an opportunity for optimisation,

apply and testing, verify the speedup achieved, and repeating.

It is not necessary for a programmer to spend large amounts of

time memorising the bulk of all possible optimisation

strategies prior to achieving reasonable speedups. Instead,

strategies can be applied incrementally as they are understood.

As we have seen, optimisations can be applied at various levels,

from overlapping data transfers with computation all the way

down to fine-tuning floating-point operations. The available

profiling tools are invaluable for guiding this process, as they

can help suggest a next-best course of action for the

developer's optimisation efforts and provide references into the

relevant portions of the optimisation section of this guide.

When attempting to optimise CUDA C applications, it pays to

know how to measure performance accurately and to

understand the role that bandwidth plays in performance

measurement.

Further areas of improved performance and code

optimisation are currently being explored by the authors,

including methods such as data prefetching and

improvements to the instruction mix. Data prefetching

involved masking the loading of data from global memory to

register by overlapping data access and computation.

Instruction mix optimisation is where code is refactored to

maximise the number of floating-point operations as opposed

to addressing and branching. An example would be loop

unrolling, which decreases loop iterations whilst increasing

the number of floating-point calculations per iteration. These

optimisations are again based on maximising the available

memory bandwidth.

8. Conclusions

The main objective of this paper was to extend previous

work by implementing a hybrid continuous-discrete model

describing tumour-induced angiogenesis in the more realistic

3D case. We also addressed ways in which performance can be

optimised by making use of the GPU hardware architecture

and the CUDA programming model. Indeed, CUDA has

proved to be a natural programming model to deploy

applications in a modern massively-parallel (i.e., highly-

threaded) environment. We consider several orders of

magnitude performance increase over existing technology a

disruptive change that can dramatically alter various aspects of

the techniques and methods applied to computational biology.

For example, computational tasks that previously would have

taken a year can now complete in a few days, hour long

computations suddenly become interactive being completed in

seconds. Moreover, new technology will allow the tractability

of previously intractable complex real-time processing tasks.

Data-parallel processing maps data elements to parallel

49 Paul M. Darbyshire: Performance Optimisations for a Numerical Solution to a 3D Model of Tumour-Induced Angiogenesis

on a Parallel Programming Platform

processing threads. Many applications that process large data

sets can use a data-parallel programming model to speed up

computations. For example, 3D rendering, large sets of pixels

and vertices are mapped to parallel threads. Similarly, image

and media processing applications such as post-processing of

rendered images, video encoding and decoding, image

scaling, stereo vision, and pattern recognition can map image

blocks and pixels to parallel processing threads. In fact, many

algorithms can be accelerated by data-parallel processing,

from general signal processing or physics simulation to

computational biology. In terms of clinical research,

developing realistic highly-complex cancer simulations using

such technologies will lead to new therapy strategies,

optimised drug delivery systems, interactive computer

simulations of dynamic oncological process, and other

advanced cancer treatment possibilities. Radiation therapies

with ion beams can precisely target cancerous tumours, while

leaving surrounding healthy tissue unharmed. Such targeted

therapy leads to less invasive surgery, shorter hospital stays

and speedier recovery times. The drawback is that

conventional ion accelerators tend to be huge in both size and

cost. This puts them beyond the budget for most medical

facilities. Creating live computational simulations and adding

physical phenomena to the algorithms was once considered

impossible. Now, with the parallel processing power of GPUs,

it is no longer impossible. Moreover, the race is on to

understand how cell mutation causes cancer, which kills

hundreds of thousands worldwide each year and is the second

leading cause of death in the U.K. Research is focused on

anti-cancer drug discovery pipelines using advanced

molecular dynamics simulations powered by GPUs.

Enormous gains in computing power are enabling a new

framework for drug discovery utilising computer simulations

to capture various shapes of a tumour suppressor, the protein

called p53, known as the guardian of the genome because it

is a key regulator of cell growth and development in normal

cells. Indeed, computer simulations capture not just how

proteins are built, but how they function inside the body.

Such simulations running on GPU-accelerated computers can

reveal new binding sites that may help cancer researchers

create new drugs to help reactivate p53 when it mutates and

ceases to function correctly. Clearly, the continued

development of parallel processed computer simulations

using GPUs is of paramount importance. Such technologies

can clearly aid in the understanding of complex mathematical

models and underlying biological processes, whilst also

helping to uncover the elusive cure for cancer.

References

[1] Darbyshire, P. M. Coupled Nonlinear Partial Differential
Equations Describing Avascular Tumour Growth Are Solved
Numerically Using Parallel Programming to Assess
Computational Speedup. Computational Biology and
Bioinformatics. Vol. 3, No. 5, 65-73. 2015.

[2] Darbyshire, P. M. The Numerical Solution of a Hybrid
Continuous-Discrete Model of Tumour-Induced Angiogenesis
is Implemented in Parallel and Performance Improvements
Analysed. European Journal of Biophysics. Vol. 7, No. 4, 167-
182. 2015.

[3] Albini, A., Tosetti, A. F., Li, W. V., Noonan, D. M. and Li, W.
W. Cancer prevention by targeting angiogenesis Nature
Reviews Clinical Oncology 9, 498-509. 2012.

[4] Ferrara, N. and Kerbel, R. S. Angiogenesis as a therapeutic
target. Nature, 438 967–974. 2005.

[5] Carmeliet, P. Angiogenesis in life, disease and medicine.
Nature, 438: 932–936. 2005.

[6] Bouard S. de, Herlin, P. and Christensen, J. G. Antiangio-
genic and anti-invasive effects of sunitinib on experimental
human glioblastoma. Neuro-Oncology, Vol. 9, No. 4, 412–
423. 2007.

[7] Norden, A. D, Drappatz, J. and Wen P. Y. Novel
antiangiogenic therapies for malignant gliomas. The Lancet
Neurology, Vol. 7, No. 12, 1152–1160. 2008.

[8] Peirce, S. M. Computational and mathematical modeling of
angiogenesis. Microcirculation, 15(8), 739–751. 2008.

[9] M. Scianna, M., Bell. C. and Preziosi L. A review of
mathematical models for the formation of vascular networks.
Oxford Centre for Collaborative Applied Mathematics. 2012.

[10] Anderson, A.R.A. and Chaplain, M. Continuous and discrete
mathematical models of tumour-induced angiogenesis,
Bulletin of Mathematical Biology, 60, 857-900. 1998.

[11] Anderson, A., B. D. S. Sleeman, I. M. Young and B. S.
Griffiths. Nematode movement along a chemical gradient in a
structurally heterogeneous environment: II. Theory.
Fundamental and Applied Nematology, 20, 165–172. 1997.

[12] NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110. Whitepaper. NVIDIA Corporation. 2012.

[13] Nvidia Corporation. CUDA C programming guide. Version
6.0. 2014.

[14] CUDA C BEST PRACTICES GUIDE. NVIDIA Corporation.
2015.

[15] Cheng, J., Grossman, M and McKercher, Ty. Professional
CUDA C Programming. Wrox. 2014.

[16] Venkatasubramanian, S. and Vuduc, R. W. Tuned and wildly
asynchronous stencil kernels for hybrid CPU/GPU systems. In
Proceedings of the Association of Computing Machinery
International Conference on Supercomputing, New York.
2009.

[17] Amorim, R., Haase, G., Liebmann, M. and Weber dos Santos,
R. Comparing CUDA and OpenGL implementations for a
Jacobi iteration. In Proceedings of High Performance
Computing and Simulation Conference, Berlin. 2009.

[18] Cecilia, J. M., Garcıa, J. M. and Ujaldon, M. CUDA 3D
stencil computations for the Jacobi method. Springer, 173-183.
2012.

