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Abstract: Various gene signatures of chemosensitivity in breast cancer have been identified. When used to build predictors 

of have chemosensitivity, many of them have their prediction accuracy around 80%. Identifying gene signatures to build high 

accuracy such predictors is a prerequisite for their clinical tests and applications. To elucidate the importance of each 

individual gene in a signature is another pressing need before such signature could be tested in clinical settings. In this study, 

Genetic Algorithms (GAs) and Sparse Logistic Regression (SLR) were employed to identify two signatures. The first had 28 

probe sets selected by GA from the top 65 probe sets that were highly overexpressed between pathologic compete response 

(pCR) and residual disease (RD) and was used to build a SLR predictor of pCR (SLR-28). The second had 86 probe sets 

(Notch-86) selected by GA from Notch signaling pathway and was used to develop a SLR predictor of pCR (SLR-Notch-86). 

These two predictors tested on a training set (n=81) and validation set (n=52) had very precise predictions measured by 

accuracy, specificity, sensitivity, positive predictive value and negative predictive value with their corresponding P value all 

zero. Furthermore, these two predictors discovered 12 important genes in the 28 probe set signature and 14 important genes in 

the Notch-86 signature. Our two signatures produced superior performance over a signature in a previous study, demonstrating 

the potential of GA and SLR in identifying robust gene signatures in chemo response prediction in breast cancer. 
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1. Introduction 

Breast cancer is a complex disease of different molecular 

subtypes with distinct genetic alterations and clinical 

outcomes. In current practice, chemotherapy is applied 

empirically, and not all patients benefit equally, illustrating 

the imperative needs for a more personalized approach in 

cancer treatment. The ability to predict whether an 

individual patient will benefit from a specific therapy is of 

great clinical significance. The estrogen receptor status can 

be used to guide the decisions on hormonal therapy. The 

gene expression data that reflect subtle differences in 

tumors can be utilized to build a predictor of response to 

cancer drugs.  

Single clinical or molecular parameters, such as tumor size, 

histology, hormone receptor or human epidermal growth 

factor receptor 2 (HER2) expression, and tumor grade, does 

not always give reliable predictions of response. With 

microarray data, researchers are able to identify gene 

expression patterns that are predictive of chemotherapy 

response.  

In [1], t-test for unequal-variance was employed to find a 

signature of 31 probe sets (27 genes) with highest 

differentially expressed values between pRC and RD. Based 

on this signature, a 30-probe set Diagnal Linear Discriminant 

Analysis (DLDA-30) classifier was constructed to predict 

pathological response to preoperative paclitaxel/FAC 

chemotherapy. The value of this type of predictor is the 

ability to identify those patients most likely to benefit from a 

particular treatment, the neoadjuvant chemotherapy, in this 

case. This predictor is able to recognize not all responsive 

patients but exclusively those that will benefit the most, as 

defined by attaining a pCR. Other clinical studies also 

identified gene signatures that predict response to 
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neoadjuvant therapy of breast cancer [2--15]. 

As a single variable technique, t-test processes one gene at 

a time and might miss the interactions between genes. We 

believed the signature identified by t-test could be optimized 

with the help of a multivariable technique such as GA. We 

aimed to search for novel signatures and to use them to 

develop predictors of pCR that can achieve much better 

predictions than the DLDA-30. Genetic algorithms have the 

capacity to explore multiple solutions concurrently, which we 

used to find interacting and informative genes in this study. 

After identifying a signature, SLR was employed to further 

explore the importance of each individual gene’s contribution 

to the prediction of pCR. 

2. Patients and Methods 

2.1. Patient Cohorts and Clinical Information 

One breast cancer patient cohort was obtained from a 

previous publication [1] (n=133). Needle-biopsy samples 

were collected from 133 patients with stage I, II, or III breast 

cancer who received preoperative weekly paclitaxel and a 

combination of fluorouracil, doxorubicin, and 

cyclophosphamide (T/FAC). These 133 patients were divided 

into two subsets, one training set of size 81 and one 

validation set of size 52. These data contain clinical 

information including patient age, gender, race, histological 

classification, stage, nuclear grade, ER (estrogen receptor), 

PR (progesterone receptor), and HER2 (human epidermal 

growth factor 2) status, pathologic complete response, and 

residual disease. These data also contain each patient’s 

genome-scale gene expression profiles generated using 

Affymetrix U133A chip (Santa Clara, CA). pCR was defined 

as no residual invasive cancer in the breast or lymph nodes. 

pCR is presently accepted as a reasonable early indicator for 

long-term survival. 

2.2. Sparse Logistic Regression 

A standard least squares linear regression solves the 

following problem: 
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Cawley GC et al. [18] utilized a novel technique to solve 

this sparse logistic regression problem efficiently. In our 

study, we used +1 to label those cases of RD status, and used 

-1 to label those cases of pCR status.  

2.3. Notch Signaling Pathway 

Notch genes encode highly conserved cell surface 

receptors. The Notch signaling pathway consists of Notch 

receptors, ligands, negative and positive modifiers, and 

transcription factors. It plays a key role in the normal 

development of many tissues and cell types, through diverse 

effects on cell regulation, proliferation, and differentiation. 

Aberrant Notch signaling has been observed in several 

human cancers, including acute T-cell lymphoblastic 

leukemia, cervical cancer, and breast cancer [19--21]. The 

Oligo GEArray Human Notch Signaling Pathway Microarray 

[22] was designed for profiling expression of 113 genes 

(Table 1) involved in Notch signaling. One of the two 

signatures identified in this study, Notch-86, was selected 

from these 113 genes.  

Table 1. Genes Involved in Notch Signaling Pathway as Described in [22]. 

Notch Signaling Pathway:  

Notch Binding: DLL1 (DELTA1), DTX1, JAG1, JAG2. 

Notch Receptor Processing: ADAM10, PSEN1, PSEN2, PSENEN (PEN2). 

Notch Signaling Pathway Target Genes: 

Apoptosis Genes: CDKN1A, CFLAR (CASH), IL2RA, NFKB1. 

Cell Cycle Regulators: CCND1 (Cyclin D1), CDKN1A (P21), IL2RA. 

Cell Proliferation: CDKN1A (P21), ERBB2, FOSL1, IL2RA. 

Genes Regulating Cell Differentiation: DTX1, PPARG. 
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Neurogenesis: HES1, HEY1. 

Regulation of Transcription: DTX1, FOS, FOSL1, HES1, HEY1, NFKB1, NFKB2, NR4A2, PPARG, STAT6. 

Other Target Genes with Unspecified Functions: CD44, CHUK, IFNG, IL17B, KRT1, LOR, MAP2K7, PDPK1, PTCRA. 

Other Genes Involved in the Notch Signaling Pathway: 

Apoptosis Genes: AXIN1, EP300, HDAC1, NOTCH2, PSEN1, PSEN2. 

Cell Cycle Regulators: AXIN1, CCNE1, CDC16, EP300, FIGF, JAG2, NOTCH2, PCAF. 

Cell Proliferation: CDC16, FIGF, FZD3, JAG1, JAG2, LRP5, NOTCH2, PCAF, STIL (SIL). 

Genes Regulating Cell Differentiation: DLL1, JAG1, JAG2, NOTCH1, NOTCH2, NOTCH3, NOTCH4, PAX5, SHH. 

Neurogenesis: DLL1, EP300, HEYL, JAG1, NEURL, NOTCH2, PAX5, RFNG, ZIC2 (HPE5). 

Regulation of Transcription: AES, CBL, CTNNB1, EP300, GLI1, HDAC1, HEYL, HOXB4, HR, MYCL1, NCOR2, NOTCH1, NOTCH2, NOTCH3, 

NOTCH4, PAX5, PCAF, POFUT1, RUNX1, SNW1 (SKIIP), SUFU, TEAD1, TLE1. 

Others Genes with Unspecified Functions: ADAM17, GBP2, LFNG, LMO2, MFNG, MMP7, NOTCH2NL, NUMB, SEL1L, SH2D1A. 

Other Signaling Pathways that Crosstalk with the Notch Signaling Pathway: 

Sonic Hedgehog (Shh) Pathway: GLI1, GSK3B, SHH, SMO, SUFU. 

Wnt Receptor Signaling Pathway: AES, AXIN1, CTNNB1, FZD1, FZD2, FZD3, FZD4, FZD6, FZD7, GSK3B, LRP5, TLE1, WISP1, WNT11. 

Other Genes Involved in the Immune Response: CXCL9, FAS (TNFRSF6), G1P2, GBP1, IFNG, IL2RA, IL2RG, IL4, IL4R, IL6ST, IRF1, ISGF3G, 

OAS1, OSM, STAT5A, STUB1.  

 

2.4. Top 65 Probe Sets 

T-tests for unequal variances for all the probe sets on the 

Affymetrix U133A chip were carried out to find the genes 

that were significantly differentially expressed in either the 

pCR cases or the RD cases. We chose the 60 probe sets with 

the smallest t-test P values (False Discovery Rate=1%) and 5 

probe sets with the most negative t-test statistics in the 

remaining probe sets to be our first signature (top 65-probe 

set signature) as presented in Table 1. The top 31 probe set 

signature in [1] had a FDR=0.5%. 

2.5. Genetic Algorithms 

Genetic Algorithms (GAs), a particular class of 

evolutionary algorithms, are search algorithms that adopt 

some common processes in genetics such as selection, 

mutation, and inheritance. The GAs outperform other 

traditional search algorithms in various applications.  

The outline of a genetic algorithm is as follows:  

Generate an initial population of individuals 

Evaluate initial population 

Repeat 

Perform selection 

Apply genetic operations such as mutation and 

crossover to generate a new generation of individuals 

Evaluate individuals in the population 

Until some stopping criteria is satisfied 

2.6. Prediction Accuracy Evaluation 

In order to evaluate the significance of our predictions, we 

need to compare them with random predictions. For each 

dataset, a random-label permutation was conducted while 

keeping the number of instances in each group fixed. The 

matches between the permuted labels and the original ones 

were recorded. The standard P value was the percentage of 

1000 random predictions with higher accuracy than the 

calculated predictions.  

Table 2. Top 65 Differentially Expressed Probe Sets by Unequal-Variance t-Test (n=82, probe sets with a * are contained in the top 31 probe sets found in [1]). 

Rank by 

P value 
t-Test P value 

Higher 

Expression in 
Probe Set ID 

Gene 

Symbol 
Gene Name 

1 6.215265 2.20E-08 RD 203930_s_at* MAPT microtubule-associated protein tau 

2 6.36741 2.31E-08 RD 203929_s_at* MAPT microtubule-associated protein tau 

3 6.212778 2.56E-08 RD 212207_at* THRAP2 thyroid hormone receptor associated protein 2 

4 5.804489 1.25E-07 RD 212745_s_at* BBS4 Bardet-Biedl syndrome 4 

5 5.847627 1.42E-07 RD 203928_x_at* MAPT microtubule-associated protein tau 

6 5.763819 1.67E-07 RD 208945_s_at* BECN1 
beclin 1 (coiled-coil, myosin-like BCL2 interacting 

protein) 

7 5.704523 2.50E-07 RD 206401_s_at* MAPT microtubule-associated protein tau 

8 5.716982 2.77E-07 RD 205354_at* GAMT guanidinoacetate N-methyltransferase 

9 5.555817 3.65E-07 RD 219741_x_at* ZNF552 zinc finger protein 552 

10 5.523853 4.08E-07 RD 215304_at* --- Clone 23948 mRNA sequence 

11 5.449088 5.45E-07 RD 209173_at AGR2 anterior gradient 2 homolog (Xenopus laevis) 

12 5.391683 6.89E-07 RD 201508_at* IGFBP4 insulin-like growth factor binding protein 4 

13 5.357545 8.43E-07 RD 217542_at* MDM2 
Mdm2, transformed 3T3 cell double minute 2, p53 

binding protein (mouse) 

14 5.312123 1.30E-06 RD 219044_at* FLJ10916 hypothetical protein FLJ10916 

15 5.26737 1.41E-06 RD 215616_s_at* JMJD2B jumonji domain containing 2B 

16 5.215414 1.41E-06 RD 204509_at* CA12 carbonic anhydrase XII 

17 5.221534 1.42E-06 RD 202204_s_at* AMFR autocrine motility factor receptor 

18 5.215809 1.70E-06 RD 214124_x_at* FGFR1OP FGFR1 oncogene partner 
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Rank by 

P value 
t-Test P value 

Higher 

Expression in 
Probe Set ID 

Gene 

Symbol 
Gene Name 

19 5.210207 1.71E-06 RD 219051_x_at* METRN meteorin, glial cell differentiation regulator 

20 5.194077 1.97E-06 RD 209696_at FBP1 fructose-1,6-bisphosphatase 1 

21 5.052227 2.70E-06 RD 213234_at* KIAA1467 KIAA1467 protein 

22 5.049412 2.74E-06 RD 217838_s_at EVL Enah/Vasp-like 

23 5.054632 2.95E-06 RD 205074_at SLC22A5 
solute carrier family 22 (organic cation transporter), 

member 5 

24 5.139071 3.06E-06 RD 213623_at* KIF3A kinesin family member 3A 

25 5.017933 3.38E-06 RD 201413_at HSD17B4 hydroxysteroid (17-beta) dehydrogenase 4 

26 4.908014 5.26E-06 RD 205225_at ESR1 estrogen receptor 1 

27 4.823788 7.04E-06 RD 217016_x_at FLJ23172 hypothetical LOC389177 

28 4.80725 7.18E-06 RD 214053_at* --- CDNA FLJ44318 fis, clone TRACH3000780 

29 4.888899 7.30E-06 RD 213527_s_at ZNF688 zinc finger protein 688 

30 4.819068 7.44E-06 RD 203009_at LU Lutheran blood group (Auberger b antigen included) 

31 4.865888 9.07E-06 RD 212046_x_at MAPK3 mitogen-activated protein kinase 3 

32 4.854113 9.27E-06 RD 205012_s_at HAGH hydroxyacylglutathione hydrolase 

33 4.762182 9.56E-06 RD 203675_at NUCB2 nucleobindin 2 

34 4.700102 1.07E-05 RD 203071_at SEMA3B 
sema domain, immunoglobulin domain (Ig), short basic 

domain, secreted, (semaphorin) 3B 

35 4.710655 1.07E-05 RD 210129_s_at TTLL3 tubulin tyrosine ligase-like family, member 3 

36 4.671287 1.20E-05 RD 218671_s_at ATPIF1 ATPase inhibitory factor 1 

37 4.689638 1.23E-05 RD 209339_at SIAH2 seven in absentia homolog 2 (Drosophila)  

38 4.629403 1.44E-05 RD 218976_at DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 

39 4.649829 1.44E-05 RD 205734_s_at AFF3 AF4/FMR2 family, member 3 

40 4.634054 1.65E-05 RD 202641_at ARL3 ADP-ribosylation factor-like 3 

41 4.580441 1.68E-05 RD 218259_at MKL2 MKL/myocardin-like 2 

42 4.590716 1.71E-05 RD 220540_at KCNK15 potassium channel, subfamily K, member 15 

43 4.578743 1.71E-05 RD 210831_s_at PTGER3 prostaglandin E receptor 3 (subtype EP3) 

44 4.608731 1.77E-05 RD 218769_s_at ANKRA2 ankyrin repeat, family A (RFXANK-like), 2 

45 4.587999 1.81E-05 RD 218394_at FLJ22386 leucine zipper domain protein 

46 4.568723 1.82E-05 RD 216835_s_at DOK1 docking protein 1, 62kDa (downstream of tyrosine kinase 1) 

47 4.606517 1.98E-05 RD 221728_x_at XIST X (inactive)-specific transcript 

48 4.582593 2.04E-05 RD 212956_at KIAA0882 KIAA0882 protein 

49 4.531619 2.06E-05 RD 212239_at PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) 

50 4.521411 2.13E-05 RD 212209_at THRAP2 thyroid hormone receptor associated protein 2 

51 4.509765 2.22E-05 RD 204792_s_at WDTC2 WD and tetratricopeptide repeats 2 

52 4.593663 2.45E-05 RD 204862_s_at NME3 non-metastatic cells 3, protein expressed in 

53 4.478137 2.49E-05 RD 206418_at NOX1 NADPH oxidase 1 

54 4.538231 2.74E-05 RD 205059_s_at IDUA iduronidase, alpha-L- 

55 4.463108 2.74E-05 RD 210958_s_at MAST4 
microtubule associated serine/threonine kinase family 

member 4 

56 4.501318 2.76E-05 RD 202228_s_at SDFR1 stromal cell derived factor receptor 1 

57 4.539226 2.83E-05 RD 212660_at PHF15 PHD finger protein 15 

58 -5.01605 2.96E-05 pCR 213134_x_at* BTG3 BTG family, member 3 

59 4.427751 2.98E-05 RD 203789_s_at SEMA3C 
sema domain, immunoglobulin domain (Ig), short basic 

domain, secreted, (semaphorin) 3C 

60 4.484732 3.00E-05 RD 216109_at THRAP2 Thyroid hormone receptor associated protein 2 

61 -5.01538 3.31E-05 pCR 205548_s_at* BTG3 BTG family, member 3 

62 -4.53199 0.000122 PCR 204825_at* MELK maternal embryonic leucine zipper kinase 

63 -4.00315 0.000496 pCR 205339_at SIL TAL1 (SCL) interrupting locus 

64 -3.97777 0.000442 PCR 203693_s_at* E2F3 E2F transcription factor 3 

65 -3.94634 0.000361 PCR 216237_s_at MCM5 
MCM5 minichromosome maintenance deficient 5, cell 

division cycle 46 (S. cerevisiae) 

 

3. Results 

3.1. Two Signatures: The 28 Probe Sets and the Notch-86 

To search and select a subset of the 65 probe sets, we 

represented our solution, referred to as an individual in GA 

terms, as a binary vector of size 65 to indicate the presence (1) 

or absence (0) of each probe set in the 65 probe sets. We ran 

the GA algorithm with population size 200, individual size 65, 

and 100 generations. In each generation, the top 50% of the 

individuals with highest fitness values were selected as 

parents to produce the next generation with crossover and a 

point mutation was applied to each individual randomly at 

six genes. Our fitness value was the prediction accuracy of 

SLR based on the training set. In each generation of GA, we 

divided the training set (n=82) into five equal subsets and 

used four subsets as a training set for SLR and one subset as 

a test set to get the accuracy of SLR on this test set. At the 

same time, in each generation, we calculated the prediction 

accuracy of SLR on the validation set (n=51). Our goal was 

to choose an individual that has similar high accuracy on the 
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training and validation sets. We found an individual of this 

quality and its binary representation has 28 ones, which was 

our first signature (Table 2). A subset of the Notch signature 

of such quality, Notch-86, was found the same way. Our 

second signature had 86 probe sets. Table 3 displays the most 

important probe sets for response prediction in this second 

signature.  

3.2. Two Predictors: SLR-28 and SLR-Notch-86 

In [1] the DLDA-30 was selected as the best predictor after 

a thorough search of different predictors based on Support 

Vector Machine (SVM), Diagonal Linear Discrimmant 

Analysis (DLDA), and K-nearest neighbor (KNN). We 

developed two SLR based predictors of high precision. One 

used the 28 probe sets (SLR-28) and one used the Notch-86 

(SLR-Notch-86). The evaluation of prediction performance 

was conducted on both the training set (n=82) and the 

validation set (n=51). Since the DLDA-30 was evaluated on 

the training set with five-fold cross validation, we performed 

five-fold evaluation too for our two predictors. Further, we 

repeated the five-fold cross validation 10 times and the 

averaged results were reported in Table 4.  

On the training set, the two predictors, SLR-28 and SLR-

Notch-86, produced much better predictions across all five 

measurements than DLDA-30 (Table 5). In [1], authors 

calculated the P values of their DLDA-30 predictions on the 

training set in five-fold cross validation and they were all 

zero. Since our two predictors had higher values in all the 

five measurements, we concluded that they also have P value 

zero in all these five measurements.  

On the validation set, the two predictors trained on the 

training set had a much higher accuracy, a much higher 

specificity, and a much higher PPV than DLDA-30 (Table 6). 

Our two predictors had P values zero in all five 

measurements, whereas DLDA-30 had three P values larger 

than 0.05, especially those for accuracy and specificity. SLR-

28 correctly identified all but two who achieved pCR and all 

but two who achieved RD, and SLR-Notch-86 correctly 

identified all but three who achieved pCR and all but two 

who achieved RD (Table 6). Tables 5 and 6 together show 

that our two predictors can predicts pCR with great precision 

on the training set and the validation set.  

These two predictors also identified the important genes in 

each signature that had nonzero SLR weights (Figure 1). The 

genes with zero weight did not contribute to the prediction. 

The genes with positive weight contribute positively to the 

RD prediction and those with negative weight contribute 

positively to pCR prediction. In most cases, genes with 

positive t-test statistic had positive weight like the three 

genes in Figure 1, BGT3, MELK, and MCM5. However, 

there were some exceptions. Two genes, STUB1 and PDPK1, 

had positive t-test statistic, but negative weight in Table 3, 

demonstrating that SLR as a multivariable technique can 

capture some interactions between genes whereas t-test may 

not. Figure 1 showed that the most discriminative genes 

measured by SLR as a group were not necessarily those with 

the smallest P values by t-test as individual genes. 

Table 3. Important Probe Sets in Notch-86 Signature. 

SLR Weight t-Test P value 
Higher 

Expression in 
Probe set ID Gene symbol Gene Name 

0.29955 2.585026 0.011947 RD 202221_s_at EP300 E1A binding protein p300 

-0.4945 -0.57563 0.56903 pCR 203393_at HES1 hairy and enhancer of split 1 

-0.02104 -2.73059 0.012681 pCR 203915_at CXCL9 chemokine (C-X-C motif) ligand 9 

-0.27652 -1.92262 0.067834 pCR 204152_s_at MFNG Manic fringe homolog 

0.50511 2.208649 0.031467 RD 205552_s_at OAS1 oligoadenylate synthetase 1 

-0.71933 -4.00315 0.000496 pCR 205746_s_at ADAM17 ADAM metallopeptidase domain 17 

0.60822 3.119622 0.002969 RD 207760_s_at NCOR2 nuclear receptor co-repressor 2 

-0.49017 -1.3125 0.199077 pCR 211179_at RUNX1 runt-related transcription factor 1 

0.6048 1.873074 0.066922 RD 211209_x_at SH2D1A SH2 domain protein 1A 

0.5284 0.809656 0.423383 RD 212014_x_at CD44 CD44 antigen 

-0.27566 -1.44514 0.156111 pCR 213523_at CCNE1 cyclin E1 

-0.11683 0.382658 0.704546 RD 217934_x_at STUB1 STIP1 homology and U-box containing protein 1 

0.41896 3.252073 0.001808 RD 218665_at FZD4 frizzled homolog 4 

-0.07142 -0.66774 0.50776 pCR 219683_at FZD3 frizzled homolog 3 

-0.2956 0.212779 0.832697 RD 32029_at PDPK1 phosphoinositide dependent protein kinase-1 

 

One of the important genes in Figure 1 is CA12, which is a 

membrane zinc metalloenzyme that is present in different 

normal tissues but is overexpressed in some cancers such as 

renal cell and breast cancers. Two studies found that 

increased CA IX expression is associated with poor relapse 

free and overall survival in invasive breast cancer [23, 24]. 

Another study found that CA12 is regulated by estrogen 

receptor �  (ERα) in breast
 
cancer, and that this regulation 

involves a distal estrogen-responsive
 
enhancer region [25].  

The mitochondrial ATPase inhibitory factor 1(ATPIF1) is 

another important gene in Figure 1. Several studies 

discovered a close link between metabolic and genetic 

changes observed during malignant growth [26, 27]. The 

large positive weight of this gene in Figure 1 is also in 

agreement with this observation.  

One study in [28] revealed that MAPT is the best single 

gene discriminator of pCR to preoperative chemotherapy 

with paclitaxel, 5-fluorouracil, doxorubicin, and 
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cyclophosphamide. There are four probe sets of MAPT 

selected in Table 2 and MAPT is one of the 16 informative 

genes in the top 65 probe sets in Figure 1. 

SDFR1 encodes a cell surface protein of the 

immunglobulin superfamily that regulates cell adhesion and 

process outgrowth. BTG3 is tumor suppressor [29-31] and its 

large negative weight implies that its presence enhances 

chemo sensitivity. The functions of the important genes in 

Notch-86 signature in Figure 1 can be found in Table 3. 

Table 4. Prediction Measures (Five-fold cross validation) of DLDA-30, SLR-

28 and SLR-Notch-86 on the Training Set with all P Values Zero in the Five 

Measurements. 

Measures DLDA-30 SLR-28  SLR-Notch-86 

Accuracy 83 0.90 0.96 

Sensitivity 75 0.90 0.96 

Specificity 73 0.89 0.96 

PPV 50 0.75 0.91 

NPV 90 0.96 0.99 

 

Table 5. Prediction Measures of DLDA-30, SLR-28, and SLR-Notch-86 on the Validation Set along with Their P values. 

Measure DLDA-30  P value SLR-28  P value SLR-Notch-86 P value 

Accuracy 0.76 0.1900 0.92 0 0.90 0 

Sensitivity 0.92 0 0.85 0 0.77 0 

Specificity 0.71 0.96 0.95 0 0.95 0 

PPV 0.52 0.0920 0.85 0 0.83 0 

NPV 0.96 0 0.95 0 0.92 0 

Table 6. Confusion Matrices for DLDA-30, SLR-28, and SLR-Notch-86 on the Validation Set. 
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RD 
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n=11 n=2 Observed pCR n=10 n=3 

 Observed RD n=11 n=27  Observed RD n=2 n=36  Observed RD n=2 n=36 

 

Figure 1. Two plots to show the important genes in the 28 probe set signature and the Notch-86 probe set signature. 

4. Conclusion 

In this study, we intended to uncover gene signatures for 

developing predictors that have a much higher accuracy than 

DLDA-30. With the ability to account for multiple gene 

interactions, the multivariable techniques, such as genetic 

algorithms and SLR, have demonstrated their potential utility 

in identifying robust gene signatures of clinical relevance.  

Currently there is an urgent need to develop knowledge to 

identify groups of patients who will derive benefit from the 

different chemotherapy agents. Molecular profiling of 

individual tumors will help to predict the most appropriate 

therapy for each cancer patient. One study already suggests 

that responses to neoadjuvant chemotherapy correlate with 

gene expression profile, with tumors displaying the ER-

positive gene signatures being less likely to respond than 

other types of breast cancer [32]. 
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