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Abstract: In recent years, the method of wavelet analysis has been opened to researchers. Wavelet analysis analyses data at 

different level of decomposition and can capture the characteristics of data series in all decomposition level. In this research 

work, data was collected on the medical records of the inflow of patients for medication on Malaria fever and Anemia from 

Grimard Catholic Hospital Anyigba, Kogi State, Nigeria (1993 to 2014). The data was analysed by wavelet methods to detect 

the aberrant observations over the period under study for the two diseases respectively using a proposed threshold. A total of 

ten and nine Aberrant Observations (AOs) were detected from the analysis of the original data collected on Malaria Fever and 

Anemia respectively. At the first and second level of decomposition (resolution), a total of seven and one AO(s) were 

respectively detected for both Malaria Fever analysis and Anemia analysis. The results obtained showed that the AOs detected 

in the analysis of the original data maintain the same or closely the same positions as that obtained from the analysis of the 

decomposed data for the two diseases. It was observed that the inflow of patients in the months of September, October and 

November into the hospital for medication on the two diseases were more. The Time plot for Malaria Fever and Anemia in the 

appendix respectively showed that there was no month that fewer patients reported to the hospital for medication. 
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1. Introduction 

Wavelet analysis (also called wavelet theory or just 

wavelet) has attracted much attention recently in data 

processing. It has been successfully applied in many field 

such as transient data analysis, image analysis, 

communications systems and other data processing 

applications. Most of the data in practice are time domain 

data in their raw format. That is, whatever the data is 

measuring is a function of time. Wavelet analysis techniques 

provide multi-scale analysis of the data as a sum of 

orthogonal data corresponding to different time scales. So, it 

is called time-scale analysis. It provides multi-level analysis 

to analyse the data at different levels. 

Section 2 looks at the research method of wavelet analysis 

which uses both resolution and location in analyzing data 

completely, defines Aberrant Observations (AOs) and how 

thesewill be detected using a proposed threshold which is the 

main goal of this paper. Section 3 discusses the analysis and 

interpretation of results while Section 4 dwell on the 

summary of findings, conclusion and recommendations. 

1.1. Purpose of the Study 

In many institutions where real data are collected over 

time, analysing the data to detect AOs has always not been in 

effect. Basically this is as a result of many of these 

institutions not knowing the importance of this. The purpose 

of this study is to use wavelet analysis to discover the rate 

and period within the year when these diseases occur more or 

less frequently. 

1.2. Aim and Objectives of the Study 

The aim of this study is to detect the rate of inflow of 

patients to Grimard Catholic Hospital Anyigba, Kogi State 

for medical attention on Malaria Fever and Anemia with the 

following objectives; To 
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1. Propose attest statistic or threshold for the detection of 

aberrant observations. 

2. Use wavelet analysis to detect the period in which these 

diseases occur frequency (AOs) within the year. 

1.3. Scope and Source of Data 

The data collected for this research work is a primary data 

on Malaria Fever and Anemia from Grimard Catholic 

Hospital Anyigba, Kogi State Nigeria from September 1993 

to December 2014 on monthly bases. 

2. Research Methodology 

2.1. Wavelet Analysis 

Wavelets are fairly new family of basic functions that are 

used to express and approximate other functions. Wavelet 

coefficients are capable of revealing aspects of the data that 

other techniques might miss, aspects such as changes in 

variance, level changes, and discontinuities in functions. 

Thus, due to the essentialities of detecting AOs in signals (or 

a sequence of data), wavelet analysis is well suited and 

comes in handy for AO detection [1, 4, 10, 16, 20, 34]. 

The traditional way of analysing a data in the frequency 

domain is the well-known Fourier analysis which applies 

sinusoidal waves as the transformation filter [11, 13]. The 

main drawback of this transformation is that it cannot 

maintain the information of the time domain and will be 

unsuitable for data with irregular behaviour such as spikes or 

data breaks. The wavelet transformation adopts a basis of 

spatially localized functions as its transformation filter [3, 5]. 

Then based on wavelet filtering of the original data through 

shifting and dilations, the wavelet transformation can capture 

the characteristics of data series both in the frequency 

domain and the time domain. It is an excellent tool for the 

analysis of the non-stationary data showing time-localized 

discontinuities or abrupt changes. By wavelet multi-

resolution analysis (MRA) which combines resolutions from 

both time and frequency domains [13, 19, 23] the data can be 

decomposed into different scales where the non-stationarity 

of the data can be analysed according to their own resolution 

levels: long run trends correspond to the low frequency 

resolution and the spikes such as the AOs can be captured in 

the high frequency resolution. 

Aberrant Observations (AOs) are commonly encountered 

in data and their presence can seriously distort model 

identification, parameter estimation and forecasting. [12] 

defined an AO as “an outlying observation”, or is one that 

appears to deviate markedly from other members of a sample 

from which it occurs. In almost every (if not all) real data, 

there are presences of AOs: and most noticeably in large data 

sets, AOs are inevitable. AOs are described as observations 

which are unusual, but not necessarily errors. Detection of 

AOs helps reveal important and valuable information from 

large data sets. In the field of meteorology, for example, 

spatial AOs can be associated with disastrous natural events 

such as tornadoes, hurricanes, and forest fires. 

One of such fields where detection of AOs can be applied 

is the medical field [25, 29]. The number of patients coming 

to the hospital for medical attention can be viewed to follow 

a fluctuating pattern over time. These fluctuations can be as a 

result of AOs. AOs as pointed out earlier, does not 

necessarily connotes errors but contain valuable information 

about the data hence, detecting the aberrant observations 

becomes paramount. Many method of AOs detection exist, 

such as statistical based AO detection, deviation based AO 

detection, wavelet based AO detection [26] and others. In this 

research work, the wavelet based AO detection is of interest. 

Wavelet is a waveform of limited duration that has an 

average value of zero. Wavelet analysis allows data analysis 

with different resolution match to its scale [32]. It is used to 

analyze aspects like trends, break points, discontinuity at 

higher derivatives and self–symmetry, compression or 

denoising of the data without appreciable degradation [31]. 

The term wavelets is used to refer to a set of orthonormal 

basis functions generated by dilation and translation of a 

compactly supported scaling function (or father wavelet), Ø, 

and a mother wavelet, ψ, associated with an r-regular multi-

resolution analysis of ��(ℝ) (the space of square integrable 

function) [9, 15, 17]. A variety of different wavelet families 

now exist that combine compact support with various degrees 

of smoothness and numbers of vanishing moments, and these 

are now the most intensively used wavelet families in 

practical applications in statistics. Hence, many types of 

functions encountered in practice can be sparsely (i.e. 

parsimoniously) and uniquely represented in terms of a 

wavelet series. Wavelet bases are therefore not only useful by 

virtue of their special structure, but they may also be (and 

have been!) applied in a wide variety of contexts. 

The special structure of wavelet bases may be appreciated 

by considering the generation of an orthonormal wavelet 

basis for functions g∈ ��(ℝ) (the space of square integrable 

real functions) [27]. 

Following the approach of [6] which is that most often 

adopted in applications of wavelets in statistics, we start with 

two related and specially chosen, mutually orthonormal, 

functions or parent wavelets: the scaling function, Ø, and the 

mother wavelet ψ. Other wavelets in the basis are then 

generated by translations of the scaling function Ø and 

dilations and translations of the mother wavelet ψ by using 

the relationships 

Ø��,	
��=2��/�Ø(2��� − �), 

��	(t)=2�/�ψ(2�� − ��,j=��,��+1,…,k∈ℤ												(1) 

For some fixed �� ∈ℤ, where ℤ is the set of integers. 

The scaling function Ø resembles a kernel function and the 

mother wavelet ψ is a well-localized oscillation (hence the 

name wavelet). A unit increase in j in expression (1) (i.e. 

dilation) has no effect on the scaling function (Ø��,	  has a 

fixed width) but packs the oscillations of ��,	 into half the 

width (doubles its ‘frequency’ or, in strict wavelet 

terminology, its scale or resolution) [28]. A unit increase in k 

in expression (1) (i.e. translation) shifts the location of both 
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Ø��,	and ��,	, the former by a fixed amount (2���) and the 

latter by an amount proportional to its width (2��). 
Given the above wavelet basis, a function g∈ ��(ℝ) is then 

represented in a corresponding wavelet series as 

g(t) = ∑ ���,		∈� Ø��,	
��+ ∑ ∑ ��,	��,	
��	∈������ ,     (2) 

with���,	=< �,Ø��,	 > and ��,	=< �,��,	 >, where <. , . > is 

the standard �� inner product of two functions: 

< � , �� >=∫"� 
����
��dt 

The wavelet expansion (2) represents the function g as a 

series of successive approximations. The first approximation 

is achieved by the sequence of scaling terms ���,	Ø��,	 (each 

intuitively being a smoothed ‘average’ in the vicinity of 2���,	). The oscillating features which cannot be represented 

with sufficient accuracy in this way are approximated in 

‘frequency’ and in correspondingly fine detail by sequence of 

wavelet terms ��,	��,	 (each intuitively representing ‘smooth 

wiggly structure’ of ‘frequency’2� in vicinity of 2���). 

In many practical situations, the function to be represented 

as a wavelet series may be defined to be zero outside a finite 

interval, such as the unit interval [0,1]. Adapting wavelets to 

a finite interval requires some modifications. The obvious 

approach of simply vanishing the underlying function outside 

the interval will introduce artificial discontinuities at the end 

points [30]. However, in practice the most commonly used 

approaches to adapting wavelet analysis to the interval are 

based on periodic, symmetric or anti-symmetric boundary 

handling. 

For simplicity in exposition, we shall assume that we are 

working with periodized wavelet bases on [0,1]. 

Ø��,	#
(t)=∑ Ø��,	
� − ��	  and ��,	# =∑ ��,	
� − ��	 , for 

t∈[0,1], 

Where Ø��,	
�� and ��,	
�� are defined in (1) above. 

For any �� ≥ 0, the collection {Ø��,	#
,k=0,1,…,2��-1; ��,	# , 

j≥ �� ≥ 0, k=0,1,…,2� -1} is then an orthonormal basis of �� ([0,1]). The superscript “p” will be suppressed from the 

notation for convenience. 

The idea underlying such an approach is to express any 

function g∈ ��([0,1]) in the form; 

g(t)=∑ ���,	Ø��,	
���&'� 	�(  + ∑ ∑ ��,	��,	
��,�&� 	�(����' �� ≥ 0, 

t∈[0,1], 

where 

���,	=< �,Ø��,	 >=∫ �
�� ( Ø��,	
��)�, �� ≥ 0, k=0,1,…,2��-1 

and 

��,	=< �,��,	 >=∫ �
�� ( ��,	
��)�, j≥ �� ≥ 0, k=0,1,…,2�-1. 

A usual assumption underlying the use of periodic 

wavelets is that the function to be expanded is assumed to be 

periodic. However, such an assumption is not always realistic 

and periodic wavelet exhibit a poor behaviour near the 

boundaries (they create high amplitude wavelet coefficients 

in the neighborhood of the boundaries when the function is 

not periodic). However, periodic wavelets are commonly 

used because the numerical implementation is particularly 

simple. While as [18] has pointed out, this computational 

simplification affects only a fixed number of wavelet 

coefficients at each level of resolution. 

Wavelet analysis can be classified into the discrete wavelet 

transform and the continuous wavelet transform. 

2.1.1. Wavelet Bases 

The selection of any arbitrary pair of mutually orthogonal 

parent wavelets followed by the reproducing process (1) 

discussed above, will not automatically result in a basis for ��(ℝ), let alone a ‘good’ basis in the sense of providing a 

parsimonious representation of functions in terms of their 

corresponding wavelet series clearly, the parent wavelets 

need to be specially chosen if that is to be the case. Different 

wavelet bases exist, such as the [6, 14, 21, 22, 33], etc. 

The simplest wavelet basis for ��(ℝ) is the Haar basis [14] 

which uses a parent couple given by 

Ø(t)=* 1, 0 ≤ � ≤ 1	0, -�ℎ/0�12/  

Ψ(t)=3 1, 0 ≤ � ≤ 1/2−1, 1/2 ≤ � ≤ 10, -�ℎ/0�12/   

The Haar basis is applied to the discrete wavelet transform 

discussed above to obtain the discrete scaling coefficients, ���,	 and the discrete wavelet coefficients, ��,	. 
2.1.2. Multi-Resolution Analysis (MRA) 

Multi-resolution analysis, as implied by its name, 

analyzes the data at different frequencies with different 

resolutions. Multi-resolution analysis is designed to give 

good time resolution and poor frequency resolution at high 

frequencies and good frequency resolution and poor time 

resolution at low frequencies [13]. This approach makes 

sense especially when the data at hand has high frequency 

components for short durations and low frequency 

components for long durations. 

“Wavelet analysis examines the data at different 

frequencies with different resolutions. That is to say, it uses 

wider window for low frequency and uses narrower window 

for high frequency analysis. This feature especially works 

well for data whose high frequency components have short 

durations and low frequency components have long 

durations” [24]. 

2.1.3. Advantages of Wavelet 

1. Denoising of the Signal or data: Approximate 

coefficients are containing low frequency components 

while detail coefficients contain the high frequency 

components [30]. When, we discard all high frequency 

information, we lose many of the information of 

original signal’s sharpest features. Denoising is done by 
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using suitable approach called ‘thresholding’. In this 

approach detail coefficients are discarded when it 

exceeds certain limit. Denoised signal is reconstructed 

by using both the coefficients. 

2. Detecting long term evaluation: Wavelet analysis 

may be used to detect the overall tread of the signal. 

As the approximation level increases the trend 

becomes clearer. Trend represents the slowest part of 

the signal. In terms of wavelet analysis, as the scale 

increases, resolution decreases. So, it produces better 

estimate of unknown trend. In terms of frequency, 

successive approximations possess progressively less 

high frequency information. With the higher 

frequencies removed, what is left is the overall trend 

of the signal. 

3. Splitting signal components: The wavelet transform is 

used to split the signal in terms of its detail and 

approximate coefficients. The approximate coefficients 

represent the outlines and the detail coefficients 

represent detailed information. The detail coefficients 

are used to notice high frequency components and 

approximate coefficients are used to notice low 

frequency components. 

4. Detecting discontinuities and breakdown points: These 

analyses are used to know at what exact instance the 

signal change occurs i.e. site of change, type of change, 

amplitude of change and discontinuities. By using detail 

coefficients at different level we can identify that the 

measurement and state noise. So by using wavelet 

transform we are able to detect the break down points. 

5. Multiscale analysis: Wavelet technique provides 

Multiscale analysis of the signal as a sum of orthogonal 

signals corresponding to different time scale. So it is 

time scale analysis. 

6. Compression: The wavelet transform denoised the 

signal by applying appropriate thresholding rule. 

Thresholding means removing the coefficients which 

are responsible for noise. So because of reduction in 

coefficients the signal is compressed without any 

original signal degradation. 

2.2. Thresholding 

Donoho, D. L., et al. (1993) [7] propose a threshold 4 

based on the following result: 

Result: Let 56  be independently, identically distributed 

(iid) standard normal random variables. Define 

78={9:;6� ,8|56 |≤ <2=-�>}. 

Then 

?8=P(78)→0, n→ ∞ 

In addition, if B8
��= {9:;6� ,8 |56 |> � + <2=-�>}. 

Then P( B8
�� )< /�DEE . That motivates the following 

threshold: 

4F= GH<2=-�>, 

Which [7, 8] call universal. This threshold is one of the 

first proposed and provides an easy, fast, and automatic 

thresholding. The rationale is to remove all wavelet 

coefficients that are smaller than the expected maximum of 

an assumed independently and identically distributed normal 

noise sequence of given size. There are several possibilities 

for the estimator, GH. Almost all methods involve the wavelet 

coefficients of the finest scale. The signal-to-noise ratio is 

smallest at high resolutions in a wavelet decomposition for 

almost all reasonably behaved signals. 

2.2.1. Some Standard Estimators Are 

1. GH�= 
 IE� ∑ 
)8� ,6 − )̅��K/�6� , or a more robust. 

2. GH�= 
 (.LMNOMAD({)8� ,6 , 1 = 1, Q/2}), where n-1 is the 

highest level. 

2.2.2. Proposed Wavelet Threshold Method 4 = G
2 log
>�� /� is the threshold originally suggested by 

[2, 8, 29]. Whereas the proposed threshold is 

Z=
U&�UV&

W j X�Y�Z8 j

 

Which can be obtained as follows 

Given the data series {[\}, 

1. Calculate the mean of [\. 
2. Calculate the standard deviation Gof [\. 
3. Calculate Z as above and j =1,2,3,………..J 

representing the level of wavelet decomposition. 

4. Perform step 1 to 3 on the original series and on 

different level of wavelet coefficient J of interest. 

It should be noted that Z is assumed to follow a normal 

distribution and can have possible values in the range [-

1,1]. Any observation outside this range is considered as an 

AO. Observations lesser than -1 are said to be AOs with 

lower values and observations greater than 1 are said to be 

AOs with higher values when compared with the threshold 

value. This is also true for the compressed data by wavelet 

analysis. 

3. Analysis and Interpretation 

In this chapter, a concise analysis of the data collected for 

this study is analyzed by wavelet methods. This analysis is 

carried out with the aid of a statistical package called R and 

an appropriate interpretation follows. 

A complete rundown of the analysis by R is presented in 

the appendix. 

3.1. Analysis for Malaria Fever 

The results obtained from the analysis of the Malaria fever 

data at different resolution levels are summarized in the table 

below: 
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Table 1. Results of the analysis of Malaria fever. 

Resolution level AO figure AO position AO original value Month of occurrence 

256 

1.065422297 27 179 Nov 1995 

1.212408775 38 194 Oct 1996 

1.094819593 39 182 Nov 1996 

1.055623199 62 178 Oct 1998 

1.290801563 86 202 Oct 2000 

1.369194352 98 210 Oct 2001 

1.143815086 111 187 Nov 2002 

1.447587140 122 218 Oct 2003 

1.222207874 135 195 Nov 2004 

1.104618692 146 183 Oct 2005 

128 

1.352158400 14 179 Nov 1995 

1.674957161 20 182 Nov 1996 

1.043394367 32 149 Nov 1998 

-1.160058050 49 210 Oct 2001 

1.464436230 56 187 Nov 2002 

-1.440752625 61 218 Oct 2003 

1.338123671 68 195 Nov 2004 

64 1.03187710 22 202 Oct 2000 

At the first level of decomposition, the set of the AO location is S={14, 20, 32, 49, 56, 61, 68}. These are the location of potential AOs. 

3.2. Analysis for Anemia 

The results obtained from the analysis of the Anemia data at different resolution levels are summarized in the table below: 

Table 2. Results of the analysis of Anemia. 

Resolution level AO figure AO position AO original value Date of occurrence 

256 

1.006763100 38 79 Oct 1996 

1.006763100 85 79 Sep 2000 

1.278808211 97 92 Sep 2001 

1.195102023 111 88 Nov 2002 

1.195102023 122 88 Oct 2003 

1.132322382 133 85 Sep 2004 

1.069542741 145 82 Sep 2005 

1.153248929 147 86 Nov 2005 

1.006763100 206 79 Oct 2010 

128 

1.352158400 14 59 Nov 1995 

1.674957161 20 71 Nov 1996 

1.043394367 32 69 Nov 1998 

-1.16005805 49 92 Sep 2001 

1.464436230 56 88 Nov 2002 

-1.440752625 61 88 Oct 2003 

1.338123671 68 49 Nov 2004 

64 1.03187710 22 79 Sep 2000 

At the first level of decomposition, the set of the AO location is S={14, 20,32,49,56,61,68}. These are the locations of potential AOs. 

3.3. Interpretation 

3.3.1. Malaria Fever 

The set of the AO location for the original data is 

S={27,38,39,62,86,98,111,122,135,146}, corresponding to 

the observations 179, 194, 182, 178, 202, 210, 187, 218, 195 

and 183 respectively. These observations can be traced to 

their various years and months of occurrence. Observation 

179 occurred in November of 1995, observation 194 

occurred in October of 1996, observation 182 occurred in 

November of 1996, observation 178 occurred in October of 

1998, observation 202 occurred in October of 2000, 

observation 210 occurred in October of 2001, observation 

187 occurred in November of 2002, observation 218 

occurred in October of 2003, observation 195 occurred in 

November of 2004 and observation 183 occurred in October 

of 2005. 

At the first level of decomposition, it can be observed that 

the aberrant observations from the compressed data on the 

original data are 179, 182, 149, 210, 187, 218 and 195 

respectively. All of these aberrant observations are also 

picked out as AOs from the analysis of the original data 

except for the observation 149 which is close to the aberrant 

observation 178. 

At the second level of decomposition, there is only one 

aberrant observation present. The AO is at location 22. 

Therefore, the location of the AO is 44 or 43 in the first level 

of decomposition and 85 or 86 (corresponding to location 43 

in the first level of decomposition) or, 87 or 88 
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(corresponding to location 44 in the first level of 

decomposition) in the original data. Out of these points, 

location 86 corresponding to observation 202 in the original 

data is an AO. 

3.3.2. Anemia 

The set of the AO location for the original data is 

S={38,85,97,111,122,133,145,147,206}, corresponding to 

the observations 79, 79, 92, 88, 88, 85, 82, 86 and 79 

respectively. These observations can be traced to their 

various years and months of occurrence. Observation 79 

occurred in October of 1996, September of 2000 and October 

of 2010. Observation 92 occurred in September of 2001, 

observation 88 occurred in November of 2002 and October 

2003, observation 85 occurred in September of 2004, 

observation 82 occurred in September of 2005 and 

observation 86 occurred in November of 2005. 

At the first level of decomposition, it can be observed that 

the aberrant observations from the compressed data on the 

original data are 59, 71, 69, 92, 88, 88 and 49 respectively. 

The observations 92, 88, and 88 respectively are aberrant 

observations in the original data. However, observations 71 

and 49 are not aberrant points in the original data but are 

close to the aberrant points 79 and 85 respectively. 

Furthermore, observations 59 and 69 which are picked as 

AOs are not outlying points in the original data and are 

farther away from an aberrant point in the original data. 

At the second level of decomposition, there is only one 

aberrant observation present. The AO is at location 22. 

Therefore, the location of the AO is 44 or 43 in the first level 

of decomposition and 85 or 86 (corresponding to location 43 

in the first level of decomposition) or, 87 or 88 

(corresponding to location 44 in the first level of 

decomposition) in the original data. Out of these points, 

location 85 corresponding to observation 79 in the original 

data is an AO. 

4. Summary of Findings, Conclusion and 

Recommendations 

In this chapter, we present a summary of the analysis 

carried out, make conclusions based on our findings and 

recommend potential solutions to reduce the rate of 

infections of the disease, Malaria Fever and Anemia. 

4.1. Summary of Findings 

This research work was carried out on two diseases 

(namely; Malaria fever and Anemia), with data collected 

from Grimard Catholic Hospital Anyigba, Kogi State from 

September 1993 to December 2014. Wavelet based approach 

to outlier detection was carried out on the data as presented 

in chapter four of this research work. This approach was 

carried out separately on each of the disease. 

The results obtained from the analysis of Malaria fever 

indicates that there are ten aberrant points when the original 

data was analyzed. The months and years of their occurrence 

were stated in the interpretation following the analysis, with 

October 2003 recording the most inflow of patients for 

medication in the hospital. The first level of decomposition 

on the original data picked seven aberrant points, with six of 

them exactly the same as that from the analysis on the 

original data. The second level of decomposition on the 

original data picked only one AO which was traced to be 

observation 202 in the original data. 

The result obtained from the analysis of Anemia indicated 

that there were nine AOs for the analysis of the original data. 

The months and corresponding years of occurrence were duly 

recorded in the interpretation that followed it. The analysis 

from the first level decomposition of the original data picked 

seven aberrant points, where three of them are exactly the 

same as that obtained from the analysis of the original data. 

Two of those points are close to an aberrant observation in 

the original data while the other two are not. The second 

level of decomposition analysis on the original data yielded 

only one aberrant location which was traced to be 

observation 79 in September of 2000. 

For both analyses, there are no aberrant locations to the 

left (that is no negative aberrant position) on the analyzed 

original data. It then means that there is not a month that 

fewer persons than expected came for medication over the 

observed years. 

4.2. Conclusion 

It is evident from the analysis of this study that the inflow 

of patients for medication on Malaria fever and Anemia are 

similar. There was no time that lower number of patients 

came in for medication over the period under study. This can 

be vividly seen from Figures 1 and 2 in the appendix, again it 

can be observed that the aberrant points fell between the 

months September, October and November. 

The analysis on Malaria fever showed that the aberrant 

observations are only those where more patients came in for 

medication. Since the original data at different level of 

decomposition maintain the same or approximately the same 

location of AO with that of the analysis for the original data, 

the importance of wavelet via the multi-resolution analysis 

has been established. The AOs were detected in the months 

of October and November. This is due to the fact that water 

logs can be found in every place possible since there is no 

much rain at that time for the water to run. Mosquitoes can 

easily breed in such water if not treated or drained and 

thereby multiplying the risk of infection by the malaria 

parasite. 

The analysis on Anemia also indicates only those where 

more patients came in for medication as AOs. By 

implication, no fewer numbers of patients came in for 

medication at any time under the stipulated time of the study. 

Since the original data at different level of decomposition 

maintain the same or approximately the same location of AO 

with that of the analysis for the original data, the 

practicability of wavelet analysis via multi-resolution 

analysis is emphasized. The AOs were detected in the months 

of September, October and November. This could be as a 
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result of poor dietary intake and/or absorption of iron or 

absorption of vitamin (A, B-12, folic acid and others) 

because of poverty, malaria, reproduction (excessive blood 

loss during menstruation, delivery and postpartum period; too 

many pregnancies), bacterial or viral infections (peptic 

ulcers, gastritis, diarrhea), contamination by heavy metals 

(leads) in the environment, lack of access to services like 

sanitation services, trained birth attendants to manage 

bleeding during delivery, etc. 

However, from the study it is evident that in more recent 

year, there is a considerable decline in the inflow of patients 

to the hospital for medication owing to the fact that health 

programs for awareness of these diseases are in effect at least 

to some extent. 

4.3. Recommendation 

In situations where there are data that are transient and 

dyadic which is always the with medical data, wavelet 

method of multi-resolution analysis can be adapted to detect 

AOs in such data to reduce the cumbersomeness. 

Appendix 

 

Figure 1. Time plot for Malaria. 

 

Figure 2. Time plot for Anemia. 
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