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Abstract: Clustering plays a particularly fundamental role in exploring data, creating predictions and to overcome the 

anomalies in the data. Clusters that contain parallel, identical characteristics in a dataset are grouped using reiterative algorithms. 

As the data in real world is rising day by day so the challenges of perceiving and interpreting the consequential mass of data, 

which often consists of millions of measurements are increased by the intricacy of a huge number of genes of biological networks. 

To addressing this challenge, we use clustering algorithms. In this study, we provided a comparative study of the four most 

popular clustering algorithms: K-Means, PAM, Agglomerative Hierarchical and DIANA and these are evaluated on eight real 

cancer (four Affymetrix and four cDNA) gene data and simulated data set. The comparative results based upon seven popular 

cluster validity indices: Average Silhouette Index, Corrected rand Index, Variation of Information, Dunn Index, 

Calinski-Harabasz Index, Separation Index, and Pearson Gamma. We determine that PAM is best for Affymetrix data set and 

DIANA is best for cDNA dataset among these four clustering algorithms. This study provides practical evaluation frameworks 

for accessing clustering results on gene expression cancer datasets. 

Keywords: Microarray, Clustering Algorithm, Gap Statistic, Validity Indices 

 

1. Introduction 

Microarrays technology can concurrently measures the 

thousands of genes expression level within a particular 

mRNA biological sample and across collections of all related 

samples [1]. Such technology can be used to compare the 

level of gene expression in order to identify diagnostic or 

prognostic genes, classify genes, and monitor the response to 

therapy. For these reasons, microarrays technology are 

considered important tools for discovery in the medical 

community. A large number of genes and the complexity of 

biological networks greatly increase the challenges of 

comprehending and interpreting the resulting mass of data, 

which often consists of millions of measurements [2]. A first 

step toward addressing this challenge is the use of clustering 

techniques, which is essential in the data mining process to 

reveal natural structures and identify interesting patterns in 

the underlying data. 

In data mining, there are two learning approaches- 

Supervised and Unsupervised learning. Clustering is 

unsupervised learning and defined as it is the task of 

grouping a set of observations into subsets (called clusters) 

so that observations in the same cluster are similar in some 

sense. Clustering techniques have extensively contribute in 

the various fields including, artificial intelligence, pattern 

recognition, bioinformatics, segmentation and machine 

learning. An appropriate Clustering algorithm is highly 

demanded to extract hidden information from co-expression 

analysis of enormous genome data [3]. In that case, a 
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common task is to compare the Clustering algorithms for 

gene expression datasets. 

Generally single channel microarrays (Affymetrix) and 

double channel microarrays (cDNA) are two types of 

platforms where the gene expression microarray technology 

is existing and these datasets are significant to cluster both 

genes and samples [4, 5]. The above types of datasets are 

usually used for gene based clustering and sample based 

clustering. The sample based clustering only conducted in 

this study. And in sample based clustering genes are treated 

as features while samples are treated as objects and samples 

are partitioned into homogeneous groups. 

There are numerous broadly used Clustering algorithms 

are already developed to capture the overall feature of high 

dimensional variable datasets. K-Means [6], Partitioning 

Around Medoids (PAM) [7], Agglomerative Hierarchical 

methods [8] and Divisive Analysis Methods (DIANA) [9] are 

more popular between them. Therefore this paper performs a 

comparative analysis of above four clustering algorithms. 

The performance of theses clustering algorithms is compared 

in terms of accuracy and efficiency through seven validity 

indices [10] (Average Silhouette Width, Corrected Rand 

Index, Variation of Information, Dunn Index, 

Calinski-Harabasz Index, Separation Index and Pearson 

Gamma). Since in this study, some packages (cluster, 

clusterCrit, clusterSim, limma, fpc and ggplots2, Clus_Stat 

etc.) were used with R 3.2.5 version. 

2. Materials and Methods 

2.1. The Gap Statistic 

The gap statistic [11] is used for finding an optimal number 

of clusters (K) in a dataset and also gives the idea behind their 

approach was to find a way to standardize the comparison of 

���	�� with a null reference distribution of the data, i.e. a 

distribution with no obvious clustering. Their estimate for the 

optimal number of clusters k is the value for which ���	�� 

falls the farthest below this reference curve. This formula for 

calculating the gap statistic is: 

��	
��
 � �
 � ����	��
 � ���	�� 

Where �
  denotes the expectation under n sample size 

from the reference distribution. The estimated will be the 

value maximizing ��	
��
  after taking the sampling 

distribution into account. 

2.2. Algorithms 

2.2.1. The K-Means Algorithm (KM) 

The k-means algorithm [6] is one of the simplest 

unsupervised learning algorithms to classify a given data set 

through a certain number of clusters (assume k clusters) static 

a priori. To decrease the complexity of grouping data it can be 

run multiple times. How this algorithm works that are 

explained in Figure 1. 

 

Figure 1. Principle flow of k-means algorithm. 

2.2.2. The Partitioning Around Medoids (PAM) Algorithm 

The k-means algorithm is considerate to outliers because 

an object with exceptionally large value may substantially 

change the distribution of data. In this algorithm, a medoid 

can be used instead of the mean value of compelling the 

objects in a cluster which is the most centrally located object 

in a cluster. Based on the standard of reducing the sum of the 

differences between each object and its consistent reference 

point can still be performed as the partitioning method and 

this forms can perform on the basis of k-Medoids and it is 

called. Partitioning Around Medoids [7]. The basic strategy 

of PAM clustering algorithms is to find k clusters in n objects 

by first randomly judgment a representative object (the 
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medoids) for each cluster are showed in Figure 2. 

 

Figure 2. Principle flow of PAM Algorithm. 

2.2.3. Agglomerative Hierarchical Clustering Algorithm 

(AHC) 

Agglomerative hierarchical clustering or bottom-up 

clustering method start with each object presenting a cluster, 

and then the methods gradually merge theses clusters into 

large ones [8, 12]. These algorithms start with each object 

presenting a cluster, and then the methods gradually merge 

theses clusters into large ones. For each of the successive 

iteration it agglomerates (merges) the closest pair of clusters 

by satisfying some similarity criteria, until all of the data is in 

one cluster that are clarified in Figure 3. 

 

Figure 3. Principle flow of AHC Algorithm. 

2.2.4. Divisive Analysis Clustering (DIANA) 

Divisive Analysis Clustering [9] is a hierarchical clustering 

technique which constructs the hierarchy in the inverse order 

and this approaches is the reversal algorithm of Agglomerative 

Hierarchical Clustering. One larger cluster consisting of all n 

objects split into two clusters until finally all clusters, comprise 

of single objects which is illustrated in Figure 4. 

 

Figure 4. Principle flow of DIANA Algorithm. 

2.3. Clustering Validity Indices 

Cluster validity indices [10] are functions that help a user 

answer the question of whether a particular clustering of the 

data is better than an alternative clustering. For unsupervised 

clustering, where partitions are made without reference to 

external classes, these cluster validity metrics must rely only 

on internal measures of the data. Several such validity 

metrics exist, such as within-cluster distances (should be low) 

and between-cluster distances (should be high). Several 

cluster validity indices are briefly discussed in Table 1. 

Table 1. Short Description of Validity Indices. 

Validity Indices Functions Descriptions 

Average Silhouette Width 

(ASW) 

1
� � ���
 � ���


�������
, ���
�
�

���
 Its values within [−1, 1]. The optimal value is the highest. 

Corrected Rand Index (CRI) ,
/

2 22 2

1
/

2 2 22 2 2

i j ji

i j i j

j ji i

i j i j

n ba n

b ba a n

       −           
        

           −              
              

∑ ∑ ∑

∑ ∑ ∑ ∑

 

Its values within [−1, 1]. The optimal value is the highest. 

Variation of Information (VI)  !�"
 � #�", "/
% &  !�"/
 � #�", "/
% Its values within [0, 1]. The optimal value is the lowest. 



 Biomedical Statistics and Informatics 2020; 5(1): 20-25 23 

 

Validity Indices Functions Descriptions 

Dunn Index (DI) /

( , )
m in { m in { } } ;1 , ;

m a x ( )

d i j
i j n

d k
≤ ≤  

Its values within [0, 1]. The optimal value is the highest. 

Calinski-Harabasz Index (CH)  '(�)*�+,
	/'(�)*�+-
%.  �/	 � 1
/	�/	 � �
% Its values within [0, ∞]. The optimal value is the highest. 

Separation Index (SI) 
2 (  X j  -  V i ) ^ 2

1 1

* ( ) ^ 2m i n

m n
du i j

i j

N d

∑ ∑
= =

 Its values within [0, ∞]. The optimal value is the lowest. 

Pearson Gamma (PG) 
	(d;	m
, 	0	�1	'2*	divergence vector, m is binary 

vector 
Its values within [0, 1]. The optimal value is the highest. 

 

2.4. Data Sets 

The datasets present different values for features such as 

type of microarray chip (second column), tissue type (third 

column), number of samples (fourth column), number of 

classes (fifth column), number of samples within the 

classes (sixth column), dimensionality (seventh column) 

and (last column) shows the dimensionality after feature 

selection. Short description of these datasets in are 

presented in Table 2. 

Table 2. Short description of Cancer Data Sets. 

Name of Datasets Chip Tissue N C Dist. Classes M d 

Chowdary [13] Affy Breast 104 2 62, 42 22283 182 

Pomeroy-V1 [14] Affy Brain 34 2 25, 9 7129 857 

Golub-V2 [15] Affy Bone marrow 72 3 38, 9, 25 7129 1877 

Nutt-V1 [16] Affy Brain 50 4 14, 7, 14, 15 12625 1377 

Bittner [17] cDNA Skin 38 2 19, 19 8067 2201 

Risinger [18] cDNA Endometrium 42 4 13, 3, 19, 7 8872 1771 

Tomlins-V2 [19] cDNA Prostate 92 4 27, 20, 32, 13 20000 1288 

 

3. Results and Discussions 

3.1. Simulated Data Analysis 

To check the performance of clustering method it 

introduced a simulated data set that has 150 rows as genes and 

8 columns as sample. First 1-50 gene are high1y expressed, 

51-100 gene are medium expressed and last 101-150 gene 

present low expressed in terms of intensity level. The 

simulated data are generated from normal distribution N (5, 

12). Therefore we introduce three cluster as three main effect. 

Figure 5 represents gap statistic and observed that when the 

number of cluster is 3 than the Gap statistic gives the optimal 

value. Therefore we may conclude that three clusters are 

presented in the simulation data. 
 

Figure 5. Gap Statistic of Simulated data set. 

Table 3. Average validation score of simulation data for different clustering methods. 

Alg. ASW CRI VI DI CH PG SI N* 

KM 0.346469 0.960277 0.112456 98.62022 0.254336 1.58735 0.625650 4 

PAM 0.337935 0.920752 0.243079 95.88044 0.211840 1.41413 0.692231 2 

AHC 0.346063 0.941045 0.152512 98.42486 0.254336 1.55375 0.702224 2 

DIANA 0.346469 0.960263 0.112456 98.62012 0.254336 1.58735 0.625550 3 

[N*=Total number of Optimal Indices]. 

The analysis of the simulation data result presented in 

Table 3 and we see that there are maximum numbers of 

validity indices satisfied by K-Means followed by DIANA 

clustering algorithms. So we can say that K-means and 

DIANA are the best clustering methods than PAM and 

Agglomerative Hierarchical algorithm for simulated data. 

3.2. Comparative Results of K-means, PAM, AHC and 

DIANA for Affymetrix Datasets 

We applied the all clustering methods to the 4 set of 

affymetrix real datasets and also check their accuracy 

through several indices are given in Table 4 along with the 



24 Md. Bipul Hossen and Md. Rabiul Auwul:  Comparative Study of K-Means, Partitioning Around Medoids, Agglomerative  

Hierarchical, and DIANA Clustering Algorithms by Using Cancer Datasets 

graphical technique as in Figure 6. 

Table 4. Average validation score of Affymetrix datasets for different clustering methods. 

Alg. ASW CRI VI DI CH PG SI N* 

KM 0.305645 0.12716 1.04765 0.46476 19.3129 0.64567 35.4125 1 

PAM 0.169554 0.22672 1.04201 0.44581 6.33014 0.34439 31.9314 3 

AHC 0.304799 0.12976 1.04217 0.45420 19.2508 0.64596 35.2290 1 

DIANA 0.406875 0.03670 0.96125 0.76425 9.84709 0.60761 55.1780 2 

[N*=Total number of Optimal Indices]. 

 

Figure 6. Bar plot of the total number of optimal indices satisfied by 

different clustering methods for Affymetrix data. 

Table 4 demonstrate that the comparative analysis of four 

clustering algorithm and this analysis will evaluate the several 

measurements of indices. For K-Means and Ag. Hierarchical 

clustering we see only one optimal index were performed 

better. In DIANA clustering algorithm there are two indices 

performed better but in PAM clustering algorithm we see there 

are three indices performed better. Maximum numbers of 

validity indices satisfied by PAM clustering algorithm. Figure 

6 also represents the comparative analysis and it shows that the 

maximum number of optimal indices happened in PAM 

clustering algorithm among others. Therefore we may 

conclude that PAM clustering algorithm is the best followed 

by DIANA, K-Means, and Agglomerative Hierarchical 

methods for Affymetrix datasets. 

3.3. Comparative Results of K-means, PAM, AHC and 

DIANA for cDNA Datasets 

We applied all clustering methods to the 4 set of cDNA 

real datasets and check their accuracy through several indices 

are given in Table 5 along with the graphical technique as in 

Figure 7. 

Table 5. Average validation score of cDNA datasets for different clustering methods. 

Alg. ASW CRI VI DI CH PG SI N* 

KM 0.101433 0.092254 1.835807 0.441071 7.722119 0.419621 35.01233 1 

PAM 0.082616 0.105567 1.660156 0.393937 6.480427 0.362082 33.00171 1 

AHC 0.086476 0.118176 1.687551 0.418354 7.231679 0.344757 35.636 1 

DIANA 0.139261 0.027782 1.613097 0.509219 6.275163 0.554526 40.2396 4 

[N*=Total number of Optimal Indices]. 

 

Figure 7. Bar plot of the total number of optimal indices satisfied by 

different clustering methods for cDNA data. 

Table 5 shows that the comparative analysis of four 

clustering algorithm according to the several measurements 

of indices. We observed that for DIANA clustering algorithm 

maximum number of validity indices performed better but in 

others clustering algorithm only one indices performed better. 

Figure 7 also represents the comparative analysis and it 

shows that the maximum number of optimal indices 

happened in DIANA clustering algorithm among others. 

Therefore we may conclude that DIANA clustering 

algorithm is the best algorithm among the others for cDNA 

datasets. 

4. Conclusions 

Cluster analysis problem has always interested scientists as 

it deals with the grouping of objects having common 

properties and it run as a first step of data summary and 

grouping genes in a microarray gene expression data analysis. 

As we show here a comparative study of four clustering 

algorithms applied on the simulated data and eight clinical 

cancer gene expression datasets. Our results reveal that, 

K-means and DIANA clustering methods perform well for 

simulated data. The PAM gives the best performance for 

Affymetrix datasets. For cDNA datasets, the DIANA 

clustering exhibited the best performance in terms of 

recovering the true structure of the datasets. To the best of our 

knowledge, the comparative study of K-means, PAM, 
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Agglomerative Hierarchical clustering and DIANA with 

several validity indices as Average Silhouette Width, 

Corrected rand Index, Variation of Information, Dunn Index, 

Calinski-Harabasz Index, Separation Index, and Pearson 

Gamma are poorly documented in the literature. 
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